
The Ontop Framework for Ontology Based Data Access

Timea Bagosi1, Diego Calvanese1, Josef Hardi2, Sarah Komla-Ebri1, Davide Lanti1,
Martin Rezk1, Mariano Rodrı́guez-Muro3, Mindaugas Slusnys1, and Guohui Xiao1

1Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
2 Obidea Technology, Indonesia

3 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

1 Ontology Based Data Access

Ontology Based Data Access (OBDA) [4] is a paradigm of accessing data trough a
conceptual layer. Usually, the conceptual layer is expressed in the form of an RDF(S) [10]
or OWL [15] ontology, and the data is stored in relational databases. The terms in the
conceptual layer are mapped to the data layer using mappings which associate to each
element of the conceptual layer a (possibly complex SQL) query over the data sources.
The mappings have been formalized in the recent R2RML W3C standard [6]. This virtual
graph can then be queried using an RDF query language such as SPARQL [7].

Formally, an OBDA system is a triple O = 〈T ,S,M〉, where:

– T is the intensional level of an ontology. We consider ontologies formalized in
description logics (DLs), hence T is a DL TBox.

– S is a relational database representing the sources.
– M is a set of mapping assertions, each one of the form

Φ(x) ← Ψ(x)

where
• Φ(x) is a query over S, returning tuples of values for x
• Ψ(x) is a query over T whose free variables are from x.

The main functionality of OBDA systems is query answering. A schematic descrip-
tion of the query transformation process (usually SPARQL to SQL) performed by a
typical OBDA system is provided in Figure 1. In such an architecture, queries posed
over a conceptual layer are translated into a query language that can be handled by the
data layer. The translation is independent of the actual data in the data layer. In this way,
the actual query evaluation can be delegated to the system managing the data sources.

2 The Ontop Framework

Ontop is an open-source OBDA framework released under the Apache license, developed
at the Free University of Bozen-Bolzano1 and currently acts as the query transformation
module of the EU project Optique2.

1 http://ontop.inf.unibz.it
2 http://www.optique-project.eu

http://ontop.inf.unibz.it
http://www.optique-project.eu


SPARQL q

ontology T

Datalog q′

mapping M

SQL q′′

data SABox A

+

rewriting

+

unfolding

+

ABox virtualisation

Fig. 1. Query processing in an OBDA system

As an OBDA system, to the best of our knowledge, Ontop is the first to support all the
following W3C recommendations: OWL, R2RML, SPARQL, SWRL and SPARQL OWL
2 QL regime. In addition, all the major commercial and free databases are supported.
For each component of the OBDA system, Ontop supports the widely used standards:

Mapping Ontop supports two mapping languages: (1) the native Ontop mapping lan-
guage which is easy to learn and use and (2) the RDB2RDF Mapping Language
(R2RML) which is a W3C recommendation.

Ontology Ontop fully supports OWL 2 QL ontology language [11], which is a superset
of RDFS. OWL 2 QL is based on the DL-Lite family of description logics [5], which
are lightweight ontologies and guarantee queries over the ontology can be rewritten
to equivalent queries over the data source. Recently Ontop is also extended to support
the linear recursive fragment of SWRL (Semantic Web Rule Language) [8,16].

Data Source Ontop supports all the databases which implement SQL 99. These in-
clude all major relational database systems, e.g., PostgreSQL, MySQL, H2, DB2,
ORACLE, and MS SQL Server.

Query Ontop essentially supports all the features of SPARQL 1.0 and SPARQL OWL
QL Regime of SPARQL 1.1 [9]. Supporting of other features in SPARQL 1.1 (e.g.,
aggregates, property path queries, negations) is ongoing work.

The core of the Ontop is the SPARQL engine Quest which supports RDFS and
OWL 2 QL entailment regimes by rewriting the SPARQL queries (over the virtual RDF
graph) to SQL queries (over the relational database). Ontop is able to generate efficient
(and highly optimized [13,14]) SQL queries, that in some cases are very close to the
SQL queries that would be written by a database expert.

The Ontop framework can be used as:

– a plugin for Protege 4 which provides a graphical interface for mapping editing and
SPARQL query execution,

– a Java library which implements both OWL API and Sesame API interfaces, avail-
able as maven dependencies, and

– a SPARQL end-point through Sesame’s Workbench.



3 A Demo of the Movie Scenario

In this section, we describe a complete demo of Ontop using the movie scenario [12].
The datasets and systems are available online3.

3.1 Movie Scenario Dataset

the Movie Ontology The movie ontology MO aims to provide a controlled vocabulary
to semantically describe movie related concepts (e.g., Movie, Genre, Director, Actor)
and the corresponding individuals (“Ice Age”, “Drama”, “Steven Spielberg” or “Johnny
Depp”) [3]. The ontology contains concept hierarchies for movie categorization that
enables user-friendly presentation of movie descriptions in the appropriate detail. There
are several additions to the ontology terminology due to the requirements in the demo,
e.g., concepts TVSeries and Actress.

IMDb data IMDB’s data is provided as text files 4 which need to be converted into an
SQL file using a third party tool. Our IMDB raw data was downloaded in 2010 and the
SQL script was generated using IMDbPY5. IMDbPY generates an SQL schema (tables)
appropriate for storing IMDB data and then reads the IMDB plain text data files to gen-
erate the SQL INSERT commands that populate the tables. It can generate PostgreSQL,
MySQL and DB2 SQL scripts. In this demo we use a PostgreSQL compatible script and
database takes up around 6GB on the disk.

Mappings The mappings for this scenario are natural mappings that associate the data
in the SQL database to the movie ontology’s vocabulary. They are “natural” mapping,
in the sense that the only purpose of the mappings was to be able to query the data
through the ontology. There was no intention to highlight the benefits of any algorithm
or technique used in Ontop. The first version of the mappings for this scenario were
developed by students of Free University of Bolzano as part of an lab assignment. The
current mappings are the improved version of those create by our development team.

Queries We included around 40 queries which are in the file movieontology.q
and can be used to explore the data set. The queries have different complexities, going
from very simple to fairly complex. Note that some form of inference (beyond simple
query evaluation) is involved in most of these queries, in particular, hierarchies are often
involved.

3.2 Using Protege Plugin

We demonstrate how to use Ontop as a protege plugin. The steps are:

3 https://github.com/ontop/ontop/wiki/Example_MovieOntology
4 http://www.imdb.com/interfaces
5 http://imdbpy.sourceforge.net

https://github.com/ontop/ontop/wiki/Example_MovieOntology
http://www.imdb.com/interfaces
http://imdbpy.sourceforge.net


(1) Start PostgreSQL with IMDb data.
(2) Start Protege with ontop plugin from command line.
(3) Open the OWL file movieontology.owl from Protege. The Ontop plugin will

also automatically open the mapping file movieontology.obda and query file
movieontology.q.

(4) Check the ontology and mappings. Two screen shots of the ontology and mappings
are shown in Figure 2 and 3.

(5) Start the Quest reasoner from the menu.
(6) Run sample queries and check the generated SQLs. For example, we can execute

the query “Find names that act as both the director and the actor at the same time
produced in Eastern Asia” as shown in Figure 4.

Fig. 2. Movie ontology



Fig. 3. Movie mappings

Fig. 4. Example query



3.3 Using Java API

We show how the movie scenario can be implemented using the Ontop java libraries
through OWL API and sesame API. The complete code for the demo is available online6.

Using OWL API The OWL API is a Java API and reference implementation for
creating, manipulating and serializing OWL Ontologies [2]. In the first example we use
OWL API to execute all the 40 SPARQL queries over the movie ontology, using the
mapping in our obda format and a PostgreSQL database with the IMDb data.

Ontop uses Maven to manage the dependencies. Since the release of version 1.10,
Ontop itself has been deployed to the central maven repository. All artifacts have the
same groupId it.unibz.inf.ontop. In this example we use the OWL API interface
of Ontop , so we put the following in the pom.xml:

<dependency>
<groupId>it.unibz.inf.ontop</groupId>
<artifactId>ontop-quest-owlapi3</artifactId>
<version>1.12.0</version>

</dependency>

Moreover we need the dependency for PostgreSQL JDBC driver as shown below.

<dependency>
<groupId>postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>9.0-801.jdbc4</version>

</dependency>

The files needed to start the Ontop reasoner are the ontology file movieontology.owl
and the obda file movieontology.obda. The obda file contains both mappings and
database settings. This allows to access the data in the PostgreSQL database using the
mappings in the OBDA model. First we load the OWL file and OBDA file:

// Loading the OWL file using OWL API
OWLOntologyManager manager;
manager = OWLManager.createOWLOntologyManager();
OWLOntology ontology;
ontology = manager.loadOntologyFromOntologyDocument

((new File(owlFile)));

// Loading the OBDA file
OBDAModel obdaModel = fac.getOBDAModel();
ModelIOManager ioManager = new ModelIOManager(obdaModel);
ioManager.load(obdaFile);

Next we create a new instance of the reasoner (QuestOWL reasoner), adding the nec-
essary preferences to prepare its configuration. We prepare the QuestOWLConnection
for querying.

6 https://github.com/ontop/ontop-examples

https://github.com/ontop/ontop-examples


QuestOWLFactory factory = new QuestOWLFactory();
factory.setOBDAController(obdaModel);

//Setting preferences putting Quest in virtual mode.
factory.setPreferenceHolder(p);
QuestPreferences preference = new QuestPreferences();
preference.setCurrentValueOf

(QuestPreferences.ABOX_MODE, QuestConstants.VIRTUAL);

// Creating a new instance of the reasoner
QuestOWL reasoner;
reasoner = (QuestOWL) factory.createReasoner

(ontology, new SimpleConfiguration());

// Now we are ready for querying
QuestOWLConnection conn = reasoner.getConnection();
QuestOWLStatement st = conn.createStatement();

Ontop supports a file format of multiple SPARQL queries. Here we execute each
query using the file movieontology.q of 40 queries. Within the instance each
SPARQL query is translated in an SQL query, which allows to retrieve the results from
the PostgreSQL database. For simplicity, we only display to the user the number of
results of the query and the time required for the execution.

// Loading the query file
QueryController qc = new QueryController();
QueryIOManager qman = new QueryIOManager(qc);
qman.load("src/main/resources/example/movie/movieontology.q");

// Execute each query
for (QueryControllerGroup group : qc.getGroups()) {

for (QueryControllerQuery query : group.getQueries()) {

System.out.println("Executing query: " + query.getID());
System.out.println("Query: \n" + query.getQuery());

long start = System.nanoTime();
QuestOWLResultSet res = st.executeTuple(query.getQuery());
long end = System.nanoTime();
double time = (end - start) / 1000;
int count = 0;
while (res.nextRow()) {

count += 1;
}

System.out.println("Total result: " + count);
System.out.println("Elapsed time: " + time + " ms");

}
}



At the end of the execution we close all connections and we dispose of the reasoner.

//Close connection and resources
if (st != null && !st.isClosed()) {

st.close();
}
if (!conn.isClosed()) {

conn.close();
}
reasoner.dispose();

Using Sesame API OpenRDF Sesame is a de-facto standard framework for processing
RDF data and includes parsers, storage solutions (RDF databases a.ka. triplestores),
reasoning and querying, using the SPARQL query language [1].

In the second example we show how to create a repository and execute a single
query using Sesame API. First we need to add the Sesame API module of Ontop as a
dependency to the pom file pom.xml.

<dependency>
<groupId>it.unibz.inf.ontop</groupId>
<artifactId>ontop-quest-sesame</artifactId>
<version>1.12.0</version>

</dependency>

Then we set up the repository and create a connection. The repositories must always
be initialized first. We get the repository connection that will be used to execute the
query.

// Creating and initializing the repository
boolean existential = false;
String rewriting = "TreeWitness";
SesameVirtualRepo repo = new SesameVirtualRepo

("test_repo", owlFile, obdaFile, existential, rewriting);
repo.initialize();

RepositoryConnection conn = repo.getConnection();

We load the SPARQL file q1Movie.rq which contains the same query that we
used for the Protege example.

//Loading the SPARQL file
String queryString = "";

BufferedReader br = new BufferedReader(new FileReader(sparqlFile));
String line;
while ((line = br.readLine()) != null) {

queryString += line + "\n";
}



System.out.println();
System.out.println("The input SPARQL query:");
System.out.println("=======================");
System.out.println(queryString);
System.out.println();

Now we are ready to execute the query using the created Sesame repository connec-
tion and output the results of the SPARQL from the database.

// Executing the query
Query query = conn.prepareQuery(QueryLanguage.SPARQL, queryString);

TupleQuery tq = (TupleQuery) query;

TupleQueryResult result = tq.evaluate();

while (result.hasNext()) {
for (Binding binding : result.next()) {

System.out.print(binding.getValue() + ", ");
}
System.out.println();

}

Finally we close all the connections and release the resources.

//Close result set to release resources
result.close();

// Finally close connection to release resources
System.out.println("Closing..,");
conn.close();

Acknowledgement. This paper is supported by the EU under the large-scale integrating
project (IP) Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-
318338.



References

1. OpenRDF Sesame, http://www.openrdf.org/, accessed: 2014-08-27
2. OWL API, http://owlapi.sourceforge.net/, accessed: 2014-08-27
3. Bouza, A.: MO – the movie ontology (2010), http://www.movieontology.org,

[Online; 26. Jan. 2010]
4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,

Rosati, R.: Ontologies and databases: The DL-Lite approach. In: 5th Int. Reasoning Web
Summer School Tutorial Lectures (RW 2009), vol. 5689, pp. 255–356. Springer (2009)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

6. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recom-
mendation, World Wide Web Consortium (Sep 2012), available at http://www.w3.org/
TR/r2rml/

7. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
World Wide Web Consortium (Mar 2013), available at http://www.w3.org/TR/
sparql11-query

8. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
semantic web rule language combining OWL and RuleML. W3C Member Submission, World
Wide Web Consortium (2004)

9. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In: Proc. of International
Semantic Web Conference (ISWC 2014). Lecture Notes in Computer Science, Springer (2014)

10. Manola, F., Mille, E.: RDF primer. W3C Recommendation, World Wide Web Consortium
(Feb 2004), available at http://www.w3.org/TR/rdf-primer-20040210/

11. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web
ontology language: Profiles. W3C Recommendation, World Wide Web Consortium,
http://www.w3.org/TR/owl2-profiles/ (2012)

12. Rodriguez-Muro, M., Hardi, J., Calvanese, D.: Quest: Effcient SPARQL-to-SQL for RDF and
OWL. In: Glimm, B., Huynh, D. (eds.) International Semantic Web Conference (Posters &
Demos). CEUR Workshop Proceedings, vol. 914. CEUR-WS.org (2012)

13. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop
of databases. In: Proc. of the 12th Int. Semantic Web Conf. (ISWC 2013). vol. 8218, pp.
558–573. Springer (2013)

14. Rodriguez-Muro, M., Rezk, M., Hardi, J., Slusnys, M., Bagosi, T., Calvanese, D.: Evaluating
SPARQL-to-SQL translation in Ontop. In: Proc. of the 2nd Int. Workshop on OWL Reasoner
Evaluation (ORE 2013). CEUR Workshop Proceedings, vol. 1015, pp. 94–100 (2013)

15. W3C OWL Working Group: OWL 2 web ontology language document overview (second
edition). W3C Recommendation, World Wide Web Consortium (2012), available at http:
//www.w3.org/TR/owl2-overview/

16. Xiao, G., Rezk, M., Rodriguez-Muro, M., Calvanese, D.: Rules and ontology based data
access. In: Mugnier, M.L., Kontchakov, R. (eds.) Proc. 8th International Conference on Web
Reasoning and Rule Systems (RR 2014). Lecture Notes in Computer Science, Springer (2014)

http://www.openrdf.org/
http://owlapi.sourceforge.net/
http://www.movieontology.org
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/rdf-primer-20040210/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

	 The Ontop Framework for Ontology Based Data Access

