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1 Dipartimento di Informatica, Università degli Studi di Torino, c.so Svizzera 185,
10149 Torino, Italy

{matteo.baldoni,cristina.baroglio,roberto.micalizio}@unito.it
2 KRDB Research Centre, Free University of Bozen-Bolzano, Piazza Domenicani 3,

39100 Bolzano, Italy
{calvanese,montali}@inf.unibz.it

Abstract. We recall the key abstractions and models on which the
major approaches to software specification rely, using Meyer’s forces
of computation as dimensions of comparison. Based on the identified
strengths and lacks, we introduce data-awareness and of norm-awareness
as recommended properties, explaining the advantages they bring about.
We show that multiagent systems are a good candidate for the develop-
ment of a data- and norm-aware programming, tracing directions for the
realization of multiagent systems that are data and norm-aware. Finally,
we report and comment some proposals from the multiagent systems
literature that, though developed independently and not inserted in an
organic framework, already face specific aspects that are relevant to bring
about norm and data-awareness.

1 Introduction

One of the key characteristics of agents is their situatedness [41,50,51], i.e. the
fact that an agent is immersed in an environment, be it social or physical, that
it perceives, senses, and acts upon. Despite the centrality of situatedness, most
studies in the research area on multiagent systems are focussed only on features
of agents, while those that put forward the need of representing the environment
either (1) disregard the plurality of data, thus typically relying on a propositional
representation, as explained in [36], or (2) do not provide a representation of
the process by which data evolve in a form that can be reasoned about, as we
underline in this work.

We advocate that, in order for agents to be capable of dealing with richer
data representations that go beyond the propositional case, it is necessary to rely
on an information system through which data can, for instance, be aggregated
or information can be extracted (data awareness). The environment, for what
concerns its being used by the agents, should be specified on top of building
blocks that amount to semantically meaningful chunks of data, which evolve as
a consequence of the agents’ actions. The description of how data evolve should
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be provided by the environment to its agents as a body of norms. This would
allow agents to deliberate how to act and which goals to pursue also in terms of
expectations about the evolution of the environment (norm awareness). Gather-
ing from proposals like [6,18], we propose to describe the environment in terms
of data information models and data lifecycles, that are to be made available
to the agents in their deliberation process. A data information model specifies
the structure of the information, a data lifecycle, instead, specifies data state
transitions. Finally, it is capitol that data-awareness and norm-awareness are
realized in a way that does not compromise the agents’ deliberative capabilities.
Problems may, in fact, arise when no bound is placed on the number of tuples
that can be added to database relations as the computation goes on [5,36].

Let us make a couple of examples. In a propositional setting, it is common
to consider an order as pertaining to an interaction session. Combining different
orders of a same client into a single shipping procedure would be positive in
various respects (to reduce pollution, to save money, to make the client happy by
receiving everything in one box), but the exhibition of such a behavior requires to
distill information from the data specifying the different orders, to associate the
orders to the single client, and to know that all orders follow a same evolution,
whose description should be available to the agents in a form that can be reasoned
about. Only such kind of awareness would provide the agents the means to adapt
their behavior to the cases which are captured by the actual data. Similarly, in
a warehouse that received various orders concerning items of a same kind, and
that will undergo some packaging process, it would be more efficient to first
pick all the items up (probably they will be on the same shelf) and only after
start to pack them up. Instead, in a propositional setting the pick-and-pack can
only occur one item at a time, introducing a considerable waste of time. Of
course, it is always possible to hard-code some optimization procedure in the
agents’ behaviors but the interesting thing would be that the agents adapted
autonomously, after reasoning on data, without any hard-coding.

To explain our point, we start the paper by recalling the key abstractions and
models on which the major approaches to software specification rely, including
both the ones developed by the research area on multiagent systems and those
proposed by other research communities. We provide an organic view by rely-
ing on Meyer’s three forces of computation [33] as reference dimensions, along
which all the considered proposals are positioned. To this aim, Sect. 2 introduces
Meyer’s forces of computation, while Sect. 3 overviews approaches to software
specification, ranging from functional decomposition to multiagent systems.

Based on the strengths and lacks emerged in this part of the paper, Sect. 4
introduces data-awareness and norm-awareness as recommended properties,
showing that multiagent systems are a good candidate for the development of a
data- and norm-aware programming. It explains the advantages brought about
by this vision, tracing directions to the realization of multiagent systems that
are data and norm-aware. Section 5, then, reports and comments some proposals
in the multiagent systems literature that, though developed independently and
not inserted in an organic framework, face specific aspects that are relevant to
bring about norm and data-awareness. Conclusions end the paper.
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2 Meyer’s Forces: Processor, Action and Object

We decided to use Meyer’s forces of computation as a common ground for
comparing the different proposals because they provide a neutral touchstone,
unrelated to any specific programming approach or modularization mechanism.
According to Meyer, three forces are at play when we use software to perform
some computations (see Fig. 1): processors, actions, and objects. A processor can
be a process or a thread (in the paper we use both the terms processor and
process to refer to this force); actions are the operations that make the compu-
tation; objects are the data to which actions are applied.

Fig. 1. Meyer’s three forces of computation [33, Chap. 5, p. 101].

A software system, in order to execute, uses processes to apply certain actions
to certain objects. The form of the actions depends on the considered level of
granularity: they can be instructions of the programming language as well as
they can be major steps of a complex algorithm. Moreover, the form of actions
conditions the way in which processes operate on objects. Some objects are built
by a computation for its own needs and exist only while the computation pro-
ceeds; others (e.g., files or databases) are external and may outlive individual
computations. In the following we analyse the most important proposals con-
cerning software modularization, showing how they (sometimes implicitly) give
more or less strength to Meyer’s forces, and the drawbacks that follow.

3 From Functional Decomposition to MAS

It becomes apparent that processor and object are the two principal forces along
which most approaches to software modularization have been developed so far,
while the action force remained subsidiary to one or another.
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Functional Decomposition. The top-down functional decomposition is probably
the earliest approach to building modularized software; it relies on a model that
puts at the center the notion of process; namely, the implementation of a given
function is based only on a set of actions made of instructions, provided by the
programming language at hand, possibly in combination with previously defined
functions [33]. Top-down functional decomposition builds a system by stepwise
refinement, starting with the definition of its abstract function. Each refinement
step decreases the abstraction of the specification. With reference to Fig. 1, the
approach disregards objects/data, just considered as data structures that are
instrumental to the function specification and internal to processes. Actions are
defined only in terms of the instructions provided by the programming language
and of other functions built on top of them (subroutines), into which a process is
structured. All in all, this approach is intuitive and suitable to the development
of individual algorithms, in turn aimed at solving some specific task, but does not
scale up equally well when data are shared among concurrent processes because
it lacks abstractions to explicitly account for such data and their corresponding
management mechanisms.

Object-Orientation. The Object-Oriented approach to modularization results
from an effort aimed at showing the limits of the functional approach [33].
Objects (data) often have a life on their own, independent from the processes
that use them. Objects become, then, the fundamental notion of the model. They
provide the actions by which (and only by which) it is possible to operate on
them (data operations). This approach, however, disregards processes and their
modularization both internally and externally to objects. Internally, because
objects provide actions but have a static nature, and are inherently passive:
actions are invoked on objects, but the decision of which operations to invoke
so as to evolve such objects is taken by external processes. This also implies
that there is no decoupling between the use of an object and the management
of that object. Externally, because the model does not supply conceptual notions
for composing the actions provided by objects into processes, and there is no
conceptual support to the specification of tasks, in particular when concurrency
is involved.

Actor Model, Active Objects. The key concept in the actor model [30] (to which
active objects are largely inspired) is that everything is an actor. Interaction
between actors occurs only through direct asynchronous message passing, with
no restriction on the order in which messages are received. An actor is a compu-
tational entity that, in response to an incoming message, can: (1) send a finite
number of messages to other actors; (2) create a finite number of new actors;
(3) designate the behavior to be used in response to the next incoming message.
These three steps can be executed in any order, possibly in parallel. Recipi-
ents of messages are identified by opaque addresses. Interestingly, in [30] Hewitt
et al. state that “We use the ACTOR metaphor to emphasize the inseparability
of control and data flow in our model. Data structures, functions, semaphores,
monitors, [. . . ] and data bases can all be shown to be special cases of actors.
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All of the above are objects with certain useful modes of behavior.” The actor
model decouples the sender of a message from the communications sent, and this
makes it possible to tackle asynchronous communication and to define control
structures as patterns of passing messages.

Many authors, such as [34,37,46], noted that the actor model does not
address the issue of coordination. Coordination requires the possibility for an
actor to have expectations on another actor’s behavior, but the mere asyn-
chronous message passing gives no means to foresee how a message receiver
will behave. For example, in the object-paradigm methods return the computed
results to their callers. In the actor model this is not granted because this sim-
ple pattern requires the exchange of two messages; however, no way for spec-
ifying patterns of message exchanges between actors is provided. The lack of
such mechanisms hinders the verification of properties of a system of interacting
actors. Similar problems are well-known also in the area that studies enterprise
application integration [1] and service-oriented computing [45], that can be con-
sidered as heirs of the actor model and where once again interaction relies on
asynchronous message passing. There are in the literature proposals to overcome
these limits. For instance for what concerns the actor model. [37] proposes to use
Scribble protocols and their relation to finite state machines for specification and
runtime verification of actor interactions. Instead, in the case of service-oriented
approaches, there are proposals of languages that allow capturing complex busi-
ness processes as service compositions, either in the form of orchestrations (e.g.
BPEL) or of choreographies (e.g. WS-CDL).

The above problem can better be understood by referring to Meyer’s forces.
The actor model supports the realization of object/data management processes
(these are the internal behaviors of the actors, that rule how the actor evolves),
but it does not support the design and the modularization of processes that per-
form the object use, which would be external to the actors. As a consequence,
generalizing what [14] states about service-oriented approaches, the modular-
ization supplied by the actor model, while favoring component reuse, does not
address the need of connecting the data to the organizational processes: data
remains hidden inside systems.

Business Processes. Business processes have been increasingly adopted by enter-
prises and organizations to conceptually describe their dynamics, and those of
the socio-technical systems they live in. Modern enterprises [13] are complex,
distributed, and aleatory systems: complex and distributed because they involve
offices, activities, actors, resources, often heterogeneous and geographically dis-
tributed; aleatory because they are affected by unpredictable events like new
laws, market trends, but also resignations, incidents, and so on. In this light,
business processes help to create an explicit representation of how an enterprise
works towards the accomplishments of its tasks and goals. More specifically, a
business process describes how a set of interrelated activities can lead to a pre-
cise and measurable result (a product or a service) in response to an external
event (e.g., a new order) [49]. Business processes developed for understanding
how an enterprise work can then be refined and used as the basis for developing
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software systems that the enterprise will adopt to concretely support the execu-
tion of its procedures [13,24]. In this light, business processes become workflows
that connect and coordinate different people, offices, organizations, and soft-
ware in a compound flow of execution [1]. Among the main advantages of this
process-centric view, the fact that it enables analysis of an enterprise functioning,
it enables comparison of business processes, it enables the study of compliance
to norms (e.g. [27]), and also to identify critical points like bottlenecks by way of
simulations (e.g., see iGrafx Process1 for Six Sigma). The adoption of a service-
oriented approach and of web services helps implementing workflows that span
across multiple organizations, whose infrastructures may well be heterogeneous
and little integrated [1,45].

On the negative side, business processes, by being an expression of the process
force, show the same limits of the functional decomposition approach. Specifi-
cally, they are typically represented in an activity-centric way, i.e., by emphasiz-
ing which flows of activities are acceptable, without providing adequate abstrac-
tions to capture the data that are manipulated along such flows. Data are sub-
sidiary to processes.

Artifact-centric Process Management. The artifact-centric approach [6,14,18]
counterposes a data-centric vision to the activity-centric vision described above.
Artifacts are concrete, identifiable, self-describing chunks of information, the
basic building blocks by which business models and operations are described.
They are business-relevant objects that are created and evolve as they pass
through business operations. They include an information model of the data,
and a lifecycle model, that contains the key states through which the data
evolve, together with their transitions (triggered by the execution of correspond-
ing tasks). A change to an artifact can trigger changes to other artifacts, possibly
of a different type. The lifecycle model is not only used at runtime to track the
evolution of artifacts, but also at design time to understand who is responsible
of which transitions.

On the negative side, like in the case of the actor model, business artifacts
disregard the design and the modularization of those processes that operate on
them. Moreover, verification problems are much harder to tackle than in the
case where only the control-flow perspective is considered. In fact, the explicit
presence of data, together with the possibility of incorporating new data from
the external environment, makes these systems infinite-state in general [14].

Agents and Multiagent Systems. In [41,51], agents are defined as entities that
observe their environment and act upon it so as to achieve their own goals. Two
fundamental characteristics of agents are autonomy and situatedness. Agents are
autonomous in the sense that they have a sense-plan-act deliberative cycle, which
gives them control of their internal state and behavior; autonomy, in turn, implies
proactivity, i.e., the ability of an agent to take action towards the achievement of
its (delegated) objectives, without being solicited to do so. Agents are situated

1 http://www.igrafx.com/.

http://www.igrafx.com/
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because they can sense, perceive, and manipulate the environment in which
operate. The environment could be physical or virtual, and is understood by
agents in terms of (relevant) data. From a programming perspective, it is natural
to compare agents to objects. Agent-oriented programming was introduced by
Shoham as “a specialization of object-oriented programming” [42]. The difference
between agents and static objects is clear. Citing Wooldridge [51, Sect. 2.2]:
(1) objects do not have control over their own behavior2, (2) objects do not
exhibit flexibility in their behavior, and (3) in standard object models there is
a single thread of control, while agents are inherently multi-threaded. Similar
comments are reported also by other authors, like Jennings [31]. However, when
comparing agents to actors, the behavioral dimension is not sufficient: [51, p. 30]
reduces the difference between agents and active objects, which encompass an
own thread of control, to the fact that “active objects are essentially agents that
do not necessarily have the ability to exhibit flexible autonomous behavior”. In
order to understand the difference between the agent paradigm and objects it
is necessary to rely on both the abstractions introduced by the agent paradigm,
that are that of agent and that of environment [50]. Such a dichotomy does
not find correspondence in the other models and gives a first-class role to both
Meyer’s process and object force (see Fig. 2). Processes realize algorithms aimed
at achieving objectives, and this is exactly the gist of the agent abstraction
and the rationale behind its proactivity: agents exploit their deliberative cycle
(as control flow), possibly together with the key abstractions of belief, desire,
and intention (as logic), so as to realize algorithms, i.e., processes, for acting
in their environment to pursue their goals3. Contrariwise, active objects and
actors do not have goals nor purposes, even though their specification includes
a process. As we said, they are a manifestation of the object force. In the agent
paradigm the manifestation of the object force is the environment abstraction.
The environment does not exhibit the kind of autonomy explained for agents
even when its definition includes a process. Its being reactive rather than active
makes the environment more similar to an actor whose behavior is triggered by
the messages it receives, that are all served indistinctly.

The A&A meta-model. Despite the centrality of situatedness in the definition
of agents, most of the research in multiagent systems typically focuses on the
abstraction of agent only, completely abstracting away from the notion of envi-
ronment. Proposals like [22,50] overcome this limit by introducing first-class
abstractions for the environment, to be captured alongside agents themselves.
In particular, [50] states that “the environment is a first-class abstraction that
provides the surrounding conditions for agents to exist and that mediates both
the interaction among agents and the access to resources.” This proposal brought
to important evolutions like the A&A meta-model [38] and its implementation
CArtAgO [39].
2 This is summarized by the well-known motto “Objects do it for free; agents do it
because they want it”.

3 Summarizing, objects “do it” for free because they are data, agents are processes
and “do it” because it is functional to their objectives.
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Normative Multiagent Systems. A fundamental step towards raising the value of
the action force is brought by normative multiagent systems [8,32], which take
inspiration from mechanisms that are typical of human communities, and have
been widely studied in the research area on multiagent systems. According to [8]
a normative multiagent system is: “a multiagent system together with norma-
tive systems in which agents on the one hand can decide whether to follow the
explicitly represented norms, and on the other the normative systems specify
how and in which extent the agents can modify the norms”. Initially the focus
was posed mainly on regulative norms that, through obligations, permissions,
and prohibitions, specify the patterns of actions and interactions agents should
adhere to, even though deviations can still occur and have to be properly consid-
ered [32]. More recently, regulative norms have been combined with constitutive
norms [7,15,19], which support the creation of institutional realities by defining
institutional actions that make sense only within the institutions they belong to.
A typical example is that of “raising a hand”, which counts as “make a bid” in
the context of an auction. Institutional actions allow agents to operate within an
institution. Citing [19], the impact on the agent’s deliberative cycle is that agents
can “reason about the social consequences of their actions”. In this light, going
back to Meyer’s forces, if agents are abstractions for processes and environments
for objects, then norms are abstractions of the action force (see Fig. 2) because
norms model actions and, thus, condition the way in which processes operate on
objects. In fact, norms specify either institutional actions, or the conditions for
the use of such actions, consequently regulating the acceptable behavior of the
agents in a system. This view is also supported by the fact that norms concern
“doing the right thing” rather than “doing what leads to a goal” [48].

4 Need of Data and Norm Awareness

Reality is complex even in simple settings because it involves data, and data
are related and compose semantically meaningful chunks of information. The
realization of systems where a set of autonomous and heterogeneous parties can
interact effectively, leveraging the richness of the data they create and manip-
ulate through their actions, requires, on the one hand, data-awareness and, on
the other hand, a specification of the rules by which data evolve, that agents
should take into account to decide if and how to act (norm-awareness). These
two kinds of awareness should be seamlessly integrated in the system through
appropriate abstractions.

Of the many approaches to the specification and modularization of software
that we have discussed, multiagent systems are particularly promising. One key
aspect in this respect is the fact that, differently than in the other approaches, the
action force is not ancillary to the process force nor to the object force. Actions
are the capabilities agents have to modify their environment. The process force is
mapped onto a cycle in which the agent observes the world (updating its beliefs),
deliberates which intentions to achieve, plans how to achieve them, and finally
executes the plan [11]. Beliefs and intentions are those components of the process
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Fig. 2. Rereading Meyer’s forces.

abstraction that, with reference to Fig. 2, create a bridge respectively towards the
object/data force (i.e., the environment) and the action force. Beliefs concern
the environment. Intentions lead to action [51], meaning that if an agent has
an intention, then the expectation is that it will make a reasonable attempt to
achieve it. In this sense, intentions play a central role in the selection and the
execution of action. This independence of the action force from the other two
is what enables the use of norms as an abstraction of the action force and, so,
to model the specification of data lifecycles by way of norms. Note that, even
though in general data-awareness and norm-awareness are orthogonal to BDI
notions, it is natural to think of agents as BDI agents for a seamless integration
of all the aspects of deliberation, including the awareness of data and of their
lifecycles.

While in functional decomposition actions are produced by refining a given
goal through a top-down strategy, intentions are a means by which the action force
is put in relation to the process force. Thus, while in other approaches actions are
hard-coded, so to say, in the process, an agent’s deliberative process is indepen-
dent of the actions it uses and, in particular, it can concern also actions by other
agents. So, for instance, consider a setting where the order lifecycle is available
to the agents in a way that can be reasoned about. An agent, who is handling
part of the lifecycle of an order, may conclude that, since it has to pick up three
items in the warehouse, since each such item will have to be packed, since all pack-
agings are performed by a same other agent, and since one of its goals is saving
energy, it is preferable to first pick them all up and only then deliver them to the
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other agent. Data-awareness here is awareness that three items of a same kind are
requested. Norm-awareness that items are picked because each of them is part of
some order, whose lifecycle says that after being picked they will be packed. Again
data-awareness allows our agent to know that the orders are different and that all
parcels are to be made by a same other agent.

Notice that approaches that rely on the object force do not provide the abstrac-
tions that allow realizing the warehouse example because they do not foresee
an abstraction like that of agent (not even of process). Consequently, object-
orientation associates operations to data, but the paradigm did not push the study
towards a normative representation. Similarly, while business artifacts provide
both a rich description of their data and their lifecycle, they do not provide any
link to a corresponding normative understanding, thus making impossible for the
agents (could any be defined) to leverage this knowledge for reasoning about how
to act. On the other hand, artifacts in the A&A model are radically different from
the business artifacts because they do not come with an explicit information model
for data, and they do not exhibit data lifecycles. Thus, this information cannot be
exploited at design time, nor at runtime, to reason about which actions should be
taken towards the achievement of the agent goals.

Fig. 3. Data-aware and norm-aware multiagent system.

Another reason that makes agents promising is that agents already show the
capability of tackling norms. This is due to the fact that, since in the agent
paradigm each agent is an independent locus of control, coordination means are
deemed as essential towards regulating the overall behavior of the system. As it
is well underlined in [31], the agent-based model allows to naturally tackle the
issue of coordination by introducing the concepts of interaction protocol [16], and
that of norm [26,48]. These concepts are at the heart of the design of multiagent
systems. The deliberative cycle of agents is affected by the norms and by the
obligations these norms generate as a consequence of the agents’ actions. In
principle, each agent is capable to adapt its behavior to (local or coordination)
changing conditions, e.g., by re-ranking its goals based on the context or by
adopting new goals, and free to do it or not. Institutions and organizations
are a way to realize functional decomposition in an agent setting. Intuitively,
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an institution is an organizational structure for coordinating the activities of
multiple interacting agents, that typically embodies some rules (norms) to govern
participation and interaction. In general, an organization adds to this societal
dimension a set of organizational goals, and powers to create institutional facts or
to modify the norms and obligations of the normative system [7]. Agents, playing
roles, must accomplish the organizational goals respecting the norms. The limit
is that, despite the centrality of norms, a holistic proposal where constitutive
norms are used to specify both agent actions and data operations, and where
regulative norms are used to create expectations on the overall evolution of the
system (agents behavior and environment evolution) is yet to be developed.

Data and Norm-aware Multiagent Systems. A data-aware and norm-aware mul-
tiagent system, see Fig. 3, should involve a group of agents and of business arti-
facts with the following characteristics. Agents interact with each other and with
the environment by creating and modifying data which belong to an information
system and that are reified by business artifacts. The conceptual model of the
information system is described in terms of the norms that regulate the evolution
of such data. Norms express data lifecycles, i.e. they capture how data pass from
one state to another as a consequence of actions that are performed by some
agent. The conceptual model is available to the interacting agents in a form that
allows agents to reason on it. The agents are aware of the current state (of the
lifecycle) of the data, and thus of the tasks expected of them and of their parties.
At design time, norms would provide a programming interface between agents
and their environment, given in terms of those state changes that are relevant
in the environment.

5 Steps Towards Data and Norm Awareness

Data- and norm-awareness, in the sense introduced in this paper, are not yet
realized in multiagent systems but the literature already contains independent
efforts that tackle specific aspects of this direction of research, which, thus, fit
in the picture we have drawn. Interestingly, many of such works focus on social
commitments which emerge as currently occupying a central position in the
junction between norms and data.

A first example is provided by the JaCaMo+ platform [3], which allows Jason
agents [10] to engage commitment-based interactions [43], in turn reified as
CArtAgO [38] artifacts (both agents and artifacts are first-class elements in the
design of the multiagent system). JaCaMo+ artifacts implement the social state
of the interaction, which is the social environment in which agents act, and pro-
vide the roles that are then enacted by the agents. The explicit representation of
the social state enables the realization of a data-aware approach, where the data
are the events occurring in the social state, while social commitments provide
the information necessary to agents in their interaction. A social commitment
C(x, y, s, u) captures that agent x (debtor) commits to agent y (creditor) to
bring about the consequent condition u when the antecedent condition s holds.
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Antecedent and consequent conditions are conjunctions or disjunctions of events
and commitments. The interesting point about commitments is that they have
a lifecycle [47]: a commitment is null right before being created; active when
it is created; active has substates conditional (as long as the antecedent condi-
tion did not occur), and detached (when the antecedent condition occurred, the
debtor is engaged in the consequent condition of the commitment); an active
commitment can become: pending if suspended; satisfied, if the engagement is
accomplished; expired, if it will not be necessary to accomplish the consequent
condition; terminated if the commitment is canceled when conditional or released
when active; and finally, violated when its antecedent has been satisfied, but its
consequent will be forever false, or it is canceled when detached (the debtor
will be considered liable for the violation). JaCaMo+ explicitly represents the
states of the commitments, allowing the agents to take also this information into
account in their reasoning. Commitments in JaCaMo+ belong to the social state
and are shared by the interacting agents as resources. So, they are information,
that is created and evolves along the interaction with event occurrence, and that
contributes to the specification of the environment in which the agents operate.
In this light, the social state can be seen as a special kind of business artifact
in the sense of [6,14,18]. JaCaMo+ allows specifying agent programs as Jason
plans, whose triggering events amount to the change of the state of some com-
mitment [2]. Suppose, to make an example, that the commitment goes to the
state “detached” and that this event triggers a plan in the agent which is the
debtor of that commitment: the connection between the commitment and the
associated plan is not only causal (event triggers plan), but rather the plan is
explicitly attached to the commitment, in the sense that its aim is to satisfy the
consequent condition of the commitment (norm-awareness).

An independent proposal, i.e. [20], then shows how commitments lifecycle
can be captured by a set of norms. It explains the advantages of this view which
are: (1) enabling agents to take into account the evolution of commitments in
their reasoning; (2) allowing the customization of the commitment lifecycle to
the needs of particular application contexts. This proposal fits the understanding
of norm-awareness we have explained and it provides evidence of the advantages
of a norm-centered description of data evolution.

de Brito et al. [21] explain the limits of current approaches to artificial insti-
tutions, e.g. [25], basically residing in the fact that proposals always remain at
an abstract level that does not account for the tight connection between the
institution and its environment. So, for instance, the institution will say that
“the winner of an auction is obliged to pay its offer, otherwise it is fined” with-
out specifying aspects such as what an agent should do to become the winner
of the auction, how payments are made, or how a fine is applied. The work
overcomes the limit of the traditional approaches by allowing a specification of
regulations that is based on facts occurring in the environment (an aspect that
we interpret as data-awareness). The important consequence is that in this way,
the institution does not depend on agents informing about norm violation, goal
achievement, role adoption, etc. for the relevant information is obtained from
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the environment. In [21], situated artificial institutions are specified in terms of
norms and constitutive rules. Norms are based on status functions, like winner,
payment. Constitutive rules state the conditions for an element of the environ-
ment to carry a status function. For example, if the environment has an auto-
matic teller machine implemented by an artifact, an operation in such artifact
could count as the payment.

Other works make proposals for going beyond the propositional representa-
tion, which characterizes most studies on multiagent systems, underlining the
importance of putting information in the centre. In particular, the Cupid lan-
guage [17] provides a sophisticate and information-centric representation that
distinguishes between a schema (what occurs in a specification) and its instances
(what transpires and is represented in a database), reserving the term commit-
ment only for schemas. This avoids the inadequacy of first-order in representing
commitment instances by relying on relational database queries. The advan-
tages, brought to the analysis of properties of a data-aware approach are proved
in DACMAS [36], which incorporates commitment-based MASs but in a data-
aware context. In general, in presence of data transition systems become typically
infinite-state [14]. On the one hand, this is due to the fact that there is no bound
on the number of tuples that can be added to database relations as the computa-
tion goes on. On the other hand, even when the number of tuples does not exceed
a certain threshold, it is possible to populate them using infinitely many different
data objects. Interestingly, when a DACMAS is state-bounded, i.e., the number
of data that are simultaneously present at each moment in time is bounded,
verification of rich temporal properties becomes decidable. Notably, this shows
that, by suitably controlling how data are evolved in the system, it is possible
to make agents data-aware without compromising their reasoning capabilities
[5,36]. A language for representing norms that guarantees a priori the decidabil-
ity of property analysis would be a great advancement being the tool that agents
need to reason and decide which action to take, thus leveraging their autonomy.
JaCaMo [9], simpAL [40], JaCaMo+ [2] are existing platforms for the develop-
ment of MAS that have the right potential for developing the view depicted in
Fig. 2. The next step would be the introduction of information-centric artifacts,
whose lifecycle and data evolution are realized by way of query languages that, as
for DACMAS [36], guarantee decidability when certain constraints are met. For
commitment-based platforms, the Cupid [17] language would provide analogous
features.

From an ontological perspective, Guarino and Guizzardi [28,29] discussed the
importance of relationship reification and its connection with events/ processes.
This work provides further foundation to our vision in connection to the specifi-
cation of the conceptual model of an environment, seen as an information system.
What this proposal currently lacks of is a methodology that will help designers
to specify conceptual models. The literature on Agent-Oriented Software Engi-
neering, on the other hand, proposes many methodologies. Briefly, SODA [35] is
an agent-oriented methodology for the analysis and design of agent-based sys-
tems, adopting a layering principle and a tabular representation. It focuses on
inter-agent issues, like the engineering of societies and environment for MAS,
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and relies on a meta-model that includes both agents and artifacts. GAIA [52]
is a methodology for developing a MAS as an organization. Tropos [12] is a
requirements-driven methodology for developing multiagent systems, while [4,23]
allow building declarative business process specifications in a norm-oriented fash-
ion, see for instance. Although the last two methodologies do not consider data
lifecycles in general, but rather rely on commitments and constraints, they are
good candidates for extensions to a vision where norms, that capture the evolu-
tion of data, are composed into the specifications of multiagent system that are
data and norm-aware. One viable direction to reach this purpose is to gather
from the proposal in [44] for the realization of norm-governed socio-technical
systems. Suitable methodologies should also be provided for programming the
agents. In this respect, a starting point could be CoSE [2], a commitment-driven
methodology for programming agents in presence of business-artifacts, that reify
relationships captured as commitments.

6 Final Remarks

In this work, we have discussed the need for data-aware and norm-aware multia-
gent systems. In particular, we identified the importance of providing norm-based
representations of the data lifecycles and of specifying the conceptual model of
the underlying information system in terms of such norms. We have also com-
mented some recent works that, independently, move along this direction facing
one aspect or another.

One of the reasons of going towards data- and norm-awareness is the convic-
tion that this will bring benefits to the design and implementation of software.
The capability given to agents to take into account the data lifecycles in their
reasoning process will provide the capability of reasoning about abnormal con-
ditions in the environment, and decide how to react to them. This will enrich
the already available capability agents can be equipped with of reasoning about
deviations from their expected behavior. So, in principle, the robustness of the
system, intended as the ability to react appropriately to abnormal conditions,
would be increased. The fact that data structure and lifecycles are explicitly
represented in a way that can be reasoned about makes also the agents and
their environment more decoupled, reducing the need of customizing agent pro-
grams when the environment changes. This increases both the extendibility and
the reusability of all the components of the MAS. Last but not the least, data-
awareness joint with a norm-based representation will enable a fully fledged
range of verifications, and will also help modularizing the verification of proper-
ties inside a MAS, with a positive impact on the correctness of software.
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nicating open systems. Artif. Intell. 186, 38–94 (2012)

26. Gibbs, J.P.: Norms: the problem of definition and classification. Am. J. Sociol.
70(5), 586–594 (1965)

27. Governatori, G.: Law, logic and business processes. In: Third International Work-
shop on Requirements Engineering and Law (RELAW 2010), Sydney, NSW, Aus-
tralia, 28 September, pp. 1–10. IEEE (2010)

28. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”: revisiting rela-
tionships as modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson,
P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 279–294. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-19069-3 18

29. Guarino, N., Guizzardi, G.: Relationships, events: towards a general theory of
reification and truthmaking. In: Advances in Artificial Intelligence - XVth Interna-
tional Conference of the Italian Association for Artificial Intelligence (AI*IA 2016),
Genova, Italy, Proceedings, LNCS. Springer (2016, to appear)

30. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, Standford, CA, pp. 235–245. William
Kaufmann (1973)

31. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000)

32. Jones, A.J.I., Carmo, J.: Deontic logic and contrary-to-duties. In: Gabbay, D. (ed.)
Handbook of Philosophical Logic, pp. 203–279. Kluwer (2001)

33. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall Inc.,
Upper Saddle River (1997)

http://dx.doi.org/10.1007/978-3-319-09764-0_3
http://dx.doi.org/10.1007/978-3-319-19069-3_18


38 M. Baldoni et al.

34. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press,
Cambridge (2002)

35. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: a roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006). doi:10.1007/11759683 4

36. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware
commitment-based multiagent system. In: Bazzan, A.L.C., Huhns, M.N., Lomus-
cio, A., Scerri, P. (eds.) International conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2014), Paris, France, 5–9 May, pp. 157–164. IFAA-
MAS/ACM (2014)

37. Neykova, R., Yoshida, N.: Multiparty session actors. In: Kühn, E., Pugliese, R.
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