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ABSTRACT
Data-centric dynamic systems are systems where both the process
controlling the dynamics and the manipulation of data are equally
central. Recently such kinds of systems are increasingly attracting
the interest of the scientific community, especially in their vari-
ant called artifact-centric business processes. In this paper we
study verification of (first-order) µ-calculus variants over relational
data-centric dynamic systems, where data are represented by a full-
fledged relational database, and the process is described in terms
of atomic actions that evolve the database. The execution of such
actions may involve calls to external services, providing fresh data
inserted into the system. As a result such systems are typically
infinite-state. We show that verification is undecidable in general,
and we isolate notable cases, where decidability is achieved. Specif-
ically we start by considering service calls that return values deter-
ministically (depending only on passed parameters). We show that
in a µ-calculus variant that preserves knowledge of objects appeared
along a run we get decidability under the assumption that the fresh
data introduced along a run are bounded, though they might not
be bounded in the overall system. In fact we tie such a result to a
notion related to weak acyclicity studied in data exchange. Then,
we move to nondeterministic services where the assumption of data
bounded run would result in a bound on the service calls that can be
invoked during the execution and hence would be too restrictive. So
we investigate decidability under the assumption that knowledge of
objects is preserved only if they are continuously present. We show
that if infinitely many values occur in a run but do not accumulate
in the same state, then we get again decidability. We give syntac-
tic conditions to avoid this accumulation through the novel notion
of “generate-recall acyclicity”, which takes into consideration that
every service call activation generates new values that cannot be
accumulated indefinitely.

1. INTRODUCTION
Data-centric dynamic systems (DCDSs) are systems where both

the process controlling the dynamics and the manipulated data are
equally central. Recently such kinds of systems are increasingly
attracting the interest of the scientific community. In particular, the

so called artifact-centric approach to modeling business processes
has emerged, with the fundamental characteristic of considering
both data and processes as first-class citizens in service design
and analysis [32, 26, 18, 15, 36, 1]. This holistic view of data
and processes together promises to avoid the notorious discrepancy
between data modeling and process modeling of more traditional
approaches that consider these two aspects separately [7, 6].

DCDSs are constituted by (i) a data layer, which is used to hold
the relevant information to be manipulated by the system, and (ii)
a process layer formed by the invokable (atomic) actions and a
process based on them. Such a process characterizes the dynamic
behavior of the system. Executing an action has effects on the
data manipulated by the system, on the process state, and on the
information exchanged with the external world.

DCDSs deeply challenge formal verification by requiring simul-
taneous attention to both data and processes: indeed, on the one
hand they deal with full-fledged processes and require analysis in
terms of sophisticated temporal properties [17]; on the other hand,
the presence of possibly unbounded data makes the usual analy-
sis based on model checking of finite-state systems impossible in
general, since, when data evolution is taken into account, the whole
system becomes infinite-state.

In this paper we study relational DCDSs, where data are rep-
resented by a full-fledged relational database, and the process is
described in terms of atomic actions that evolve the database. The
execution of such actions may involve calls to external services, pro-
viding fresh data inserted into the system. As a result such systems
are infinite-state in general. In particular, actions are characterized
using conditional effects. Effects are specified using first-order
(FO) queries to extract from the current database the objects we
want to persist in the next state, and using conjunctive queries on
these objects to generate the facts that are true in the next state. In
addition, to finalize the next state we call external services (function
calls) that provide new information and objects coming from the
external world.

On top of such a framework, we introduce powerful verifica-
tion logics, which are FO variants of µ-calculus [29, 33, 22, 13].
µ-calculus is well known to be more expressive than virtually all
temporal logics used in verification, including CTL, LTL, CTL*,
PDL, and many others. Our approach is remarkably robust: while
it is common to use simpler logics like CTL and LTL towards veri-
fication decidability, our decidability results hold for significantly
more expressive µ-calculus variants, and thus carry over to all these
other logics. Our variants of µ-calculus are based on first-order
queries over data in the states of the DCDS, and allow for first-order
quantification across states (within and across runs), though in a
controlled way. No limitations whatsoever are instead put on the
fixpoint formulae, which are the key element of the µ-calculus.



In particular we consider two variants of µ-calculus. The first
variant is called µLA, and requires that first-order quantification
across states be always bounded to the active domain of the state
where the quantification is evaluated. This quantification mechanism
indirectly preserves, at any point, knowledge of objects that appeared
in the history so far, even if they disappeared in the meantime. The
second variant, called µLP , restricts the first-order quantification in
µLA by requiring that only quantified object that are still present
in the current domain are of interest as we move from one state to
the next . That is, knowledge of objects is preserved only if they are
continuously present. For these two logics we define novel notions
of bisimulation, which we exploit to prove our results.

We show that verification of both µLA and µLP is undecidable
in general. In fact we get undecidability even ruling out first-order
quantification and branching time. However we isolate two notable
decidable cases. Specifically we start by considering service calls
that return values deterministically (depending only on passed pa-
rameters). We show that verification of µLA properties is decidable
under the assumption that the cardinality of fresh data introduced
along each run is bounded (run-bounded DCDSs), though it need not
be bounded across runs. Decidability is therefore not obvious, given
that the logic permits quantification over values occurring across
(potentially infinitely many) branching run continuations. Run-
boundedness is a semantic property which we show undecidable to
check, but for which we propose a sufficient syntactic condition re-
lated to the notion of weak acyclicity studied in data exchange [23].
Then, we move to nondeterministic services where same-argument
service calls possibly return different values at different moments in
time. To exploit the results on run-bounded DCDSs in this case we
would have to limit the number of service calls that can be invoked
during the execution, which would be a too restrictive condition
on the form of DCDSs. So we focus on the above µLP fragment
of µLA. We show that if infinitely many values occur in a run
but do not accumulate in the same state (our system is then called
state-bounded) then µLP verification is decidable. This comes as
a pleasant surprise, given that when compared to run-boundedness,
state-boundedness permits an additional kind of data unboundedness
(within the run, as opposed to only across runs). State-boundedness
is a semantic property as well, and we show that checking it is unde-
cidable. We then give a novel syntactic condition, “generate-recall
acyclicity”, which suffices to enforce that if a service generates new
values by being called an unbounded number of times, then these
values cannot be accumulated (“recalled”) indefinitely.

The rest of the paper is organized as follows. Sec. 2 introduces
(relational) DCDS’s. Sec. 3 introduces verification of DCDS’s and
the two variants of µ-calculus that we consider. Sec. 4 focus the
analysis of DCDS’s under the assumption that external service calls
behave deterministically. Sec. 5 consider the case in which exter-
nal service calls behave nondeterministically. Sec. 6 discusses the
various notions introduced Sec. 7 reports on related work. Finally,
Sec. 8 concludes the paper. All proofs are given in the appendix,
which also includes a full-fledged example of a DCDS.

2. DATA-CENTRIC DYNAMIC SYSTEMS
In this section, we introduce the notion of (relational) data-centric

dynamic system, or simply DCDS. A DCDS is a pair S = 〈D,P〉
formed by two interacting layers: a data layer D and a process layer
P over it. Intuitively, the data layer keeps all the data of interest,
while the process layer modifies and evolves such data. We keep
the structure of both layers to the minimum, in particular we do not
distinguish between various possible components providing the data,
nor those providing the subprocesses running concurrently. Indeed

the framework can be further detailed in several directions, while
keeping the results obtained here (cf. Section 6).

2.1 Data Layer
The data layer represents the information of interest in our ap-

plication. It is constituted by a relational schemaR equipped with
equality constraints1 E , e.g., to state keys of relations, and an initial
database instance I0, which conforms to the relational schema and
the equality constraints. The values stored in this database belong
to a predefined, possibly infinite, set C of constants. These con-
stants are interpreted as themselves, blurring the distinction between
constants and values. We will use the two terms interchangeably.

Given a database instance I, its active domain ADOM(I) is the
subset of C such that c ∈ ADOM(I) if and only if c occurs in I.

A data layer is a tuple D = 〈C,R, E , I0〉 where:
• C is a countably infinite set of constants/values.
• R = {R1, . . . , Rn} is a database schema, constituted by a

finite set of relation schemas.
• E is a finite set {E1, . . . , Em} of equality constraints. Each
Ei has the form

Qi →
∧
j=1,...,k zij = yij ,

where Qi is a domain independent FO query over R using
constants from the active domain ADOM(I0) of I0 and whose
free variables are ~x, and zij and yij are either variables in ~x
or constants in ADOM(I0).2

• I0 is a database instance that represents the initial state
of the data layer, which conforms to the schema R and
satisfies the constraints E : namely, for each constraint
Qi →

∧
j=1,...,k zij = yij and for each tuple (i.e., sub-

stitution for the free variables) θ ∈ ans (Qi, I), it holds that
zijθ = yijθ.3

2.2 Process Layer
The process layer constitutes the progression mechanism for the

DCDS. We assume that at every time the current instance of the
data layer can be arbitrarily queried, and can be updated through ac-
tion executions, possibly involving external service calls to get new
values form the environment. Hence the process layer is composed
of three main notions: actions, which are the atomic progression
steps for the data layer; external services, which can be called dur-
ing the execution of actions; and processes, which are essentially
nondeterministic programs that use actions as atomic instructions.
While we require the execution of actions to be sequential, we do
not impose any such constraints on processes, which in principle can
be formed by several concurrent branches, including fork, join, and
so on. Concurrency is to be interpreted by interleaving and hence
reduced to nondeterminism, as often done in formal verification [4,
22]. There can be many ways to provide the control flow specifica-
tion for processes. Here we adopt a simple rule-based mechanism,
but our results can be immediately generalized to any process for-
malism whose processes control flow is finite-state. Notice that this

1Other kinds of constraints can also be included without affecting
the results reported here (cf. Section 6).
2For convenience, and without loss of generality, we assume that all
constants used inside formulae appear in I0.
3We use the notation tθ (resp., ϕθ) to denote the term (resp., the
formula) obtained by applying the substitution θ to t (resp., ϕ).
Furthermore, given a FO query Q and a database instance I, the
answer ans (Q, I) to Q over I is the set of assignments θ from the
free variables of Q to the domain of I, such that I |= Qθ. We treat
Qθ as a boolean query, and with some abuse of notation, we say
ans (Qθ, I) ≡ true if and only if I |= Qθ.



does not imply that the transition system associated to a process
over the data layer is finite-state as well, since the data manipulated
in the data layer may grow over time in an unbounded way.

Formally, a process layer P over a data layer D = 〈C,R, E , I0〉,
is a tuple P = 〈F ,A, %〉 where:
• F is a finite set of functions, each representing the interface

to an external service. Such services can be called, and as
a result the function is activated and the answer is produced.
How the result is actually computed is unknown to the DCDS
since the services are indeed external.
• A is a finite set of actions, whose execution progresses the

data layer, and may involve external service calls.
• % is a finite set of condition-action rules that form the spec-

ification of the overall process, which tells at any moment
which actions can be executed.

An action α ∈ A has the form

α(p1, . . . , pn) : {e1, . . . , em},

where: (i) α(p1, . . . , pn) is the signature of the action, constituted
by a name α and a sequence p1, . . . , pn of input parameters that
need to be substituted with values for the execution of the action,
and (ii) {e1, . . . , em}, also denoted as EFFECT(α), is a set of effect
specifications, whose specified effects are assumed to take place
simultaneously. Each ei has the form q+

i ∧Q
−
i  Ei, where:

• q+
i ∧ Q

−
i is a query over R whose terms are variables ~x,

action parameters, and constants from ADOM(I0). The query
q+
i is a UCQ, and the query Q−i is an arbitrary FO formula

whose free variables are included in those of q+
i . Intuitively,

q+
i selects the tuples to instantiate the effect, and Q−i filters

away some of them.
• Ei is the effect, i.e., a set of facts for R, which includes as

terms: terms in ADOM(I0), input parameters, free variables
of q+

i , and in addition Skolem terms formed by applying a
function f ∈ F to one of the previous kinds of terms. Such
Skolem terms involving functions represent external service
calls and are interpreted so as to return a value chosen by an
external user/environment when executing the action.

The process % is a finite set of condition-action rules, of the
form Q 7→ α, where α is an action in A and Q is a FO query
over R whose free variables are exactly the parameters of α, and
whose other terms can be either quantified variables or constants in
ADOM(I0).

For a detailed example of a DCDS we refer to Appendix E.

2.3 Semantics via Transition System
The semantics of a DCDS is defined in terms of a possibly infinite

transition system whose states are labeled by databases. Such a tran-
sition system represents all possible computations that the process
layer can do on the data layer. A transition system Υ is a tuple of
the form 〈∆,R,Σ, s0, db,⇒〉, where:
• ∆ is a countably infinite set of values;
• R is a database schema;
• Σ is a set of states;
• s0 ∈ Σ is the initial state;
• db is a function that, given a state s ∈ Σ, returns the database

associated to s, which is made up of values in ∆ and conforms
toR;
• ⇒ ⊆ Σ× Σ is a transition relation between pairs of states.

In order to precisely build the transition system associated to a
DCDS, we need to better characterize the behavior of the external
services, which are called in the effects of actions. This is done in
Sections 4 and 5.

(Q)Υ
v,V ={s ∈ Σ | ans (Qv, db(s))}

(¬Φ)Υ
v,V =Σ− (Φ)Υ

v,V

(Φ1 ∧ Φ2)Υ
v,V =(Φ1)Υ

v,V ∩ (Φ2)Υ
v,V

(∃x.Φ)Υ
v,V ={s ∈ Σ | ∃t.t ∈ ∆ and s ∈ (Φ)Υ

v[x/t],V }

(〈−〉Φ)Υ
v,V ={s ∈ Σ | ∃s′.s⇒ s′ and s′ ∈ (Φ)Υ

v,V }

(Z)Υ
v,V =V (Z)

(µZ.Φ)Υ
v,V =

⋂
{S ⊆ Σ | (Φ)Υ

v,V [Z/S] ⊆ S}

Figure 1: Semantics of µL.

3. VERIFICATION
To specify dynamic properties over a DCDS, we use µ-calculus

[22, 35, 13], one of the most powerful temporal logics for which
model checking has been investigated in the finite-state setting. In-
deed, such a logic is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL*
[17]. The main characteristic of µ-calculus is the ability of express-
ing directly least and greatest fixpoints of (predicate-transformer)
operators formed using formulae relating the current state to the
next one. By using such fixpoint constructs one can easily express
sophisticated properties defined by induction or co-induction. This
is the reason why virtually all logics used in verification can be
considered as fragments of µ-calculus. From a technical viewpoint,
µ-calculus separates local properties, i.e., properties asserted on the
current state or on states that are immediate successors of the current
one, and properties that talk about states that are arbitrarily far away
from the current one [13]. The latter are expressed through the use
of fixpoints.

In this work, we use a first-order variant of the µ-calculus [33],
called µL and defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ

where Q is a possibly open FO query, and Z is a second order
predicate variable (of arity 0). We make use of the following ab-
breviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2),
[−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

As usual in µ-calculus, formulae of the form µZ.Φ (and νZ.Φ)
must obey to the syntactic monotonicity of Φ wrt Z, which states
that every occurrence of the variable Z in Φ must be within the
scope of an even number of negation symbols. This ensures that the
least fixpoint µZ.Φ (as well as the greatest fixpoint νZ.Φ) always
exists.

Since µL also contains formulae with both individual and pred-
icate free variables, given a transition system Υ, we introduce an
individual variable valuation v, i.e., a mapping from individual vari-
ables x to ∆, and a predicate variable valuation V , i.e., a mapping
from predicate variables Z to subsets of Σ. With these three notions
in place, we assign meaning to formulae by associating to Υ, v, and
V an extension function (·)Υ

v,V , which maps formulae to subsets of
Σ. Formally, the extension function (·)Υ

v,V is defined inductively as
shown in Figure 1.

EXAMPLE 3.1. An example of µL formula is:

∃x1, . . . , xn.
∧
i6=j

xi 6= xj∧
∧

i∈{1,...,n}

µZ.[Stud(xi)∨〈−〉Z] (1)

The formula asserts that there are at least n distinct objects/values,
each of which eventually denotes a student along some execution



path. Notice that the formula does not imply that all of these students
will be in the same state, nor that they will all occur in a single run.
It only says that in the entire transition systems there are (at least) n
distinct students.

When Φ is a closed formula, (Φ)Υ
v,V depends neither on v nor

on V , and we denote the extension of Φ simply by (Φ)Υ. We say
that a closed formula Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ. In this
case, we write Υ, s |= Φ. We say that a closed formula Φ holds in
Υ, denoted by Υ |= Φ, if Υ, s0 |= Φ, where s0 is the initial state of
Υ. We call model checking verifying whether Υ |= Φ holds.

In particular we are interested in formally verifying properties
of a DCDS. Given the transition system ΥS of a DCDS S and a
dynamic property Φ expressed in µL,4 we say that S verifies Φ if

ΥS |= Φ.

The challenging point is that ΥS is in general-infinite state, so
we would like to devise a finite-state transition system which is a
faithful abstraction of ΥS , in the sense that it preserves the truth
value of all µL formulae. Unfortunately, this program is doomed
right from the start if we insist on using full µL as the verification
formalism. Indeed formulae of the form (1) defeat any kind of
finite-state transition system. So next we introduce two interesting
sublogics of µL that serve better our objective.

3.1 History Preserving Mu-Calculus
The first fragment of µL that we consider is µLA, which is

characterized by the assumption that quantification over individuals
is restricted to individuals that are present in the current database. To
enforce such a restriction, we introduce a special predicate LIVE(x),
which states that x belongs to the current active domain. The logic
µLA is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉Φ | Z | µZ.Φ

We make use of the usual abbreviation, including ∀x.LIVE(x) →
Φ = ¬(∃x.LIVE(x)∧¬Φ). Formally, the extension function (·)Υ

v,V

is defined inductively as in Figure 1, with the new special predicate
LIVE(x) interpreted as follows:

(LIVE(x))Υ
v,V = {s ∈ Σ | x/d ∈ v implies d ∈ ADOM(db(s))}

EXAMPLE 3.2. As an example, consider the following µLA
formula:

νX.(∀x.LIVE(x) ∧ Stud(x)→
µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉Y ) ∧ [−]X),

which states that, along every path, it is always true, for each student
x, that there exists an evolution that eventually leads to a graduation
of the student (with some final mark y).

We are going to show that under suitable conditions we can get
a faithful finite abstraction for a DCDS that preserves all formulae
of µLA, and hence enables us in principle to use standard model
checking techniques. Towards this goal, we introduce a notion of
bisimulation that is suitable for the kind of transition systems we
consider here. In particular, we have to take into account that the
two transition systems are over different data domains, and hence
we have to consider the correspondence between the data in the two
transition systems and how such data evolve over time. To do so,
we introduce the following notions.
4We remind the reader that, without loss of generality, we as-
sume that all constants used inside formulae Φ appear in the initial
database instance of the DCDS.

Given two domains ∆1 and ∆2, a partial bijection h between ∆1

and ∆2 is a bijection between a subset of ∆1 and ∆2. Given a partial
function f : S → S′, we denote with DOM(f) the domain of f , i.e.,
the set of elements in S on which f is defined, and with IM(f) the
image of f , i.e., the set of elements s′ in S′ such that s′ = f(s) for
some s ∈ S. A partial bijection h′ extends h if DOM(h) ⊆ DOM(h′)
(or equivalently IM(h) ⊆ IM(h′)) and h′(x) = h(x) for all x ∈
DOM(h) (or equivalently h′−1(y) = h−1(y) for all y ∈ IM(h)).
Let db1 and db2 be two databases over two domains ∆1 and ∆2

respectively, both conforming to the same schemaR. We say that a
partial bijection h induces an isomorphism between db1 and db2 if
ADOM(db1) ⊆ DOM(h), ADOM(db2) ⊆ IM(h), and h projected on
ADOM(db1) is an isomorphism between db1 and db2.

Given two transition systems Υ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉
and Υ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉, and the set H of partial
bijections between ∆1 and ∆2, a history preserving bisimulation
between Υ1 and Υ2 is a relation B ⊆ Σ1 × H × Σ2 such that
〈s1, h, s2〉 ∈ B implies that:

1. h is a partial bijection between ∆1 and ∆2 that induces an
isomorphism between db1(s1) and db2(s2);

2. for each s′1, if s1 ⇒1 s
′
1 then there is an s′2 with s2 ⇒2 s

′
2

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈ B.

3. for each s′2, if s2 ⇒2 s
′
2 then there is an s′1 with s1 ⇒1 s

′
1

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈ B.

A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2 wrt a par-
tial bijection h, written s1 ≈h s2, if there exists a history preserving
bisimulation B between Υ1 and Υ2 such that 〈s1, h, s2〉 ∈ B. A
state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2, written
s1 ≈ s2, if there exists a partial bijection h and a history preserving
bisimulation B between Υ1 and Υ2 such that 〈s1, h, s2〉 ∈ B. A
transition system Υ1 is history preserving bisimilar to Υ2, written
Υ1 ≈ Υ2, if there exists a partial bijection h0 and a history preserv-
ing bisimulation B between Υ1 and Υ2 such that 〈s01, h0, s02〉 ∈ B.
The next theorem gives us the classical invariance result of µ-
calculus wrt bisimulation, in our setting.

THEOREM 3.1. Consider two transition systems Υ1 and Υ2

such that Υ1 ≈ Υ2. Then for every µLA closed formula Φ , we
have:

Υ1 |= Φ if and only if Υ2 |= Φ.

3.2 Persistence Preserving Mu-Calculus
The second fragment of µL that we consider is µLP , which

further restricts µLA by requiring that individuals over which we
quantify must continuously persist along the system evolution for
the quantification to take effect.

With a slight abuse of notation, in the following we write
LIVE(x1, . . . , xn) =

∧
i∈{1,...,n} LIVE(xi).

The logic µLP is defined as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ | 〈−〉(LIVE(~x) ∧ Φ) |
[−](LIVE(~x) ∧ Φ) | Z | µZ.Φ

where Q is a possibly open FO query, Z is a second order predicate
variable, and the following assumption holds: in 〈−〉(LIVE(~x) ∧Φ)
and [−](LIVE(~x)∧Φ), the variables ~x are exactly the free variables
of Φ, with the proviso that we substitute to each bounded predicate
variableZ in Φ its bounding formula µZ.Φ′. We use the usual abbre-
viations, including: 〈−〉(LIVE(~x) → Φ) = ¬[−](LIVE(~x) ∧ ¬Φ)
and [−](LIVE(~x)→ Φ) = ¬〈−〉(LIVE(~x) ∧ ¬Φ). Intuitively, the
use of LIVE(·) in µLP ensures that individuals are only considered



if they persist along the system evolution, while the evaluation of a
formula with individuals that are not present in the current database
trivially leads to false or true (depending on the use of negation).

EXAMPLE 3.3. Getting back to the example above, its variant
in µLP is

νX.(∀x.LIVE(x) ∧ Stud(x)→
µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉(LIVE(x) ∧ Y )) ∧ [−]X)

which states that, along every path, it is always true, for each student
x, that there exists an evolution in which x persists in the database
until she eventually graduates (with some final mark y). Formula

νX.(∀x.LIVE(x) ∧ Stud(x)→
µY.(∃y.LIVE(y) ∧Grad(x, y) ∨ 〈−〉(LIVE(x)→ Y )) ∧ [−]X)

instead states that, along every path, it is always true, for each
student x, that there exists an evolution in which either x is not
persisted, or becomes eventually graduated (with final mark y).

The bisimulation relation that captures µLP is as follows. Given
two transition systems Υ1 = 〈∆1,R,Σ1, s01, db1,⇒1〉 and Υ2 =
〈∆2,R,Σ2, s02, db2,⇒2〉, and the set H of partial bijections be-
tween ∆1 and ∆2, a persistence preserving bisimulation between
Υ1 and Υ2 is a relation B ⊆ Σ1×H×Σ2 such that 〈s1, h, s2〉 ∈ B
implies that:

1. h is an isomorphism between db1(s1) and db2(s2);5

2. for each s′1, if s1 ⇒1 s′1 then there exists an
s′2 with s2 ⇒2 s′2 and a bijection h′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B;6

3. for each s′2, if s2 ⇒2 s′2 then there exists an
s′1 with s1 ⇒1 s′1 and a bijection h′ that extends
h|ADOM(db1(s1))∩ADOM(db1(s′1)), such that 〈s′1, h′, s′2〉 ∈ B.

We say that a state s1 ∈ Σ1 is persistence preserving bisimilar to
s2 ∈ Σ2 wrt a partial bijection h, written s1 ∼h s2, if there exists a
persistence preserving bisimulation B between Υ1 and Υ2 such that
〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is persistence preserving bisimilar
to s2 ∈ Σ2, written s1 ∼ s2, if there exists a partial bijection h
and a persistence preserving bisimulation B between Υ1 and Υ2

such that 〈s1, h, s2〉 ∈ B. A transition system Υ1 is persistence
preserving bisimilar to Υ2, written Υ1 ∼ Υ2, if there exists a partial
bijection h0 and a persistence preserving bisimulation B between
Υ1 and Υ2 such that 〈s01, h0, s02〉 ∈ B. The next theorem shows
the invariance of µLP under this notion of bisimulation.

THEOREM 3.2. Consider two transition systems Υ1 and Υ2

such that Υ1 ∼ Υ2. Then for every µLP closed formula Φ, we
have:

Υ1 |= Φ if and only if Υ2 |= Φ.

4. DETERMINISTIC SERVICES
Now we turn back to the semantics of DCDSs, and analyze them

under the assumption that external services behave deterministically.
This means that the evaluation of functions f ∈ F , representing
the service interfaces in the process layer, is independent from
5Notice that this implies DOM(h) = ADOM(db1(s1)) and IM(h) =
ADOM(db2(s2)).
6Given a set D, we denote by f |D the restriction of f to D, i.e.,
DOM(f |D) = DOM(f) ∩ D, and f |D(x) = f(x) for every x ∈
DOM(f) ∩D.

the moment in which the function is called: whenever an external
service is called twice with the same parameters, it must return
the same value. So, for example, if the function invocation f(a)
returned b at a certain time, then in all successive moments the call
f(a) will return b again. In particular, stateless services can be
modeled with deterministic service calls.

Under this characterization of the services we can now define
the transition system of a DCDS. We call such a transition system
“concrete” transition system to avoid confusion with an “abstract”
transition system that we are going to introduce for our verification
technique.

4.1 Semantics
Let S = 〈D,P〉 be a DCDS with data layer D = 〈C,R, E , I0〉

and process layer P = 〈F ,A, %〉.
First we focus on what is needed to characterize the states of

the concrete transition system. One such state obviously needs to
maintain the current instance of the data layer. This instance is a
database made up of constants in C, which conforms to the schema
R and satisfies the equality constraints in E . Together with the
current instance, however, we also need to remember all answers
we had so far when calling the external services.

To meet the requirement that service calls behave determinis-
tically, the states of the transition system keep track of all re-
sults of the service calls made so far, in the form of equalities
between Skolem terms involving functions in F and having as
arguments constants and returned values in C.7 More precisely,
we define the set of (Skolem terms representing) service calls as
SC = {f(v1, . . . , vn) | f/n ∈ F and {v1, . . . , vn} ⊆ C}, where
f/n stands for a function f arity n. Then we introduce a service
call map, which is a partial functionM : SC→ C.

Now we are ready to formally define states of the concrete tran-
sition system. A concrete state, or simply state, is a pair 〈I,M〉,
where I is a relational instance ofR over C satisfying each equality
constraint in E , andM is a service call map. The initial concrete
state is 〈I0, ∅〉.

Next we look at the result of executing an action in a state. For
this it is convenient to denote the database instanceM(E) obtained
by applying a service call mapM to a set E of facts including only
constants in C or terms in DOM(M). Namely, we define M(E)
as the application of M to all the terms appearing in E where
constants are preserved. Formally, M(E) = {R(c1 . . . , cn) |
R(t1, . . . , tn) ∈ E and ci = ti if ti ∈ C andM(ti) = ci if ti ∈
DOM(M) for i ∈ {1, . . . , n}}.

Let α be an action in A of the form α(p1, . . . , pm) :
{e1, . . . , em} with ei = q+

i ∧ Q
−
i  Ei. The parameters for α

are guarded by the condition-action rule Q 7→ α in %. Let σ be
a substitution for the input parameters p1, . . . , pm with values
taken from C. We say that σ is legal for α in state 〈I,M〉 if
〈p1, . . . , pm〉σ ∈ ans (Q, I).

Concrete action execution. To capture what happens when α is
executed in a state using a substitution σ for its parameters, we
introduce a transition relation EXECS between states, called concrete
execution of ασ, such that 〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ EXECS if the
following holds:

1. σ is a legal parameter assignment for α in state 〈I,M〉,
2. M′ = SERVICECALLS(I, ασ,M),

7Notice that, we have no knowledge of the specific functions
adopted by the external services, and we simply assume that such
functions return some value from C. We are going to have different
executions of the system corresponding to each way to assign values
to the Skolem terms representing the service calls.



3. I′ =M′(DO(I, ασ)), and
4. I′ satisfies E ,

where DO() and SERVICECALLS() are defined as follows.

DO(I, ασ) =
⋃

q+i ∧Q
−
i  Ei∈EFFECT(α)

⋃
θ∈ans ((q+i ∧Q

−
i )σ,I)

Eiσθ

applies the action α to I, using σ as the assignment for its param-
eters. The returned instance is the union of the results of applying
the effects specifications EFFECT(α), where the result of each effect
specification q+

i ∧Q
−
i  Ei is, in turn, the set of facts Eiσθ ob-

tained from Eiσ grounded on all the assignments θ that satisfy the
query q+

i ∧Q
−
i over I.

SERVICECALLS(I, ασ,M) =
M∪ {t 7→ PICKVALUE(C) | t occurring in DO(I, ασ)

and not in DOM(M)}

nondeterministically generates all possible values that can be
returned by the service calls, guaranteeing that external services
behave in a deterministic manner. More specifically, all the
service calls already contained in M are maintained, while new
service calls are nondeterministically bound to an arbitrary value
PICKVALUE(C) taken from C (which will be the values assumed by
such service calls inM from now on in the execution).

Concrete transition system. The concrete transition system ΥS for
S is a possibly infinite-state transition system 〈C,R,Σ, s0, db,=⇒〉
where s0 = 〈I0, ∅〉 and db is such that db(〈I,M〉) = I. Specifi-
cally, we define by simultaneous induction Σ and =⇒ as the smallest
sets satisfying the following properties: (i) s0 ∈ Σ; (ii) if 〈I,M〉 ∈
Σ , then for all substitutions σ for the input parameters of α and for
every 〈I′,M′〉 such that 〈〈I,M〉, ασ, 〈I′,M′〉〉 ∈ EXECS , we
have 〈I′,M′〉 ∈ Σ and 〈I,M〉 =⇒ 〈I′,M′〉.

Intuitively, to define the concrete transition system of the DCDS S
we start from the initial state s0 = 〈I0, ∅〉, and for each ruleQ 7→ α
in P , we evaluate Q over I0, and calculate all states s such that
〈s0, ασ, s〉 ∈ EXECS . Then we repeat the same steps considering
each s, and so on. The computation of successor states can be
done by picking all the possible combinations of resulting values for
the newly introduced service calls, then checking if the successor
obtained for a combination satisfies the equality constraints, filtering
it away if this is not the case. It is worth noting that when new service
calls are considered, the successors can be countably infinite.

EXAMPLE 4.1. Let S = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, E , I0〉 and process layer P = 〈F ,A, %〉, where
F = {f/1, g/1}, R = {Q/2, P/1, R/1}, E = ∅, I0 =
{P (a), Q(a, a)}, % = {true 7→ α}, A = {α}, and

α : {Q(a, a) ∧ P (x) {R(x)}, P (x) {P (x), Q(f(x), g(x))}}

The concrete transition system ΥS contains infinitely many succes-
sors connected to the initial state. These successors result from the
assignment of each possible pair of values to f(a) and g(a) (see
also Figure 3(a).

EXAMPLE 4.2. Consider a variation of the DCDS described in
Example 4.1, where the data layer is equipped with an equality
constraint, i.e., E = {P (x) ∧ Q(y, z) → x = y}. The resulting
concrete transition system has still infinitely many successors of
the initial state, but the presence of the equality constraint requires
to keep only those successors in which f(a) returns a (see also
Figure 2(a).

4.2 Run-Bounded Systems
We now study the verification of DCDSs with deterministic

services. In particular, we are interested in the following prob-
lem: given a DCDS S and a temporal property Φ, check whether
ΥS |= Φ. Not surprisingly, given the expressive power of DCDS as
a computation model, the verification problem is undecidable for all
the µ-calculus variants introduced in Section 3. In fact, we can show
an even stronger undecidability result, for a very small fragment of
propositional linear temporal logic (LTL) [34], namely the safety
properties of the form Gp where p is propositional.

THEOREM 4.1. There exists a DCDS S with deterministic ser-
vices, and a propositional LTL safety property Φ, such that checking
ΥS |= Φ is undecidable.

In the following, we isolate a notable class of DCDS for which
verification of µLA is not only decidable, but can also be reduced
to standard model checking techniques.

Consider a transition system Υ = 〈∆,R,Σ, s0, db,⇒〉. A run
τ in Υ is a (finite or infinite) sequence of states s0s1s2 · · · rooted
at s0, where si ⇒ si+1. We use τ(i) to denote si and τ [i] to
represent the finite prefix s0 · · · si of τ . A run τ = s0s1s2 · · ·
is (data) bounded if the number of values mentioned inside its
databases is bounded, i.e., there exists a finite bound b such that
|
⋃
s state of τ ADOM(db(s))| < b. This is equivalent to saying that,

for every finite prefix τ [i] of τ , |
⋃
j∈{0,...,i} ADOM(db(sj))| < b.

We say that Υ is run-bounded if there exists a bound b such that
every run in Υ is (data) bounded by b. A DCDS S is run-bounded
if its concrete transition system ΥS is run-bounded.

Intuitively, a (data) unbounded run represents an execution of
the DCDS in which infinitely many distinct values occur because
infinitely many different service calls are issued. Since we model
deterministic services whose number is finite, this can only happen
if some service is repeatedly called with arguments that are the
result of previous service calls. This means that the values of the
run indirectly depend on arbitrarily many states in the past.

Notice that run boundedness does not impose any restriction about
the branching of the transition system; in particular, ΥS is typically
infinite-branching because new service calls may return any possible
value. We show that this restriction guarantees decidability for µLA
verification of run-bounded DCDSs with deterministic services.

THEOREM 4.2. Verification of µLA properties on run-bounded
DCDSs with deterministic services is decidable.

We get this result by showing that for run-bounded DCDSs there
always exists an abstract finite-state transition system that is history
preserving bisimilar to the concrete one, and hence satisfies the
same µLA formulae as the concrete transition system.

THEOREM 4.3. For every run-bounded DCDS S with determin-
istic services, given its concrete transition system ΥS there exists an
(abstract) finite-state transition system ΘS such that ΘS is history
preserving bisimilar to ΥS , i.e., ΘS ≈ ΥS .

Let Σ be the set of states of ΘS and ADOM(ΘS) =⋃
si∈Σ ADOM(db(si)). If ΘS is finite-state, then there exists a

bound b such that |ADOM(ΘS)| < b. Consequently, it is possible
to transform a µLA property Φ into an equivalent finite proposi-
tional µ-calculus formula PROP(Φ), where PROP(Φ) is inductively
defined over the structure of Φ as the identity, except for the follow-
ing case: PROP(∃x.LIVE(x) ∧ Ψ(x)) =

∨
ti∈ADOM(S) LIVE(ti) ∧

PROP(Ψ(ti)). Clearly, ΘS |= Φ if and only if ΘS |= PROP(Φ).
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Figure 2: Concrete and abstract transition systems of the DCDS with deterministic services described in Example 4.2; special
relations that store the service calls results are represented using a call 7→ value notation
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Figure 3: Concrete and abstract transition systems of the DCDS with deterministic services described in Example 4.1; special
relations that store the service calls results are represented using a call 7→ value notation

THEOREM 4.4. Verification of µLA properties for run-bounded
DCDSs with deterministic services can be reduced to conventional
model checking of propositional µ-calculus over a finite transition
system.

By the above theorem, and recalling that model checking of
propositional µ-calculus formulae over finite transition systems is
decidable [22], we get Theorem 4.2.

We conclude the Section by observing that the approach presented
above for µLA does not extend to full µL.

THEOREM 4.5. There exists a DCDS S for which it is impossi-
ble to find a faithful finite-state abstraction that satisfies the same
µL properties as S.

The Theorem 4.5 is proved by exhibiting, for every n, a µL
property that requires the existence of at least n objects in the
transition system.

Even if this observation does not imply undecidability of model
checking µL properties over run-bounded DCDSs, it shows that
there is no hope of reducing this problem to standard, finite-state
model checking.

4.3 Weakly Acyclic DCDSs
The results presented in Section 4.2 rely on the hypothesis that the

DCDS under study is run-bounded, which is a semantic restriction.
A natural question is whether it is possible to check run-boundedness
of a DCDS. We provide a negative answer to this question.

THEOREM 4.6. Checking run-boundedness of DCDSs with de-
terministic services is undecidable.

To mitigate this issue, we investigate a sufficient syntactic condition
that can be effectively tested over the process layer of the DCDS:
if the condition is met, then the DCDS is guaranteed to be run-
bounded, otherwise nothing can be said. To this end, we recast the
approach of [3] in the more abstract and expressive framework here



presented. In particular, we first introduce the “positive approximate”
of a DCDS, which abstracts away some of its aspects. We do so for
convenience, but we note that the definition of weak-acyclicity as
well as our results can be stated directly over the original DCDS (in
fact, we do so in condensed presentations of this work). Technically,
given a DCDS S = 〈D,P〉 with data layer D = 〈C,R, E , I0〉
and process layer P = 〈F ,A, %〉, its positive approximate S+ is
a DCDS 〈D+,P+〉, where D+ = 〈C,R, ∅, I0〉 corresponds to D
without equality constraints, while P+ = 〈F ,A+, %+〉 is a process
layer whose actions A+ and process %+ are obtained as follows:

• Each condition-action rule Q 7→ α in % becomes true 7→ α+

in %+. Therefore, %+ is a process that supports the execution
of every action in A+ at each step.
• Each action α(p1, . . . , pn) : {e1, . . . , em} in A becomes
α+ : {e+

1 , . . . , e
+
m} inA+, where each ei = q+

i ∧Q
−
i  Ei

becomes in turn e+
i = q+

i  Ei. Intuitively, the positive
approximate action is obtained from the original action by
removing all the parameters from its signature, and by re-
moving all “negative” components from the query used to
instantiate its effect specifications; note that the variables of
q+
i that were parameters in α are now free variables in α+.

The positive approximate fulfils the following key property.

LEMMA 4.1. Given a DCDS S, if its positive approximate S+

is run-bounded, then S is run-bounded as well.

To derive a sufficient condition for S+ to be run-bounded, we can
exploit a strict correspondence between the execution of an action in
P+ and a step in the chase of a set of tuple generating dependencies
(TGDs) in data exchange[2, 23]. In particular, we resort to a well-
known result in data exchange, namely chase termination for weakly
acyclic TGDs [23].8

In our setting, the weak acyclicity of a process layer is a property
over a dataflow graph constructed by analyzing the corresponding
positive approximate process layer. A non-weakly acyclic DCDS
contains a service that may be repeatedly called, every time using
fresh values that are directly or indirectly obtained by manipulat-
ing previous results produced by the same service. This self-
dependency can potentially lead to an infinite number of calls of
the same service along an execution of the system, thus making it
impossible to put a bound on the data used throughout the run (see
also Example 4.3). Weak acyclicity rules out such self dependencies
and is actually a sufficient condition for run-boundedness.

Given a DCDS S = 〈D,P〉 with positive approximate S+ =
〈D+,P+〉, the dependency graph of P+ is an edge-labeled directed
graph 〈N,E〉 where: (i) N ⊆ R× N+ is a set of nodes such that
〈R, i〉 ∈ N for every R/n ∈ R and every i ∈ {1, . . . , n}; (ii)
E ⊆ N ×N × {true, false} is a set of labeled edges where

• an ordinary edge 〈〈R1, j〉, 〈R2, k〉, false〉 ∈ E if there exists
an action α+ ∈ A+, an effect q+

i  Ei ∈ EFFECT(α+) and
a variable x such that R1(. . . , tj−1, x, tj+1, . . .) occurs in
q+
i and R2(. . . , t′k−1, x, t

′
k+i, . . .) occurs in Ei;

• a special edge 〈〈R1, j〉, 〈R2, k〉, true〉 ∈ E if there exists
an action α+ ∈ A+, an effect q+

i  Ei ∈ EFFECT(α+)
and a variable x such that R1(. . . , tj−1, x, tj+1, . . .) oc-
curs in q+

i , R2(. . . , t′k−1, t, t
′
k+i, . . .) occurs in Ei, and

t = f(. . . , x, . . .), with f ∈ F .

P is weakly acyclic if the dependency graph of its approximate P+

does not contain any cycle going through a special edge. We say
8Notice that using other variants of weak acyclicity is also possible
[30].

that a DCDS is weakly acyclic if its process layer is weakly acyclic
(e.g., see Figure 5(a)).

Intuitively, ordinary edges represent the possible propagation
(copy) of a value across states: 〈〈R1, j〉, 〈R2, k〉, false〉 ∈ E re-
flects the possibility that the value currently stored inside the j-th
component of an R1 tuple will be moved to the k-th component
of an R2 tuple in the next state. Contrariwise, special edges repre-
sent that a value can be taken as parameter of a service call, thus
contributing to the creation of (possibly new) values across states:
〈〈R1, j〉, 〈R2, k〉, true〉 ∈ E means that the value currently stored
inside the j-th component of an R1 tuple could be used as param-
eter for a service call, whose result is then stored inside the k-th
component of an R2 tuple.

A cycle going through a special edge, forbidden by the weak
acyclicity condition, represents that a service may be repeatedly
called, every time using fresh values that are indirectly or directly
obtained by manipulating previous results produced by the same
service. This self-dependency can potentially lead to an infinite
number of calls of the same service along an execution of the system,
thus making it impossible to put a bound on the data used throughout
the run.

EXAMPLE 4.3. Let S = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layer P = 〈F ,A, %〉, where F =
{f/1}, R = {R/1, Q/1}, I0 = {R(a)}, % = {true 7→ α} and
A = {α}, where α : {R(x) Q(f(x)), Q(x) R(x)}.
S is not weakly acyclic, due to the mutual dependency between

R and Q that involves a call to service f . This can be easily seen
from the dataflow graph (shown in Figure 5(b)), which contains a
special edge from 〈R, 1〉 to 〈Q, 1〉, and a normal edge from 〈Q, 1〉
to 〈R, 1〉. Notice that, in this case, the positive approximate of S
coincides with S itself. Starting from the initial state, α calls f(a)
and stores the result inside Q. A second execution of α transfers the
result of f(a) into R. When α is executed for the third time, f is
called again, but using as parameter the previously obtained result.
Consequently, f may return a new, fresh result, because f(f(a))
may be different from f(a). This chain can be repeated forever,
leading to possibly generate infinitely many distinct values along the
run. The existence of a run in which a, f(a), f(f(a)), f(f(f(a))),
. . . , are all distinct values, makes it impossible to obtain a finite-state
abstraction for S (see Figure 4(b)).

THEOREM 4.7. Every weakly acyclic DCDS with deterministic
services is run-bounded.

Checking weak acyclicity is polynomial in the size of the DCDS.
Thus it gives us an effective way to verify DCDSs.

THEOREM 4.8. Verification of µLA properties for weakly
acyclic DCDSs with deterministic services is decidable, and can be
reduced to model checking of propositional µ-calculus over a finite
transition system.

EXAMPLE 4.4. Consider the DCDSs described in Example 4.1
and 4.2. They have the same dataflow graph, which is weakly acyclic
(see Figure 5(a). This guarantees that they are run-bounded and
that it is possible to find a faithful finite-state abstraction from them.
Two such abstractions are respectively shown in Figure 3(b) and
2(b).

5. NONDETERMINISTIC SERVICES
We now consider DCDSs under the assumption that services

behave nondeterministically, i.e., two calls of a service with the
same arguments may return distinct results during the same run.
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Figure 4: Concrete and abstract transition systems of the run-unbounded DCDS with deterministic services S described in Exam-
ple 4.3; special relations that store the service calls results are represented using a call 7→ value notation
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and 4.2
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(b) Non weakly acyclic dataflow graph for the DCDS of Example 4.3

Figure 5: Examples of dataflow graphs for DCDSs with deterministic services; special edges are decorated with *

This case captures both services that model a truly nondeterministic
process (e.g., human operators, random processes), and services that
model stateful servers. In the remainder of this section, whenever we
refer to a DCDS, services are implicitly assumed nondeterministic.

5.1 Semantics
As in the case of deterministic services, we define the semantics

of a DCDS S in terms of a (possibly infinite) transition system ΥS .
Let S = 〈D,P〉 be a DCDS with data layer D = 〈C,R, E , I0〉

and process layer P = 〈F ,A, %〉. A state is simply a relational
instance ofR over C satisfying each constraint in E . We denote the
initial state with I0.

Next, we define the semantics of action application. Let α be an
action in A of the form α(p1, . . . , pm) : {e1, . . . , em} with effects
ei = q+

i ∧ Q
−
i  Ei. The parameters for α are guarded by the

condition-action rule Q 7→ α ∈ %. Let σ be a legal substitution for
the input parameters p1, . . . , pm with values taken from C.

We reuse the definition of DO(I, ασ) from Section 4.1, as the
instance obtained by evaluating the effects ofα on instance I. Recall
that DO() generates an instance over values from the domain C but
also over Skolem terms, which model service calls. For any such
instance Ī, we denote with CALLS(Ī) the set of calls it contains.
For a given set D ⊆ C, we denote with EVALSD(I, α, σ) the set
of substitutions that replace all service calls in DO(I, α, σ) with
values in D,

EVALSD(I, α, σ) = {θ | θ is a total function
θ : CALLS(DO(I, α, σ))→ D}.

Each substitution in EVALSD(I, α, σ) models the simultaneous
evaluation of all service calls, which replaces the calls with results
selected nondeterministically from D. In the following, we refer to
these substitutions as evaluations.

Concrete action execution. We introduce a transition relation
N-EXECS between states, called concrete execution of ασθ, such
that 〈I, ασθ, I′〉 ∈ N-EXECS if the following holds:

1. σ is a legal parameter assignment for α in state I,
2. θ ∈ EVALSC(I, α, σ),
3. I′ = DO(I, α, σ)θ, and
4. I′ satisfies the constraints E .

Notice that, in contrast to the deterministic services case, the
choice of evaluation θ is not subject to the requirement that it
evaluates a service call to the same result across concrete execution
steps. However, notice that within a concrete execution step, all
occurrences of the same service call evaluate to the same result
(modeling the fact that a call with given arguments is invoked
only once per transition, and the returned result is copied as needed).

Concrete transition system. The concrete transition system ΥS
for S is a transition system whose states are labeled by databases.
More precisely,
ΥS = 〈C,R,Σ, s0, db,⇒〉 where s0 = I0 and db is such that
db(I) = I. Σ and ⇒ are defined by simultaneous induction as
the smallest sets satisfying the following properties: (i) I0 ∈ Σ;
(ii) if I ∈ Σ , then for all α, σ, θ and I′ such that 〈I, ασθ, I′〉 ∈
N-EXECS , we have that I′ ∈ Σ, and I ⇒ I′.

5.2 State-Bounded Systems
We consider the verification problem for DCDS with nondeter-

ministic services. As in the deterministic case, restrictions on both
the processes and the properties are required, motivated by the
following undecidability result.

THEOREM 5.1. There exists a DCDS S with nondeterministic
services, and a propositional LTL safety property Φ, such that
checking ΥS |= Φ is undecidable.



State-bounded DCDS. Since we are interested in verifying more
expressive temporal properties, we need to consider restricted
classes of DCDS. We observe first that, with nondeterministic
services, the run-boundedness restriction of Section 4.2 is very limit-
ing on the form of the DCDS, as it boils down to imposing a bound
on how many times each service may be called with the same argu-
ments. Observe that this was not the case for deterministic services,
where the unlimited same-argument calls are allowed, as they all
return the same result. We propose a less restrictive alternative.
We say that DCDS S is state-bounded if there is a finite bound b
such that for each state I of ΥS , |ADOM(I)| < b. Notice that, in
contrast to the notion of run-boundedness, state-boundedness does
allow runs in which infinitely many distinct values occur because
infinitely many service calls are issued. The unboundedly many call
results are distributed across states of the run, but may not accumu-
late within a single state. The following result shows that we also
need to restrict the logic, as the one used in the deterministic case is
too expressive for decidability.

THEOREM 5.2. Verification of µLA properties on state-
bounded DCDSs with nondeterministic services is undecidable.

We therefore restrict the property class to the logic µLP ⊂ µLA
presented in Section 3.2.

THEOREM 5.3. Verification of µLP properties by state-
bounded DCDS with nondeterministic services is decidable.

5.3 Abstract Transition System
We relegate the proof of Theorem 5.3 to Appendix C.3, but pro-

vide the main ideas here.
Given a DCDS S , we show that if concrete transition system ΥS

is state-bounded, then there is a finite-state abstract transition system
ΘS whose states and edges are subsets of those in ΥS , such that ΘS
is persistence-preserving bisimilar to ΥS (and hence satisfies the
same µLP properties, by Theorem 3.2). Since ΘS is finite-state, the
verification of µLP properties on ΥS reduces to finite-state model
checking on ΘS , and hence is decidable.

The existence of ΘS follows from the key fact that if two states of
ΥS are isomorphic, then they are persistence-preserving bisimilar.
This implies that one can construct a finitely-branching transition
system ΘS (i.e. with finite number of successors per state), such that
ΘS is persistence-preserving bisimilar to ΥS , by dropping sibling
states from ΥS as follows: instead of listing among the successors of
s one state for each possible instantiation of the service call results,
just keep a representative state for each isomorphism type. Since the
number of service calls made in each state is finite, the number of
distinct isomorphism types is finite, so the finite branching follows.
We call a transition system ΘS obtained as above a pruning of ΥS .

Notice that despite being finitely-branching, any pruning ΘS
can still have infinitely many states, as it may contain infinitely
long simple runs9 τ , along which the service calls return in each
state “fresh” values, i.e., values distinct from all values appearing
in the predecessors of this state on τ . This problem is solved by
judiciously selecting which representatives to keep in ΘS for the
successors of a state s. Namely, whenever the representatives of a
given isomorphism type T include states generated exclusively by
service calls that “recycle” values, select only such states (finitely
many thereof, of course). By recycled values we mean values
appearing on a path leading into s.

If ΥS is state-bounded, then the number of service calls per state
is bounded, and due to the construction’s preference for recycling, it
9We call a run simple if no state appears more than once in the run.

follows that all simple runs in ΘS must have finite length. Together
with the finite branching, this implies finiteness of ΘS .

Notice that proving the existence of ΘS does not suffice for
decidability, as the proof is non-constructive. We therefore provide
an algorithm for constructing ΘS (Algorithm RCYCL). One of
the technical problems we need to overcome in developing the
algorithm is that we evidently cannot start from the infinite-state
concrete transition system, instead exploring a portion thereof. This
means that it is not obvious how to decide whether the successors
of a state are generated by recycling service calls, since these calls
may recycle from paths that RCYCL hasn’t explored yet. Therefore,
RCYCL may sometimes select non-recycling service calls even when
a recycling alternative exists. However, we can prove that RCYCL
constructs what we call an eventually recycling pruning, which in
essence means it may fail to detect recycling service calls, but only
a bounded number of times.

We formalize the above discussion in Appendix C.3, where we
prove the following result:

THEOREM 5.4. If input DCDS S is state-bounded, then every
possible run of Algorithm RCYCL terminates, yielding a finite even-
tually recycling pruning ΘS of ΥS , with ΥS ∼ ΘS .

Theorem 5.4 and Theorem 3.2 directly imply Theorem 5.3.
Figures 7 and 6 illustrate two concrete transition systems, and

possible recycling prunings for them.

5.4 GR-Acyclic DCDSs
As with run-boundedness in the deterministic services case, for

nondeterministic services the state-boundedness restriction is a
semantic property. We investigate whether it can be effectively
checked.

THEOREM 5.5. Checking state-boundedness of DCDSs is unde-
cidable.

Consequently we propose a sufficient syntactic restriction.
Intuitively, for a run to have unbounded states, it must issue

unboundedly many service calls. Since there are only a bounded
number of effects in the process layer specification, there must exist
some service-calling effect that “cyclically generates” fresh val-
ues (i.e. is invoked infinitely many times during the run). Notice
that unbounded generation of fresh values is insufficient for state-
unboundedness: these values must also accumulate in the states.
But by definition of the DCDS semantics, a transition drops (“for-
gets”) all values that are not explicitly copied (“recalled”) into the
successor. Therefore, to accumulate, a value must be “cyclically
recalled” througout the run (it must be copied infinitely many times
from relation to relation).

GR-acyclicity is stated in terms of a dataflow graph constructed
by analyzing the process layer. The graph identifies how service
calls and value recalls can chain. In essence, GR-acyclicity requires
the absence of a “generate cycle” that feeds into a “recall cycle”.

GR-acycliclicity. Let A be a set of actions, and A+ its positive
approximate (Section 4.3). We call dataflow graph ofA the directed
edge-labeled graph 〈N,E〉 whose set N of nodes is the set of
relation names occurring in A, and in which each edge in E is
a 4-tuple (R1, id , R2, b), where R1 and R2 are two nodes in N ,
id is a (unique) edge identifier, and b is a boolean flag used to
mark special edges. Formally, E is the minimal set satisfing the
following condition: for each effect e of A+, each R(t1, . . . , tm)
in the body of e, each Q(t′1, . . . , t

′
m′) in the head of e, and each

i ∈ {1, . . . ,m′}:
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Figure 6: Concrete and abstract transition systems of the state-unbounded DCDS with nondeterministic services of Example 5.2.

• if t′i is either an element of ADOM(I0) or a free variable, then
(R, id , Q, false) ∈ E, where id is a fresh edge identifier.
• if t′i is a service call, then (R, id , Q, true) ∈ E, where id is

a fresh edge identifier.

We say that A is GR-acyclic if there is no path π = π1π2π3 in the
dataflow graph of A, such that π1, π3 are simple cycles and π2 is
a path containing a special edge that is disjoint from the edges of
π1. We say that a process layer P = 〈F ,A, %〉 is GR-acyclic, if A
is GR-acyclic. We call a DCDS GR-acyclic if its process layer is
GR-acyclic.

Notice that GR-acyclicity is a purely syntactic notion. More-
over, it can be checked in PTIME since the dataflow graph has size
polynomial in the size of the process layer specification.

THEOREM 5.6. Any GR-acyclic DCDS is state-bounded.

We show the proof in Appendix C.4 but provide some intuition
here, noting that the dataflow analysis is significantly more subtle
than suggested above.

First, note that ordinary edges correspond to an effect copying a
value from a relation of the current state to a relation of the successor
state. Special edges correspond to feeding a value of the current
state to a service call and storing the result in a relation of the
successor state. Note that the cycles π1 and π3 allow both kinds
of edges, reflecting the insight that the size of the state is affected
in the same way regardless of whether a value is copied to the
successor, or it is replaced with a service call result (see Example 5.2
and Example 5.3 for illustrations of state-unboundedness arising
from each case). π1, π3 are both “recall cycles”: the number of
values moving around them does not decrease (this is of course a
conservative statement; reality depends on the semantics of queries
in the effects, which is abstracted away). Note that π2 contains a
special edge E, which means that the values moving around π1 are

cyclically fed into the service call f of E. The key insight here is
that, even if the set of values moving around π1 does not change
(no special edges in π1 replace them), and thus the service call f
sees the same bounded set of distinct arguments over time, it can
still generate an unbounded number of fresh values because f is
nondeterministic. π1π2 constitute the “generate cycle” we mention
above. The generated values are stored in the recall cycle π3, where
they accumulate and force the size of the relations of π3 to grow
unboundedly.

EXAMPLE 5.1. Let us consider again the DCDS S described
in Example 4.3, this time considering f/1 as a nondeterministic
service. The resulting concrete transition system is shown in Fig-
ure 7(a). Even if S is not run-bounded, it is state-bounded, because
in every state its database consists of only one tuple. This is attested
by the dataflow graph shown in Figure 7(a), and guarantees the
existence of a faithful finite-state abstraction. One such finite-state
abstraction is reported in Figure 7(b).

EXAMPLE 5.2. Let S = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layer P = 〈F ,A, %〉, where F =
{f/1},R = {R/1, Q/1}, I0 = {R(a)}, % = {true 7→ α}, A =
{α} and α : {R(x) R(x), R(x) Q(f(x)), Q(x) Q(x)}.
S is not GR-acyclic, because eachR tuple is continuously copied,

and at the same time continuously issues a call to service f that is
then stored into a Q tuple, which is continuously copied as well.
This is attested by the dataflow graph of Figure 8(b)).

The overall effect caused by the iterated application of α is that
fresh values are continuously generated and accumulated, making
S state-unbounded. Consider for example the application of action
α in state I0. It leads to an infinite number of successors, each
one of the form {R(a), Q(v)} where v is the value returned by
f(a). Consider now a second application of α in one of these
states. It again leads to an infinite number of successors, due to
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Figure 7: Concrete and abstract transition systems obtained when the DCDS described in Example 4.3 has nondeterministic services
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Figure 8: Examples of dependency graphs for DCDSs with nondeterministic services; special edges are decorated with *.

the nondeterminism of f(a). In particular, each successor has the
form {R(a), Q(v), Q(v′)}, where v′ is the result of the second
call f(a). When v′ 6= v, the number of tuples is increased from
2 to 3. By executing α over and over again, for some successors
the value returned by a new call f(a) will be distinct from all the
ones already stored in Q. This causes an indefinite increment of
the database size due to the continuous insertion of fresh Q tuples.
Such behavior is clearly shown in the concrete transition system of
S, depicted in Figure 6(a). Figure 6(b) shows instead one possible
corresponding abstraction; even if the abstraction approach ensures
that the generated transition system is finite-branching, some of its
runs pass through an infinite number of distinct, growing states.

EXAMPLE 5.3. Let S = 〈D,P〉 be a DCDS with data layer
D = 〈C,R, ∅, I0〉 and process layer P = 〈F ,A, %〉, where F =
{f/1, g/1}, R = {R/1}, I0 = {R(a)}, % = {true 7→ α},
A = {α} and α : {R(x) {R(f(x)), R(g(x))}}.
S is not GR-acyclic, because its dataflow graph, shown in Fig-

ure 8(c), contains a unique node R with two distinct special looping
edges from R to R itself. Indeed, every time α is executed, each R
tuple contained in the current database may generate two R tuples
in the next state, such that each such new tuple contains a value
different from all the other ones. Therefore, even if the newly gener-
ated values are not accumulated, in the “worst” case the number of
R tuples is doubled every time α is executed. A sample run of the
system could be the following. Starting from I0, α calls f(a) and
g(a), getting b and c as result and obtaining the state {R(b), R(c)}.
A second execution of α involves now 4 service calls (f(b), g(b),
f(c), g(c)), which may return 4 different new values, e.g. leading
to state {R(d), R(e), R(f), R(g)}, and so on.

GR+-Acyclicity. This relaxation of GR-acyclicity is based on the
insight that, for a cycle ΥS in the dataflow graph to truly preserve
the number of values moving in it, ΥS ’s edges must not all be
simultaneously inactive. We say that an edge is active in a step
of the run when some action corresponding to it executes. By the
DCDS semantics, if all edges of ΥS are simultaneously inactive,

then none of the corresponding copy/call operations are executed
and all relations involved in ΥS forget their value in the next state.
ΥS is effectively flushed.

GR+-Acyclicity is a relaxation that does allow path π = π1π2π3

as in the definition of GR-Acyclicity, provided that π2 contains an
edge e that cannot be active at the same time as any of the subsequent
edges in π2π3.

Semantically this ensures that in order for the generate cycle π1π2

to push fresh values toward recall cycle π3, some action correspond-
ing to e must execute, and in the meantime all actions maintaining
the values in cycle π3 are disabled, thus flushing π3. π3 thus re-
ceives an unbounded number of waves of fresh values from π1π2,
but it forgets each wave before the next arrives.

Of course, the property of being active at the same time is seman-
tic in nature, but we give a sufficient syntactic condition. Associate
with every edge e in the dataflow graph the set actions(e) of actions
it corresponds to (this set can be computed via simple inspection of
the process layer). Then edges e1, e2 are not simultaneously active
if actions(e1) ∩ actions(e2) = ∅.

The DCDSs discussed in Example 5.2 and 5.3 are not GR+-
acyclic. Indeed, they are not GR-acyclic, and all the edges contained
in their dataflow graphs can be simultaneously active, because they
all correspond to a single action.

We observe that GR-acyclicity is not related to weak acyclicity.
In particular, a DCDS may be GR-acyclic but not weakly acyclic
(see Example 5.1).

As with any sufficient syntactic condition for an undecidable
semantic property, an infinite succession of refinements of GR-
acyclicity is possible, each relaxing the condition to allow more
DCDS classes. We propose a very powerful relaxation in Ap-
pendix C.4, GR+-acyclicity. Appendix E shows a full-fledged
DCDS example that conforms to GR+-acyclicity, showing that it
admits a practically relevant DCDS class.

Theorem 5.6 and Theorem 5.3 imply:

THEOREM 5.7. Verification of µLP properties for GR+-acyclic
DCDS with nondeterministic services is decidable.



6. DISCUSSION
Complexity. Both in the case of weakly acyclic DCDSs
with deterministic services and of GR+-acyclic DCDSs with
non-deterministic services, our construction generates a finite
transition system whose number of states is exponential in the size
of the DCDS. Let Φ be a µLA or µLP formula of size ` with
k alternating nested fixpoints. Then, considering the complexity
or propositional µ-calculus model checking on finite transition
systems [22], the complexity of verification of Φ over a DCDS of
size n is O(2n · n`)k, hence in EXPTIME.

Comparison of the two semantics. It is natural to ask how the
expressivities of the two DCDS flavors compare. Interestingly,
we can show that for unrestricted DCDSs, the two semantics are
equivalent from the point of view of expressive power, i.e. any
DCDS with deterministic services can be simulated by a DCDS
with nondeterministic services, and conversely. However, we show
below that the two semantics are not equivalent with respect to
decidability of verification.

Consider first the reduction from deterministic to non-
deterministic services.

THEOREM 6.1. Let D be a DCDS with deterministic services
and schemaRD . Then one can rewrite D in linear time to a DCDS
N with nondeterministic services and schema RN , such that (i)
RN includes RD and (ii) the projection of ΥN to RD coincides
with ΥD , and (iii) if D is run-bounded, then N is state-bounded.

We turn next to the converse reduction.

THEOREM 6.2. Let N be a DCDS with nondeterministic ser-
vices and schema RN . Then one can rewrite N in linear time to
a DCDS D with deterministic services and schemaRD , such that
(i)RD includesRN and (ii) the projection of ΥD toRN coincides
with ΥN .

The above reductions show that for unrestricted DCDS, determin-
istic and nondeterministic services are equivalent with respect to
expressive power. However, they are not equivalent with respect
to decidability of verification. This is because state-boundedness
of the DCDS with nondeterministic services does not imply run-
boundedness of the rewritten DCDS with deterministic services. In
fact, one can prove that there exists no reduction from state-bounded
DCDS with nondeterministic services to run-bounded DCDS with
deterministic services: recall that for properties from µLA − µLP ,
verification is decidable for the latter (by Theorem 4.3), and unde-
cidable for the former (Theorem 5.2). In particular, the reduction
we use to prove Theorem 6.2 yields a non-weakly-acyclic DCDS
and is therefore not pertinent to verification decidability.

In contrast, for the converse reduction of Theorem 6.1, observe
that whenever D is run-bounded, N is state-bounded. Therefore,
if we restrict the property language to µLP , decidability of
verification for run-bounded DCDSs with deterministic services
follows as a corollary of the reduction. Recall however that
decidability holds even for the larger logic µLA (by Theorem 4.2).
Our proof of Theorem 4.2 exploits the reduction as well, though
additional technical contribution is needed to handle µLA.

Mixed semantics. The reduction in Theorem 6.1 allows us to
verify µLP properties for DCDSs with a mix of deterministic
and nondeterministic services, by first rewriting to a DCDS with
exclusively nondeterministic services (as long as the rewritten
DCDS is GR-acyclic). We give an example of a DCDS with mixed

service semantics in Appendix E.

Support for arbitrary integrity constraints. We remark that, by
exploiting the equality constraints, we can extend our decidability
results to support integrity constraints on the database expressed as
arbitrary FO sentences under the active domain semantics. First,
note that the definition of DCDS semantics is independent of the
type of constraints used, as it simply requires their satisfaction by
each state of the concrete transition system. Now consider a DCDS
S with an FO integrity constraint IC defined on its schema. We can
rewrite S to enforce IC using equality constraints. To this end, we
add a binary auxiliary relation aux to the schema, initialized in the
initial state to contain the tuple 〈a, b〉 of distinct constants. We add
to each action an effect that simply copies aux between states, en-
suring the persistence of fact aux (a, b) throughout the run. Finally,
we add an equality constraint ec := ¬IC ∧ aux (x, y) → x = y.
Notice now that S’ will never execute an action that vio-
lates IC, because that would violate ec. Equality constraints
also prove instrumental in modeling artifact systems, described next.

Connection with the artifact model. In terms of expressive capa-
bilities, our DCDS model is equivalent to a business process model
known in the literature as the artifact model (see Section 7). While
variations thereof abound, they are virtually all special cases of the
following general model. In it, given a relational schema T , an arti-
fact of type T (or T -artifact) is a tuple of schema T . The attributes
of the tuple are known as artifact variables, and they must include an
id attribute that uniquely identifies each artifact. An artifact system
has a schema comprising a collection of types {Ti}i∈{1,...,n}, and
the schemaRDB of an underlying relational database. The instance
of an artifact system consists of a relation Ii for each type Ti and a
database of schemaRDB . The artifact system also has a collection
of actions (usually called “services”, a term we avoid here to rule
out confusion with the external services of the DCDS model). The
exection of an action evolves the current instance into its successor.
Each action has a pre-condition which is a FO sentence over the
artifact schema, evaluated over the current artifact instance under
the active domain semantics. The pre-condition must hold for an
action to be eligible to execute. Actions are also equipped with a
post-condition which is usually an ∃FO formula relating the current
and the successor instances (if R is a relation in the schema, the
post-condition’s R-atoms refer to the current instance, while R′

atoms refer to the successor). By ∃FO we mean existential FO logic,
in which only existential quantifiers are allowed, and they must
appear in the scope of an even number of negations. Existentially
quantified variables are not interpreted over the active domain, but
over the possible infinite domain. They model external inputs from
the environment the artifact system evolves in.

While we do not show a formal reduction between the two models,
we sketch here how a DCDS process can simulate an artifact-based
one. The DCDS can model the sets Ii of Ti-artifacts using an
integrity constraint to enforce the uniqueness of the id attribute.
The pre-conditions of artifact actions correspond to the conditions
in the DCDS condition-action rules. Artifact post-conditions ψ
can be simulated by DCDS effects, after rewriting ψ to Skolem
normal form and introducing for each resulting Skolem term a
nondeterministic service call. The fact that post-conditions can
contain disjunction while effects are conjunctive and positive is no
impediment: the additional expressivity needed can be transferred to
the DCDS condition-action rules, if necessary modeling one artifact
transition step with several DCDS transition steps.

7. RELATED WORK



As discussed in Section 6, the unrestricted artifact-centric and
DCDS models have equivalent expressive capabilities. Our work
is therefore most closely related to prior work on verification of
artifact-centric business processes. The difference lies in how each
work trades off between restricting the class of business processes
versus the class of properties to verify.

Artifact-centric processes with no database. Work on formal
analysis of artifact-based business processes in restricted contexts
has been reported in [24, 25, 7]. Properties investigated include
reachability [24, 25], general temporal constraints [25], and the
existence of complete execution or dead end [7]. For the variants
considered in each paper, verification is generally undecidable;
decidability results were obtained only under rather severe
restrictions, e.g., restricting all pre-conditions to be ”true” [24],
restricting to bounded domains [25, 7], or restricting the pre- and
post-conditions to be propositional, and thus not referring to data
values [25]. [15] adopts an artifact model variation with arithmetic
operations but no database. It proposes a criterion for comparing
the expressiveness of specifications using the notion of dominance,
based on the input/output pairs of business processes. Decidability
relies on restricting runs to bounded length. [37] addresses the
problem of the existence of a run that satisfies a temporal property,
for a restricted case with no database and only propositional LTL
properties. All of these works model no underlying database (and
hence no integrity constraints).

Artifact-centric processes with underlying database. More re-
cently, two lines of work have considered artifact-centric processes
that also model an underlying relational database. One considers
branching time, one only linear time.
Branching time. Our approach stems from a line of research that
has started with [16] and continued with [3] and [5] in the context
of artifact-centric processes. The connection between evolution of
data-centric dynamic systems and data exchange that we exploit
in this paper was first devised in [16]. There the dynamic system
transition relation itself is described in terms of TGDs mapping the
current state to the next, and the evolution of the system is essentially
a form of chase. Under suitable weak acyclicity conditions such a
chase terminates, thus making the DCDS transition system finite. A
first-order µ-calculus without first-order quantification across states
is used as the verification formalism for which decidability is shown.
Notice the role of getting new objects/values from the external en-
vironment, played here by service calls, is played there by nulls.
These ideas where further developed in [3], where TGDs where
replaced by action rules with the same syntax as here. Semantically
however the dynamic system formalism there is deeply different:
what we call here service calls are treated there as uninterpreted
Skolem terms. This results in an ad-hoc interpretation of equality
which sees every Skolem term as equal only to itself (as in the case
of nulls [16]). The same first-order µ-calculus without first-order
quantification across states of [16] is used as the verification formal-
ism, and a form of weak acyclicity is used as a sufficient condition
for getting finite-state transition systems and decidability.

In the case of deterministic services, our framework is directly
inspired by [3], though here we do interpret service calls. This
decision is motivated by our goal of modeling real-life external
services, for which two distinct service calls may very well return
equal results, even under the deterministic semantics (for instance
if the same service is called with different arguments, or if dis-
tinct services are invoked). Interpreting service calls raises a major
challenge: even under the run-bounded restriction, the concrete
transition system is infinite, because it is infinitely branching. (a

service call can be interpreted with any of the constants from the
infinite domain). In contrast to [3], what we show in this case is not
that the concrete transition system is finite (it never is), but that it is
bisimilar to a finite abstract transition system. This leads to a proof
technique that is interesting in its own right, being based on novel
notions of bisimilarity for the considered µ-calculus variants. The
reason standard bisimilarity is insufficient is that our logics µLP
and µLA allow first-order quantification across states, so bisimilar-
ity must respect the connection between values appearing both in
the current and successor state. Our decision to include first-order
quantification across states was motivated by the need to express
liveness properties that refer to the same data at various points in
time (e.g. “if student x is enrolled now and continues to be enrolled
in the future, then x will eventually graduate”).

Inspired by [3], [5] builds a similar framework where actions
are specified via pre- and post-conditions given as FO formulae
interpreted over active domains. The verification logic considered
is a first-order variant of CTL with no quantification across states.
Thus, it inherits the limitations discussed above on expressibility of
liveness properties. In addition, the limited temporal expressivity
of CTL precludes expressing certain desirable properties such
as fairness. [5] shows that under the assumption that each state
has a bounded active domain, one can construct an abstract finite
transition system that can be checked instead of the original
concrete transition system, which is infinite-state in general. The
approach is similar to the one we developed independently for
nondeterministic services, however without quantification across
states, standard bisimilarity suffices. As opposed to our work, the
decidability of checking state-boundedness is not investigated in
[5], and no sufficient syntactic conditions are proposed.
Linear time. Publication [21] considers an artifact model that
has the same expressive capabilities as an unrestricted class of
DCDS in which the infinite domain is equipped with a dense
linear order, which can be mentioned in pre-, post-conditions, and
properties. Runs can receive unbounded external input from an
infinite domain, and this input corresponds to nondeterministic
services in a DCDS. Verification is decidable even if the input
accumulates in states, and runs are neither run-bounded, nor
state-bounded. However, this expressive power requires restrictions
that render the result incomparable to ours. First, the property
language is a first-order extension of LTL, and it is shown that
extension to branching time (CTL∗) leads to undecidability.
Second, the formulae in pre-, post-conditions and properties access
read-only and read-write database relations differently, querying
the latter only in limited fashion. In essence, data can be arbitrarily
accumulated in read-write relations, but these can be queried only
by checking that they contain a given tuple of constants. It is shown
that this restriction is tight, as even the ability to check emptiness
of a read-write relation leads to undecidability. In addition, no
integrity constraints are supported as it is shown that allowing
a single functional dependency leads to undecidability. [19]
disallows read-write relations entirely (only the artifact variables
are writable), but this allows the extension of the decidability result
to integrity constraints expressed as embedded dependencies with
terminating chase, and to any decidable arithmetic. Again the result
is incomparable to ours, as our modeling needs include read-write
relations and their unrestricted querying.

Infinite-state systems. DCDSs are a particular case of infinite-
state systems. Research on automatic verification of infinite-state
systems has also focused on extending classical model checking
techniques (e.g., see [14] for a survey). However, in much of this
work the emphasis is on studying recursive control rather than data,



DETERMINISTIC SERVICES NONDETERMINISTIC SERVICES

µL µLA µLP µL µLA µLP
unrestricted U ← U ← U 1 unrestricted U ← U ← U 1

↑ ↑
bounded-run ? 2 D 3→ D bounded-state U ← U D 3

1 The result is even stronger: it holds for propositional LTL.
2 Decidability cannot be established via a faithful finite-state abstraction.
3 Decidability is obtained via reduction to finite-state model checking.

Table 1: Summary of our (un)decidability results.

which is either ignored or finitely abstracted. More recent work
has been focusing specifically on data as a source of infinity. This
includes augmenting recursive procedures with integer parameters
[10], rewriting systems with data [9], Petri nets with data associated
to tokens [28], automata and logics over infinite alphabets [12,
11, 31, 20, 27, 8, 9], and temporal logics manipulating data [20].
However, the restricted use of data and the particular properties
verified have limited applicability to the business process setting we
target with the DCDS model.

8. CONCLUSIONS
We summarize our results in Table 1 (arrows denote implications

between results). We note that exhibiting a finite faithful abstraction
of a concrete transition system is more than a means towards show-
ing decidability, being a desirable goal in its own right as the most
promising avenue towards practical implementation. Notice that
we list as open the verification of µL properties on bounded-run
DCDSs with deterministic services, but recall from Section 4.2 that
in this case there exists no faithful finite-state abstract transition
system.

We believe that DCDSs provide a natural and expressive model
for business processes powered by an underlying database, and
thus are an ideal vehicle for foundational research with potential to
transfer to alternative models.

Note that the design space for FO extensions of propositional
µ-calculus is broad, and notoriously contains bounded-state settings
for which satisfiability of even modest extensions of propositional
LTL is highly undecidable (e.g. LTL with the freeze quantifier over
infinite data words [20]). In light of this, our decidability results
come as a pleasant surprise, and the two µL variants studied here,
paired with the respective DCDS classes, strike a fortuitous balance
between expressivity and verification feasibility.
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APPENDIX
A. VERIFICATION

In this appendix we give the bisimulation invariance results for
µLA and µLP .

A.1 History Preserving Mu-Calculus
We prove history preserving bisimulation invariance for µLA.

We adopt a two-step approach. We first prove the result for the logic
LA, obtained from µLA dropping the predicate variables and the
fixpoint constructs. Such a logic corresponds to a first-order variant
of the Hennessy Milner logic; note that the semantics of this logic is
completely independent from the second-order valuation. We then
extend the result to the whole µLA by dealing with fixpoints.

LEMMA A.1. Consider two transition systems Υ1 = 〈∆1,R,
Σ1,s01,db1,⇒1〉 and Υ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉, a partial
bijection h between ∆1 and ∆2 and two states s1 ∈ Σ1 and s2 ∈
Σ2 such that s1 ≈h s2. Then for every (open) formula Φ of LA, and
every valuations v1 and v2 that assign to each of its free variables a
value d1 ∈ ADOM(db1(s1)) and d2 ∈ ADOM(db2(s2)), such that
d2 = h(d1), we have that

Υ1, s1 |= Φv1 if and only if Υ2, s2 |= Φv2.

PROOF. We proceed by induction on the structure of Φ.

Local first-order queries (base case) Consider Φ = Q, where Q
is an (open) FO query. Since h induces an isomorphism be-
tween db(s1) and db(s2), for every valuations v1 and v2 that
assign to each free variable ofQ a value d1 ∈ ADOM(db1(s1))
and d2 ∈ ADOM(db2(s2)), such that d2 = h(d1), we have
that ans (Qv1, db(s1)) ≡ ans (Qv2, db(s2)).

Negation By induction hypothesis, for every (open) formula Φ
and every valuations v1 and v2 that assign to each of its
free variables a value d1 ∈ ADOM(db1(s1)) and d2 ∈
ADOM(db2(s2)), such that d2 = h(d1), we have that
Υ1, s1 |= Φv1 if and only if Υ2, s2 |= Φv2. By definition,
Υ1, s1 |= (¬Φ)v1 if and only if Υ1, s1 6|= Φv1, and, by induc-
tion hypothesis, Υ1, s1 6|= Φv1 if and only if Υ2, s2 6|= Φv2,
which corresponds to Υ2, s2 |= (¬Φ)v2.

Conjunction By induction hypothesis, for every (open) formula
Φ and every valuations v1 and v2 that assign to each of
its free variables a value d1 ∈ ADOM(db1(s1)) and d2 ∈
ADOM(db2(s2)), such that d2 = h(d1), we have that
Υ1, s1 |= Φiv1 if and only if Υ2, s2 |= Φiv2, with i ∈ {1, 2}.
Hence, Υ1, s1 |= Φ1v1 and Υ1, s1 |= Φ2v1 if and only
if Υ2, s2 |= Φ1v2 and Υ2, s2 |= Φ2v2. By definition,
we therefore have Υ1, s1 |= (Φ1 ∧ Φ2)v1 if and only if
Υ2, s2 |= (Φ1 ∧ Φ2)v2.

Modal operator Consider two states s1 ∈ Σ1 and s2 ∈ Σ2 such
that s1 ≈h s2. By definition, given a valuation v1 that as-
signs to each free variable of Φ a value d1 ∈ ADOM(db1(s1)),
we have that Υ1, s1 |= (〈−〉Φ)v1 if there exists a transition
s1 ⇒1 s

′
1 such that Υ1, s

′
1 |= Φv1. Since s1 ≈h s2, there

exists a transition s2 ⇒2 s′2 such that s′1 ≈h′ s′2, where
h′ extends h. By induction hypothesis, for every valuation
v2 that assigns to each free variable x of Φ a value d2 ∈
ADOM(db2(s′2)), such that d2 = h′(d1) with x/d1 ∈ v1, we
have that Υ1, s

′
1 |= Φv1 if and only if Υ2, s

′
2 |= Φv2. Since

h′ is an extension of h, and v1 assigns to each free variable
of Φ a value d1 ∈ ADOM(db1(s1)) ⊆ DOM(h), we observe
that for every pair of assignments x/d1 ∈ v1 and x/d2 ∈ v2,
it holds that d2 = h′(d1) = h(d1). Furthermore, since h in-
duces an isomorphism between db1(s1) and db2(s2), for each



assignment x/d2 ∈ v2, we have that d2 ∈ ADOM(db2(s2)).
Considering that s2 ⇒2 s′2, by definition we therefore get
Υ2, s2 |= (〈−〉Φ)v2.
The other direction can be proven in a symmetric way.

Quantification Consider two states s1 ∈ Σ1 and s2 ∈ Σ2 such that
s1 ≈h s2. By definition, given a formula Φ and a valuation v′1
that assigns to each free variable of Φ a value d1 ∈ DOM(h),
we have that Υ1, s1 |= (∃x.LIVE(x) ∧ Φ)v′1 if and only if
there exists d ∈ ADOM(db1(s1)) such that Υ1, s1 |= Φv1,
where v1 = v′1[x/d]. By induction hypothesis, for every
valuation v2 that assigns to each free variable y of Φ a value
d2 ∈ ADOM(db2(s2)), such that d2 = h(d1) with y/d1 ∈
v1, we have that Υ1, s1 |= Φv1 if and only if Υ2, s2 |=
Φv2. More specifically, the structure of v2 is v2 = v′2[x/d′],
where d′ = h(d) ∈ ADOM(db2(s2)) because h induces an
isomorphism between db1(s1) and db2(s2). Hence, we get
Υ2, s2 |= (∃x.LIVE(x) ∧ Φ)v′2.
The other direction can be proven in a symmetric way.

PROOF OF THEOREM 3.1. We prove the theorem in two steps.
First, we show that Lemma A.1 can be extended to the infinitary
version of LA that supports arbitrary countable disjunction. Then,
we recall that fixpoints can be translated into this infinitary logic,
thus guaranteeing invariance for the whole µLA logic.

Let Ψ be a countable ordered set of open LA formulae. Given a
transition system Υ = 〈∆,R,Σ, s0, db,⇒〉, the semantics of

∨
Ψ

is (
∨

Ψ)Υ
v =

⋃
ψ∈Ψ(ψ)Υ

v . Therefore, given a state s of Υ and a
variable valuation v that assigns to each free variable of Ψ a value
d ∈ ADOM(db(s)) , we have Υ, s |= Ψv if and only if Υ, s |= ψv
for some ψ ∈ Ψ. Arbitrary countable conjunction is obtained for
free because of negation.

We show that the invariance result proven in Lemma A.1 trivially
extends to this arbitrary countable disjunction. Lemma A.1 guaran-
tees that invariance is preserved for any finite disjunction. Formally,
let {Φ1, . . . ,Φn} be a finite set of open LA formulae. Consider two
states s1 ∈ Σ1 and s2 ∈ Σ2 such that s1 ≈h s2. Then, for every val-
uations v1 and v2 that assign to each free variable of {Φ1, . . . ,Φn}
a value d1 ∈ ADOM(db1(s1)) and d2 ∈ ADOM(db2(s2)), such that
d2 = h(d1), we have that Υ1, s1 |= (

∨
i∈{1,...,n} Φi)v1 if and only

if Υ2, s2 |= (
∨
i∈{1,...,n} Φi)v2.

Now consider two valuations v′1 and v′2 that assign to each
free variable of

∨
Ψ a value d1 ∈ ADOM(db1(s1)) and d2 ∈

ADOM(db1(s2)), such that d2 = h(d1). By definition, Υ1, s1 |=
(
∨

Ψ)v′1 if and only if there exists ψk ∈ Ψ such that Υ1, s1 |=
ψkv

′
1. The proof of invariance for the infinitary LA logic is then ob-

tained by observing that Υ1, s1 |= (
∨

Ψ)v′1 if and only if Υ1, s1 |=
(
∨
i∈{1,...,k} ψi)v

′
1 if and only if Υ2, s2 |= (

∨
i∈{1,...,k} ψi)v

′
2 if

and only if Υ2, s2 |= (
∨

Ψ)v′2.
In order to extend the result to the whole µLA, we resort to the

well-known result stating that fixpoints of the µ-calculus can be
translated into the infinitary Hennessy Milner logic by iterating over
approximants, where the approximant of index α is denoted by
µαZ.Φ (ναZ.Φ). This is a standard result that also holds for µLA.
In particular, approximants are built as follows:

µ0Z.Φ = false ν0Z.Φ = true

µβ+1Z.Φ = Φ[Z/µβZ.Φ] νβ+1Z.Φ = Φ[Z/νβZ.Φ]

µλZ.Φ =
∨
β<λ

µβZ.Φ νλZ.Φ =
∧
β<λ

νβZ.Φ

where λ is a limit ordinal, and where fixpoints and their approxi-
mants are connected by the following properties: given a transition
system Υ and a state s of Υ

• s ∈ (µZ.Φ)Υ
v,V if and only if there exists an ordinal α such

that s ∈ (µαZ.Φ)Υ
v,V and, for every β < α, it holds that

s 6∈ (µβZ.Φ)Υ
v,V ;

• s 6∈ (νZ.Φ)Υ
v,V if and only if there exists an ordinal α such

that s 6∈ (ναZ.Φ)Υ
v,V and, for every β < α, it holds that

s ∈ (νβZ.Φ)Υ
v,V .

A.2 Persistence Preserving Mu-Calculus
We prove persistence preserving bisimulation invariance for µLP .

To prove the invariance result, we adopt a two-step approach. We
first prove the result for the logic LP , obtained from µLP dropping
the predicate variables and the fixpoint constructs. Such a logic
corresponds to a first-order variant of the Hennessy Milner logic;
note that the semantics of this logic is completely independent from
the second-order valuation. We then extend the result to the whole
µLP by dealing with fixpoints.

LEMMA A.2. Consider two transition systems Υ1 =
〈∆1,R,Σ1, s01, db1,⇒1〉 and Υ2 = 〈∆2,R,Σ2, s02, db2,⇒2〉,
a partial bijection h between ∆1 and ∆2 and two states s1 ∈ Σ1

and s2 ∈ Σ2 such that s1 ∼h s2. Then for every (open) formula Φ
of LP , and every valuations v1 and v2 that assign to each of its free
variables a value d1 ∈ ADOM(db1(s1)) and d2 ∈ ADOM(db2(s2)),
such that d2 = h(d1), we have that

Υ1, s1 |= Φv1 if and only if Υ2, s2 |= Φv2.

PROOF. We proceed by induction on the structure of Φ. In
particular, we discuss the two base cases of 〈−〉(LIVE(x) ∧ Φ) and
[−](LIVE(x) ∧ Φ′) with one variable. For convenience, we rewrite
the latter case to 〈−〉(LIVE(x)→ Φ), where Φ = ¬Φ′. The other
cases are derived, or proven in the same way as done for Lemma
A.1.

Modal operator (conjunction) Consider two states s1 ∈ Σ1 and
s2 ∈ Σ2 such that s1 ∼h s2. Let x be the only free variable
of Φ, and x/d a valuation such that d ∈ ADOM(db1(s1)).
Then, by definition we have that Υ1, s1 |= (〈−〉(LIVE(x) ∧
Φ)[x/d] if there exists a transition s1 ⇒1 s′1 such that
d ∈ ADOM(db1(s′1)) and Υ1, s

′
1 |= Φ[x/d]. Since s1 ∼h s2,

there exists a transition s2 ⇒2 s′2 such that s′1 ∼h′ s′2,
where h′ is compatible with h. By induction hypothesis and
by considering that h′ is an isomorpshim between db1(s′1)
and db2(s′2), we have that Υ1, s

′
1 |= Φ[x/d] if and only if

h′(d) ∈ ADOM(db2(s′2)) and Υ2, s
′
2 |= Φ[x/h′(d)]. Now

we observe that d ∈ ADOM(db1(s1)) ∩ ADOM(db1(s′1)) and
h′ is an extension of h|ADOM(db1(s1))∩ADOM(db1(s′1)). This im-
plies that h′(d) = h(d) ∈ ADOM(db2(s2)), because h is
an isomorphism between db1(s1) and db2(s2). Consider-
ing that s2 ⇒2 s

′
2, by definition we therefore get Υ2, s2 |=

(〈−〉(LIVE(x) ∧ Φ))[x/h(d)].
The other direction can be proven in a symmetric way.

Modal operator (implication) Consider two states s1 ∈ Σ1 and
s2 ∈ Σ2 such that s1 ∼h s2. Let x be the only free variable
of Φ, and x/d a valuation such that d ∈ ADOM(db1(s1)).
Then, by definition we have that Υ1, s1 |= (〈−〉(LIVE(x)→
Φ)[x/d] if there exists a transition s1 ⇒1 s

′
1 such that d 6∈

ADOM(db1(s′1)) or Υ1, s
′
1 |= Φ[x/d]. Since s1 ∼h s2, there

exists a transition s2 ⇒2 s′2 such that s′1 ∼h′ s′2, where
h′ is an extension of h|ADOM(db1(s1))∩ADOM(db1(s′1)) Now we
discuss the two cases in which d 6∈ ADOM(db1(s′1)) and
d ∈ ADOM(db1(s′1)).



• Assume that d 6∈ ADOM(db1(s′1)). Since
s1 ∼h s2, we have that h(d) ∈ ADOM(db2(s2)).
Now, towards contradiction, let us assume that
h(d) ∈ ADOM(db2(s′2)). Hence, we have
h(d) ∈ ADOM(db2(s2)) ∩ ADOM(db2(s′2)). Observe
that h′ is an extension of h|ADOM(db1(s1))∩ADOM(db1(s′1)),
which is equivalent to state that h′−1 is an extension
of h−1|ADOM(db2(s2))∩ADOM(db2(s′2)). This implies that
h−1(d) = h′−1(d) = d. Since h′ is an isomorphism be-
tween db1(s′1) and db2(s′2), then d ∈ ADOM(db1(s′1)),
and this contradicts the hypothesis.
• Assume that d ∈ ADOM(db1(s′1)). Then we can pro-

ceed following the line of reasoning used for the case of
〈−〉(LIVE(x) ∧ Φ).

The other direction can be proven in a symmetric way.

PROOF OF THEOREM 3.2. The proof is analogous to that of
Theorem 3.1, but now using Lemma A.2.

B. DETERMINISTIC SERVICES

B.2 Run-Bounded Systems
PROOF OF THEOREM 4.1. The proof is by reduction from the

halting problem. Given a deterministic Turing Machine TM, we
define DCDS S with deterministic services and propositional safety
property Φ, such that TM halts if and only if ΥS |= Φ.

Intuitively, every run of ΥS simulates a run of TM. Each state s
of ΥS models a configuration of TM. A transition in ΥS models a
transition in TM. We give the construction next.

The DCDS. To model a configuration of TM in a relation of
the DCDS state, we model the visited tape segment as a graph
whose nodes are cell identifiers, and whose edges form a linear
path. The edge relation is called right , with the intended meaning
that right(x, y) declares cell y to be the right neighbor of cell x
on the tape. We also introduce a relation sym , with sym(c, s)
intended to model that cell c holds symbol s. Unary relation head
models the head position: head(c) means that the head points to
cell c. Finally, unary relation state keeps the state of TM, and
a boolean predicate halted is meant to detect that TM has halted.
In summary, the data layer D = 〈C,R, E , I0〉 of S contains the
schema R = {right/2, sym/2, head/1, halted/0}. We detail E
and I0 after sketching the process layer.

There is a single action α, in charge of simulating the transitions
of TM. It has no parameters, and its guard is always true: true 7→ α.
α contains the following effects.
ecopy simply copies the part of the tape that stays unchanged in

the transition because the head doesn’t point to it:

ecopy : right(X,Y ) ∧ right(Y,Z)∧
sym(X,SX) ∧ sym(Y, SY ) ∧ sym(Z, SZ)∧
¬(head(X) ∧ head(Y ) ∧ head(Z))
 
{right(X,Y ), right(Y,Z),
sym(X,SX), sym(Y, SY ), sym(Z, SZ)}

In addition, we add effects for each entry of TM’s transition
relation δ.

For instance, if (p, b,→) ∈ δ(s, a) (i.e. δ prescribes that in state
s, if the head points to a cell containing symbol a, TM changes state
to p, the cell’s symbol is overwritten with b, and the head moves to
the right), we introduce two effects. One for the case when the tape
needs no extension to the right,

enoexts,a,p,b,→ : right(X,Y ) ∧ sym(X, a) ∧ sym(Y, SY ) ∧ SY 6= ω∧
head(X) ∧ state(s)
 
{right(X,Y ), sym(X, b), sym(Y, SY ),
head(Y ), state(p)},

and one when it does:

eexts,a,p,b,→ : right(X,Y ) ∧ sym(X, a) ∧ sym(Y, ω)∧
head(X) ∧ state(s)
 
{right(X,Y ), right(Y,newCell(Y )),
sym(X, b), sym(Y,⊥), sym(newCell(Y ), ω),
head(Y ), state(p)}.

To distinguish among constants and variables in the above effect
specifications, we use capital letters for the latter and lower-case
letters for the former. Notice that the extension is performed by
calling service newCell , which is meant to return a fresh cell id
(we show below how to ensure this). Also notice the use of special
symbol ω, which is reserved for labeling the end of the tape segment.
Finally, special symbol⊥ is by convention used to initialize the tape
prior to starting the run.

We are not quite done, as we still need to ensure that right induces
a linear order on the collection of cell identifiers generated during
the run. Notice that this cannot be achieved exclusively by declaring
FO constraints in right , as linear orders are not FO-axiomatizable.
The solution must exploit the interplay between constraints on right
and the way ΥS transitions.

Observe that, by definition of the effects that extend right (e.g.
eexts,a,p,b,→ above), at each step the current right end of the tape
segment obtains at most one new successor. However, if the call of
service newCell returns a cell id that already appears in the tape
segment, then there can be some cell with several predecessors
according to right . We rule out this case by declaring the second
component of right to be a key. It follows that right must be either
(i) a linear path (possibly starting from a source node that has a
self-loop), or (ii) it must contain a simple cycle involving more than
one cell id. The simple cycle is created at the step when newCell
returns the id of the leftmost cell.

We wish to force case (i). To rule out case (ii), we proceed as
follows: we initialize right to contain a source node 0 that can
never be a cell id because it cannot be returned by newCell without
violating the key constraint on right . To this end, we initialize I0 to

• rightI0 = {(0, 0), (0, 1), (1, 2)},
• symI0 = {(1, $), (2, ω)},
• headI0 = {2},
• stateI0 = {s0},
• haltedI0 = {},

where s0 is the initial state of TM.
Notice that, if we disregard cell 0, I0 contains the representation

of an empty tape (symbol $ labels the left end, symbol ω the right
end). Also notice that rightI0 has type (i). An easy induction shows
that every run prefix must also construct a right relation of type (i),
since any attempt to extend right with an edge back to one of its
existing nodes violates the key constraint.

Because symbol $ denotes the left end of the tape, it also follows
easily from the behavior of TM that during the run, the head will
never reach the special cell 0, so head can only take values from
the suffix of right starting at cell 1, which is a true linear path.

Now assume without loss of generality that the TM is normalized
to enter a particular sink state h when it halts. We add effect eh,
which detects the halting state and sets the boolean predicate halted .



Observe that for the cases when the head stays in place or moves
left, no tape extension is required, so each such entry in the transition
relation corresponds to a single effect.

The property. We define the propositional safety property Φ as

Φ : G¬halted .

It is easy to see that the runs of ΥS correspond ono-to-one to the
runs of TM. Since Φ is a linear-time property, this run correspon-
dence suffices to guarantee that ΥS |= Φ if and only if TM does not
halt.

PROOF OF THEOREM 4.2. The proof is directly obtained from
Theorem 4.4, noticing that model checking of propositional
µ-calculus formulae over finite transition systems is decidable
[22].

Proof of Theorem 4.3. In view of proving this result, we first
introduce a key lemma. We say that a transition system is adom-
inflationary if the active domain of every state is included in its suc-
cessor’s active domain. We say that a DCDS S is adom-inflationary
if ΥS is adom-inflationary. We can show that, for adom-inflationary
transition systems, persistence-preserving bisimilarity coincides
with history-preserving bisimilarity.

LEMMA B.1. Consider two adom-inflationary DCDSs with non-
deterministic services, S1,S2. Then ΥS1 ∼ ΥS2 if and only if
ΥS1 ≈ ΥS2 .

PROOF OF LEMMA B.1. A comparison the two notions of
bisimilarity reveals that the difference is in the local condition,
as follows.

Notice first that what both bisimilarity notions have in common
is that they mention bisimilar states s1 and s2 and witness isomor-
phism h, and their successors s1 =⇒ s′1, s1 =⇒ s′2 such that
s′1 and s′2 are bisimilar as witnessed by isomorphism h′. The key
difference lies in how h′ and h are related. In the history-preserving
flavor, h′ must extend h, while in the persistence-preserving flavor
h′ must only extend h |ADOM(s1)∩ADOM(s′1).

Clearly, history-preserving bisimilarity implies persistence-
preserving bisimilarity. However, notice that if the transi-
tion systems are adom-inflationary, then the converse also
holds. Indeed, assume s1 ∼h s2. By definition, h′ extends
h |ADOM(s1)∩ADOM(s′1). But because of adom-inflation, ADOM(s1) ⊆
ADOM(s′1) and hence ADOM(s1)∩ADOM(s′1) = ADOM(s1), yield-
ing h |ADOM(s1)∩ADOM(s′1)= h. Hence, h′ extends h, which is the
condition for history-preserving bisimilarity.

PROOF OF THEOREM 4.3. We prove the result by exploiting the
reduction postulated by Theorem 6.1.

Starting from run-bounded DCDS D with deterministic ser-
vices, the reduction gives us state-bounded DCDS N with non-
deterministic services. Moreover, the two transition systems have
the same domains, and the projection of ΥN on the schema of D
coincides with ΥD (Theorem 6.1(ii)). In more detail, denoting the
schema of D with RD and the schema of N with RN , there is a
bijection β between the states of ΥD and the states of ΥN , such
that s = β(s) |RD . Clearly, this implies that ΥD and ΥN satisfy
the same µL formulae.

However, a weaker statement suffices for our purpose. By def-
inition of history-preserving bisimilarity, Theorem 6.1(ii) implies
that

(1) ΥD ≈ ΥN .

We recall that on the way to proving Theorem 5.3, it is shown in
Theorem 5.4 that since N is state-bounded, we can construct using

algorithm RCYCL a finite-state abstract transition system F such
that ΥN ∼ ΥF (F is an eventually recycling pruning of ΥN ).

An inspection of the reduction in Theorem 6.1 reveals that ΥN is
adom-inflationary. But since ΥN ∼ ΥF , it follows that ΥF is adom-
inflationary as well (by the local condition of persistence-preserving
bisimilarity). Thus Lemma B.1 applies, yielding

(2) ΥN ≈ ΥF .

By (1) and (2), and by transitivity of ≈, we obtain that ΥD ≈
ΥF .

PROOF OF THEOREM 4.4. Theorem 4.3 implies that, given a
DCDS S, there exists a finite-state transition system ΘS =
〈U,R,Σa, sa0 , dba,=⇒a〉 that is history preserving bisimilar to
the concrete transition system ΥS = 〈U,R,Σ, s0, db,=⇒〉. Thus,
it is possible to use ΘS in place of ΥS for verification. In partic-
ular, given a µLA property Φ, the verification problem is reduced
to ΘS |= Φ. Let ADOM(ΘS) =

⋃
si∈Σ ADOM(db(si)). If ΘS is

finite-state, then there exists a bound b such that |ADOM(ΘS)| < b.
Consequently, it is possible to transform Φ into an equivalent finite
propositional µ-calculus formula PROP(Φ) as follows:

PROP(Q) = Q

PROP(¬Ψ) = ¬PROP(Ψ)

PROP(Ψ1 ∧Ψ2) = PROP(Ψ1) ∧ PROP(Ψ2)

PROP(〈−〉Ψ) = 〈−〉PROP(Ψ)

PROP(Z) = Z

PROP(µZ.Ψ) = µZ.PROP(Ψ)

PROP(∃x.LIVE(x) ∧Ψ(x)) =
∨

ti∈ADOM(S)

LIVE(ti) ∧ PROP(Ψ(ti))

Clearly, ΘS |= Φ if and only if ΘS |= PROP(Φ). The proof is then
obtained by observing that verification of µ-calculus formulae over
finite transition systems is decidable [22].

PROOF OF THEOREM 4.5. The Theorem is proved by exhibit-
ing, for every n, a µL property that requires the existence of at least
n objects in the transition system.

Let S = 〈D,P〉 be a DCDS with data layer D = 〈C,R, ∅, I0〉
and process layer P = 〈F ,A, %〉, where F = {f/1}, R =
{R/1, Q/1}, I0 = {R(a)}, % = {R(x) 7→ α(x)} and A =
{α(p)}, where α(p) : {true  {Q(f(p))}}. The concrete transi-
tion system ΥS has the following shape:
• The initial state is s0 = 〈{R(a)}, ∅〉;
• s0 is connected to infinitely many successor states, each

one storing into Q a distinct value d resulting from the ser-
vice call f(a); each such state has then the form sd =
〈{Q(d)}, {f(a) 7→ d}〉;
• each sd has no outgoing edge, because there is no applicable

action in sd.
S is clearly run-bounded, in particular by a bound b = 3.

Let us now consider the following µL property without fixpoints:

Φn = ∃x1, . . . , xn.
∧
i 6=j

xi 6= xj ∧
∧

i∈{1,...,n}

〈−〉Q(xi)

The property states that there are n distinct values, each of which
is stored into relation Q in one of the successors of the initial state.
It is easy to see that ΥS |= Φn for every n. On the other hand,
for every finite state abstraction ΘS with k successors of the initial
state, we have that ΘS 6|= Φk+1.

B.3 Weakly Acyclic DCDSs



PROOF OF THEOREM 4.6. The proof is by reduction from the
halting problem. We reuse without change the reduction in the proof
of Theorem 4.1. This reduction yields for any Turing Machine TM
a DCDS with deterministic services S, such that S simulates TM’s
computation. That is, the runs of TM correspond one-to-one to the
runs of ΥS . It follows immediately that TM halts if and only if S is
run-bounded.

PROOF OF LEMMA 4.1. Let S = 〈D,P〉 be a DCDS with
data layer D = 〈C,R, E , I0〉 and process layer P = 〈F ,A, %〉.
Consider now ΥS = 〈C,R,Σ, s0, db,=⇒〉 and ΥS+ =
〈C,R,Σ+, s0, db,=⇒+〉. Since S+ is weakly acyclic by hypothe-
sis, to prove that run boundedness of ΥS+ implies run boundedness
of ΥS , we show the following stronger result: for every run τ in
ΥS , there exists a run τ+ in ΥS

+ such that, for all pairs of states
τ(i) = 〈Ii,Mi〉 and τ+(i) = 〈I+

i ,M
+
i 〉, we have

1. M+
i extendsMi;

2. Ii ⊆ I+
i ;

3. for the mappings mentioned in M+
i but not in Mi, M+

i

“agrees” with the maps contained in the suffix of τ [i], i.e.,

M+
i |Ci = (

⋃
j>i

Mj)|Ci

where Ci = DOM(M+
i ) ∩

⋃
j>i DOM(Mj).

We prove this by induction on the length of τ :

(base case) The initial state of both runs is τ(0) = τ+(0) =
〈I0, ∅〉, and therefore all the three conditions are trivially sat-
isfied.

(inductive step) Consider a pair of corresponding states τ(i) and
τ+(i), with i > 0. By definition, τ(i) =⇒ τ(i + 1) means
that there exists an action α ∈ A and a substitution σ for
the parameters of α such that 〈τ(i), ασ, τ(i+ 1)〉 ∈ EXECS .
We first observe that α+ can be executed in τ+(i), since P+

does not impose any restriction on the executability of actions.
Let Next+ = {s+ ∈ Σ+ | 〈τ+(i), α, s+〉 ∈ EXECS+} be
the set of successor states of τ+(i) that are obtained from the
application of α+.
We now show that there exists s ∈ Next+ that satisfies the
three claims above. The proof is then obtained by simply
imposing τ+(i+ 1) = s.

1. By definition, DOM(Mi+1) = DOM(Mi) ∪
CALLS(DO(Ii, ασ)), and, for every sk =
〈M+

k , I
+
k 〉 ∈ Next+, we have DOM(M+

k ) =
DOM(M+

i ) ∪ CALLS(DO(I+
i , α

+σ)). Consider each
effect specification q+

j ∧ Qj  Ej ∈ EFFECT(α). By
definition of q+

j and Q−j , θ ∈ ans ((q+
j ∧ Q

+
j )σ, Ii)

implies θ ∈ ans (q+
j σ, Ii), which in turn im-

plies θ ∈ ans (q+
j σ, I

+
i ), because Ii ⊆ I+

i

by induction hypothesis. Consequently, we
have DO(Ii, ασ) ⊆ DO(I+

i , α
+σ), and hence

CALLS(DO(Ii, ασ)) ⊆ CALLS(DO(I+
i , α

+σ)). Since
DOM(Mi) ⊆ DOM(M+

i ) by induction hypothesis, then
we obtain DOM(Mi+1) ⊆ DOM(M+

k ). Since S+ has
no equality constraint, the states in Next+ cover every
possible result obtained by calling the service call in
M+

k \ M
+
i , including those states for which M+

k is
an extension ofMi+1. We use Next+ to denote such
states.

2. By definition, for each state sk = 〈M+
k , I

+
k 〉 ∈

Next+, we have that M+
k extends Mi+1. Therefore,

since DO(Ii, ασ) ⊆ DO(I+
i , α

+σ), we have Ii+1 =
Mi+1(DO(Ii, ασ)) ⊆ I+

k =M+
k (DO(I+

i , α
+σ)).

3. Since S+ has no equality constraints, we observe that the
states in Next+ cover all possible values for the service
calls that are not mentioned inMi+1. Therefore, there
must exist at least one state s ∈ Next+ that satisfies the
third claim. In other words, by imposing τ+(i+ 1) = s,
we have

M+
i+1|Ci+1 = (

⋃
j>i+1

Mj)|Ci+1

PROOF OF THEOREM 4.7. Let S = 〈D,P〉 be a DCDS with
data layerD = 〈C,R, E , I0〉 and process layer P = 〈F ,A, %〉. We
consider the positive approximate S+, showing that if the the de-
pendency graph G = 〈N,E〉 of S (which corresponds by definition
to the one of S+) is weakly acyclic, then S+ is run-bounded. The
complete proof is then directly obtain by appealing to Lemma 4.1,
which states that if S+ is run-bounded, then S+ is run-bounded as
well.

To prove that weak acyclicity of S implies that S+ is run-bounded,
we exploit the connection with the chase of a set of tuple generating
dependencies (TGDs) in data exchange. In particular, we resort
to the proof given in [23], Theorem 3.9. For every node p ∈ N ,
we consider an incoming path to be any (finite or infinite) path
ending in p. For simplicity, we say that a value appears in position
p = 〈Rk, j〉 ∈ N if it appears in the j-th component of an Rk
tuple. We define the rank of p, denoted rank(p), as the maximum
number of special edges on any such incoming path. Since S+

is weakly acyclic by hypothesis, G does not contain cycles going
through special edges, and therefore rank(p) is finite. Let r be the
maximum among rank(pi) over all nodes. We observe that r ≤ |N |;
indeed no path can lead to the same node twice using special edges,
otherwise G would contain a cycle going through special edges,
thus breaking the weak acyclicity hypothesis. Notice also that |N |
is a constant value, because it is obtained from R, which is fixed.
We now partition the nodes inN according to their rank, obtaining a
set of sets {N0, N1, . . . , Nr}, where Ni is the set of all nodes with
rank i. The proof is then a natural consequence of the following
claim:

Claim. Consider a trace τ in ΥS+ . For every i ∈
{1, . . . , r}, the total number of distinct values occurring
in the databases of τ inside position p ∈ Ni is bounded
by a polynomial Pi(|ADOM(I0)|).

We prove the claim by induction on i:

(Base case) Consider p ∈ N0. By definition, p has no incoming
path containing special edges. Therefore, no new values are
stored in p along the run: p can just store values that are part
of the initial database I0. This holds for all nodes in N0, and
hence we can fix P0(|ADOM(I0)|) = |ADOM(I0)|.

(Inductive step) Consider p ∈ Ni, with i ∈ {1, . . . , r}. The first
kind of values that may be stored inside p are those values that
were stored inside the component itself in I0. The number of
such values is at most |ADOM(I0)|. In addition, a value may
be stored in p for two reasons: either it is copied from some
other position p′ ∈ Nj with i 6= j, or it is generated by means
of a service call.
We first determine how many fresh values can be generated by
service calls. The possibility of generating and storing a new
value in p as a result of an action is reflected by the presence of
special edges. By definition, any special edge entering p must
start from a node p′ ∈ N0∪ . . .∪Ni−1. By induction hypothe-
sis, the number of distinct values that can exist in p′ is bounded



by H(|ADOM(I0)|) =
∑
j∈{0,...,i−1} Pj(|ADOM(I0)|). Let

ba be the maximum number of special edges that enter a po-
sition, over all positions in the schema; ba bounds the arity
taken by service calls in F . Then for every choice of ba values
in N0 ∪ . . .∪Ni−1 (one for each special edge that can enter a
position) and for every action inA+, the number of new values
generated at position p is bounded by tf ·H(n)ba , where tf
is the total number of facts mentioned in the effects of actions
that belong to A+. Notice that this number does not depend
on the data in I0. By considering all positions in Ni, the total
number of values that can be generated is then bounded by
G(|ADOM(I0)|) = |Ni| · tf ·H(|ADOM(I0)|)ba . Obviously,
G(·) is a polynomial, because tf and ba are values extracted
from the schemaR of the DCDS, which is fixed.
We count next the number of distinct values that can be copied
to positions of Ni from positions of Nj , with j 6= i. A copy is
represented in the graph as a normal edge going from a node
in Nj to a node in Ni, with j 6= i. We observe first that such
normal edges can start only from nodes inN0∪. . .∪Ni−1, that
is, they cannot start from nodes in Nj with j > i. We prove
this by contradiction. Assume that there exists 〈p′, p, false〉 ∈
E, such that p ∈ Ni and p′ ∈ Nj with j > i. In this case,
the rank of p would be j > i, which contradicts the fact that
p ∈ Ni. As a consequence, the number of distinct values
that can be copied to positions in Ni is bounded by the total
number of values in N0 ∪ . . . ∪ Ni−1, which corresponds
to H(|ADOM(I0)|) from our previous consideration. Putting
it all together, we define Pi(|ADOM(I0)|) = |ADOM(I0)| +
G(|ADOM(I0)|) + H(|ADOM(I0)|). Pi(·) is a polynomial,
and therefore the claim is proven.

In the above claim, i is bounded by the maximum rank r, which is
a constant. Hence, there exists a fixed polynomial P (·) such that
the number of distinct values that can exist in the active domains
of the run τ is bounded by P (|ADOM(I0)|). Technically, given
ΥS+ = 〈C,R,Σ, s0, db,=⇒〉, we have:

|
⋃

s state of τ

db(s)| < P (|ADOM(I0)|)

which attests that τ is (data) bounded, and consequently that S is
run-bounded.

C. NONDETERMINISTIC SERVICES

C.2 State-bounded Systems
PROOF OF THEOREM 5.1. We reuse the proof of Theorem 4.1.

Recall that the reduction in this proof constructs for every Turing
Machine TM a DCDS with deterministic services S that simluates
the computation of TM. It also constructs a propositional safety
property Φ such that ΥS |= Φ if and only if TM halts.

What we need here is a reduction to a DCDS with nondeterminis-
tic services. However, we recall from the proof of Theorem 4.1 that
the only service in the process layer, service newCell , is guaranteed
to be called only with distinct arguments across distinct transitions,
and so its behavior is unaffected by the choice of deterministic ver-
sus nondeterministic semantics. Therefore, the reduction applies
unchanged to DCDS with nondeterministic services.

PROOF OF THEOREM 5.2. We prove a stronger result, namely
for linear-time µLA sentences. Such sentences can be written using
LTL syntax.

We reduce from the problem of satisfiability of LTL with freeze
quantifier over infinite data words, known to be highly undecidable

(Σ1
1-hard) [20].

Infinite data words [20]. Let Σ be a finite alphabet of labels and
D an infinite set of data values. An infinite data word w = {wi} is
an infinite sequence over Σ×D, i.e., each wi is of the form (ai, di)
with ai ∈ Σ and di ∈ D.

LTL with freeze quantifier (LTL↓). This logic operates over
infinite data words, seen as runs. It extends propositional LTL with
a finite number of registers, which can record the data value at the
current step of the run (position in the data word), and recall it at
subsequent steps. The operation of recording the data value at the
current position into register i is denoted with ↓i. ↑i denotes the
boolean comparison of the data value at the current position with
the value stored in register i.

As an example, consider the LTL↓ sentence

ϕex =↓1 X(G(a =⇒ ¬ ↑1))

over alphabet {a, b}, which states that the data value assigned to
each label a at positions greater than one is different from the data
value at the first position of the data word. Notice that the data
value at the first position is recorded in register 1 by operation ↓1,
and it is compared to subsequent data values by ↑1.

The DCDS construction. Given a finite alphabet Σ =
{σi}i∈{1,...,n}, we build a DCDS S = 〈DΣ,PΣ〉 with nondeter-
ministic services, such that each run of ΥS represents an infinite
data word over Σ. In particular, each state in the run holds the label
and data value for a single position in the data word. Moreover,
given an LTL↓ sentence ϕ over Σ, we construct a µLA formula Φ,
such ΥS |= Φ if and only if ϕ is unsatisfiable.

The idea is to model the registers with existentially quantified
variables, which µLA allows us to introduce at any given point in
the run and use subsequently, even if in between their binding does
not persist in the run.

More precisely, we define the data layer DΣ of S as DΣ =
〈C,R, ∅, I0〉, where C = Σ ∪ {0}, R = {LABEL/1, DATUM/1},
and I0 = ∅. Intuitively, LABEL stores the label and DATUM the
data value. We then define the process layer PΣ of S as PΣ =
〈F ,AΣ, %Σ〉, where:
• F = {f/0}.
• For each 1 ∈ {1, . . . , n}, %Σ contains an action αi with no

parameters and no guard (true 7→ αi).
• Each αi ∈ AΣ contains a single effect ei, which creates the

position of a data word corresponding to label σi ∈ Σ:

ei : true  LABEL(σi) ∧ DATUM(f())

The service call f() is used to get an arbitrary data value from the
domain during the action execution. It is nondeterministic, and will
therefore return possibly distinct values across the run.

Since actions are always executable, at each step of a run all of
them qualify, and one is nondeterministically chosen. In this way,
the collection of all runs corresponds to all possible infinite data
words. Observe that S is state-bounded, as each state contains just
one label and one data value.

The property. We now define the property. For simplicity of
presentation, we show it using an LTL-based syntax (branching is
irrelevant here), though it is clearly expressible in µLA.

We obtain ϕ′ from ϕ by:

1. replacing each freeze quantifier ↓n with ∃xn.DATUM(xn), and

2. replacing each occurrence of ↑n with DATUM(xn), and



3. replacing each proposition σ ∈ Σ with LABEL(σ).

Now let Φ := ¬ϕ′.
We illustrate the rewrite on property ϕex above, obtaining

ϕ′ex := ∃x1DATUM(x1)∧XG(LABEL(a) =⇒ ¬DATUM(x1)).

It is easy to see that ϕ is unsatisfiable over infinite data words
using alphabet Σ if and only if ΥS |= Φ.

As a result, µLA verification by state-bounded DCDSs with non-
deterministic services is undecidable.

PROOF OF THEOREM 5.3. See Section C.3.

C.3 Abstract Transition System
We formalize the discussion from Section 5.3. Since DCDSs

with nondeterministic services are modeled by means of transition
systems whose states are constituted by database instances, with a
slight abuse of notation we will directly use the state to refer to its
database instance.

Equality commitments. Consider a set D comprised of constants
and of Skolem terms built by applying a Skolem function to
constant arguments. An equality commitmentH on D is a partition
of D, i.e. a set of disjoint subsets of D, called cells, such that
the union of the cells in H is D. Moreover, each cell contains at
most one constant (but arbitrarily many Skolem terms). For any
e ∈ D, [e]H denotes the cell e belongs to. The intention of the
partition is to model equality and non-equality commitments on the
members of D as follows: for every e1, e2 ∈ D, e1 = e2 if and
only if [e1]H = [e2]H.

Service call evaluations that respect equality commitments. It
is convenient to view the concrete transition system ΥS in the fol-
lowing equivalent formulation, which emphasizes equality commit-
ments on the service calls: successor states are built by picking an
equality commitmentH, and then picking a service call evaluation
that respectsH. More specifically,

• for each state I,

• for each action α,

• for each parameter choice σ, and

• for each equality commitment H involving the service
calls in CALLS(DO(I, α, σ)) and the values in ADOM(I) ∪
ADOM(I0),

ΥS contains possibly infinitely many successor states Inext, each
obtained from DO(I, α, σ) by picking a service call evaluation that
respects H. We say that evaluation θ respects H if for every two
terms t1, t2 ∈ CALLS(DO(I, α, σ))∪ ADOM(I)∪ ADOM(I0), we
have [t1]H = [t2]H if and only if t1θ = t2θ.

Given I, α, σ and H, we denote the set of all legal evaluations
with

EVALSH(I, α, σ) := {θ | θ ∈ EVALSC(I, α, σ), θ respectsH,
DO(I, α, σ)θ |= E}.

Notice that we consider legal only those evaluations that re-
spect the equality commitment H and that, conforming to the
semantics of the concrete transition system, generate successors
which satisfy the constraints E . Finally, notice that H deter-
mines an isomorphism type, as all successors of I generated
by the evaluations in EVALSH(I, α, σ) are isomorphic to each other.

Prunings. We observe that for each state I of the concrete transi-
tion system ΥS , the number of possible choices of α, σ andH are

finite. The sole reason for infinite branching in ΥS are the infinitely
many distinct evaluations that respectH, wheneverH states that at
least one service call result is distinct from ADOM(I)∪ ADOM(I0):
in that case, the service call can be substituted with any value in
C \ (ADOM(I) ∪ ADOM(I0)).

In contrast, we obtain a finitely-branching transition system if
instead of keeping the successors generated by all evaluations in
EVALSH(I, α, σ,H), we keep the successors generated by a finite
subset of these evaluations (if EVALSH(I, α, σ) is non-empty, we
pick a non-empty subset, to ensure that ifH is represented among the
successors of I in ΥS , it is also represented among the successors
of I in ΘS ). We call any transition system obtained in this way
a pruning of ΥS , and we denote with PRUNINGS(ΥS) the set of
all such prunings. By construction, every pruning of ΥS is finitely
branching.

Formally, let S be a DCDS and ΥS its concrete transition system,
with states ΣC and initial state I0. A pruning of ΥS is the restriction
of ΥS to a subset of states ΣP ⊆ ΣC , where ΣP satisfies the
following properties:

(i) I0 ∈ ΣP , and

(ii) for each I ∈ ΣC and each equality commitmentH, ifH is rep-
resented by some successor of I in ΥS , it is also represented
by a successor of I in ΘS . We say that H is represented by
successor I′ of I if there exist α, σ and θ ∈ EVALSH(I, α, σ)
such that 〈I, ασθ, I′〉 ∈ N-EXECS .

(iii) for each I ∈ ΣC , the number of successors of I that are also
in ΣP is finite.

Clearly, a concrete transition system ΥS admits (potentially
infinitely) many prunings, but we show next that they all are
persistence-preserving bisimilar to ΥS (and therefore to each other,
due to transitivity of the ∼ relation):

LEMMA C.1. For every concrete transition system ΥS and prun-
ing ΘS ∈ PRUNINGS(ΥS), we have that ΘS ∼ ΥS .

The result follows from the fact that state isomorphism implies
persistence-preserving bisimilarity. In the following, we denote with
s7→hs

′ the fact that h is an isomorphism from state s to s′.

LEMMA C.2. Consider a concrete transition system ΥS with
initial state s0 and one of its prunings ΘS . Let sC be a state of ΥS
and sP a state of ΘS . If there exists function h such that h fixes
ADOM(s0) and sP 7→hsC , then sP ∼h sC .

PROOF OF LEMMA C.2. Let ΥS = 〈C,R,ΣC , s0, db,=⇒C〉
and ΘS = 〈C,R,ΣP , s0, db,=⇒P 〉. The proof follows from the
following claim:

Claim 1. Given sC ∈ ΣC and sP ∈ ΣP , if sP 7→hsC
and h is the identity on ADOM(I0), then for each s′C
such that sC =⇒C s′C there exist s′P and h′ such that
(i) sP =⇒P s

′
P ;

(ii) h′ is an extension of h |ADOM(sP )∩ADOM(s′
P

);
(iii) h′ is the identity on ADOM(I0);
(iv) s′P 7→h′s

′
C .

Indeed, this claim allows us to exhibit the bisimilarity relation

R = {(x, i, y) | x ∈ ΣP , y ∈ ΣC , x 7→iy}.

R is a bisimilarity relation because it satisfies the forth condition
in the definition of persistence-preserving bisimilarity by Claim
1. It trivially satisfies the back condition because P is constructed
by picking a subset of the states of ΥS . Since by construction
(sP , h, sC) ∈ R, we have sP ∼h sC .



To prove Claim 1, we observe that the successor s′C of sC is
generated by a particular choice of the action α (with condition-
action ruleQ 7→ α), the parameter instantiation σC (such that sC |=
QσC ), the equality commitmentHC on CALLS(DO(sC , α, σC)) ∪
ADOM(sC) ∪ ADOM(I0), and the service call evaluation θC ∈
EVALSHC (sC , α, σC): s′C = DO(sC , α, σC)θC . We show how
to construct σP , HP and θP ∈ EVALSHP (sP , α, σP ) such that
sP |= QσP and s′P = DO(sP , α, σP )θP satisfies the claim.

We let σP = h−1(σC), observing that since Q is a first-order
query, it is preserved under isomorphism, so sC |= QσC implies
sP |= QσP . Thus, σP is a legal parameter instantiation.

To construct HP , θP , we first show that s̄C = DO(sC , α, σC)
and s̄P = DO(sP , α, σP ) are isomorphic, as witnessed by the
function h̄ : ADOM(s̄P )→ ADOM(s̄C) defined as follows:

h̄ := {c 7→ h(c) | c ∈ ADOM(sP ) ∪ ADOM(I0)}
∪ {f(mP , . . . ,mn) 7→ f(h(mP ), . . . , h(mn)) |

f(mP , . . . ,mn) ∈ CALLS(s̄P )}.

From the definition of h̄ and the fact that the service calls are gen-
erated by queries preserved under isomorphism, it follows immedi-
ately that s̄P 7→h̄s̄C . It is easy to see that h̄ is also an isomorphism
between CALLS(DO(sC , α, σC)) ∪ ADOM(sC) ∪ ADOM(I0) and
CALLS(DO(sP , α, σP )) ∪ ADOM(sP ) ∪ ADOM(I0), (i.e. h̄ pre-
serves the structure of Skolem terms), and therefore between the
sets of corresponding equality commitments.

We therefore pickHP = h̄−1(HC). By construction of P , each
equality type is represented among a state’s successors in P , i.e.
there exists θP that respects HP , and there exists s′P ∈ ΣP , such
that s′P = s̄P θP .

The existence of legal choices for α, σP ,HP and θP proves item
(i) of Claim 1, namely that sP =⇒P s

′
P .

To prove the remaining items, we exhibit h′ defined as follows:

h′(t) := h̄(t̄)θC ,

for some choice of t̄ such that t̄θP = t.
To see why h′ is well-defined, observe that, by construction of

the successor states in ΥS , for each t ∈ ADOM(s′P ) there must
exist t̄ ∈ ADOM(s̄P ) such that θP evaluates t̄ to t (t̄θP = t).
Moreover, observe that if there are distinct t̄, ū ∈ ADOM(s̄P ) such
that t = t̄θP = ūθP , it does not matter which one we pick in
the definition of h′, since h̄(t̄)θC = h̄(ū)θC . This is because θP
respects HP , and therefore [t̄]HP = [ū]HP . Since HP 7→h̄HC , it
follows that [h̄(t̄)]HC = [h̄(ū)]HC , and since θC respectsHC , we
have that h̄(t̄)θC = h̄(ū)θC .

Items (ii), (iii) and (iv) of Claim 1 follow by similar reasoning
from the fact that service call evaluations respect the equality com-
mitments, which are isomorphic.

PROOF OF LEMMA C.1. This is a corollary of Lemma C.2.
Indeed, by definition, ΘS ∼ ΥS holds if and only if the initial

state sP0 of ΘS is bisimilar to the initial state sC0 of ΥS , i.e. there
exists isomorphism h such that sP0 ∼h sC0 .

By definition, a concrete transition system shares the initial
state with all its prunings, so sP0 = sC0 . The identity mapping
id witnesses isomorphism: sP0 7→ids

C
0 . By Lemma C.2, we have

sp0 ∼id sC0 .

Eventually Recycling Prunings. While all prunings of a concrete
transition system are finitely-branching, they are not guaranteed to
be finite. The reason is that they don’t necessarily rule out infinitely
long simple runs τ , along which the service calls return in each state
I “fresh” values, i.e. values distinct from all values appearing in
I and its predecessors on τ . Towards addressing this problem, we
focus on prunings in which the evaluations are not chosen arbitrarily.

Given a finite run τ ending in state I of ΥS , an action
α, a parameter choice σ and an equality commitment H on
CALLS(DO(I, α, σ)), we say that evaluation θ ∈ EVALSH(I, α, σ)
recycles from τ if each value in the range of θ occurs in τ . We say
that pruning ΘS is eventually recycling if every (finite or infinite)
path τ in ΘS contains only finitely many states generated by non-
recycling evaluations. Formally, if τ = s0s1 · · · and the service
call evaluation used in si =⇒C si+1 is denoted as θi, then there
are only finitely many indexes j such that θj does not recycle from
τ [j].

LEMMA C.3. Let ΥS be a concrete transition system.

(i) All eventually recycling prunings of ΥS are finite.

(ii) If ΥS is state-bounded, then it has at least one eventually
recycling pruning.

PROOF OF LEMMA C.3. (i): All eventually recycling prunings
are finite.

Let ΘS be an eventually recycling pruning of concrete transition
system ΥS . By virtue of being a pruning, ΘS is finitely branching.
We show next that every simple path in ΘS has finite length, which
together with finite branching implies finiteness by König’s Lemma.

Towards a contradiction, assume that there exists infinite simple
run τ in ΘS . Since ΘS is eventually recycling, there is a finite
prefix of τ such that all values occurring in τ occur also in this
prefix. Therefore, τ contains only finitely many distinct values, and
hence only finitely many distinct states (databases of given schema
over these values). If τ has infinite length, then a pigeonhole
argument contradicts the assumption that τ is simple.

(ii): If ΥS is state-bounded, then it has an eventually recycling
pruning.

Let ΘS be a pruning obtained from ΥS by picking the finite
subset of evaluations SE ⊆ EVALSH(s, α, σ) as follows: if there
is a run τ in ΘS from s0 to s such that EVALSH(s, α, σ) includes
at least one evaluation that recycles from τ , then SE contains
exclusively recycling evaluations (i.e. for each evaluation θ ∈ SE,
there is a run τ from s0 to s in ΘS such that θ recycles from
τ ). Otherwise, SE is an arbitrary finite subset of EVALSH(s, α, σ)).

We prove that pruning ΘS is eventually recycling. By defini-
tion, if ΥS is state-bounded then |ADOM(s)| ≤ b for each state
s, where b is the size bound on the state. Assume towards a con-
tradiction that ΘS contains a run τ = s0s1s2 · · · that includes
infinitely many states generated by evaluations that do not recycle
from τ . It follows that there must exist a finite k ≥ 0 such that
|
⋃k
i=0 ADOM(si)| > 3b and such that ADOM(sk+1) contains at

least one fresh value, i.e. ADOM(sk+1) −
⋃k
i=0 ADOM(si) 6= ∅.

Let θk+1 ∈ EVALSH(sk, α, σ) be the service call evaluation that
generates sk+1. Clearly θk+1 does not recycle from τ , since it
contains at least one fresh value in its range. However observe
that, since the k-length prefix of τ contains at least 3b distinct
values, this prefix contains at least b values that are distinct from
the values in ADOM(I0) ∪ ADOM(sk) (since by state-boundedness,
|ADOM(I0) ∪ ADOM(sk)| ≤ 2b). Call the set of these values V .

Also by state-boundedness, θk+1 introduces at most b fresh values.
Any one of the values in V can be used instead of the fresh values
introduced by θk+1, to obtain another evaluation θrk+1 that respects
H. Hence θr witnesses an evaluation in EVALSH(sk, α, σ) that does
recycle from τ . But this contradicts the definition of ΘS , which
mandates that θk+1 be dropped in favor of θrk+1.



This result implies that if ΥS is state-bounded, then there exists
a finite-state abstract transition system ΘS that is persistence-
preserving bisimilar to ΥS . Indeed, any eventually recycling
pruning of ΥS can play the role of ΘS (it is finite by Lemma C.3(i),
it is bisimilar to ΥS by Lemma C.1, and one is guaranteed to exist
by Lemma C.3(ii)).

Construction of Eventually Recycling Pruning. The existence
result in Lemma C.3 is non-constructive and therefore does not
yet yield decidability of verification even if the concrete transition
system ΥS is state-bounded. We next present Algorithm RCYCL,
which is guaranteed to construct an eventually recycling pruning
when its input DCDS is state-bounded, but which may diverge
otherwise.

Algorithm RCYCL
Input: S = 〈D,P〉, a DCDS with data layer D = 〈C,R, E , I0〉

and process layer P = 〈F ,A, %〉.

Σ := {I0}, =⇒:= ∅, UsedValues := ADOM(I0), Visited := ∅
repeat

pick state I ∈ Σ, action α and legal parameters σ
such that (I, α, σ) /∈ Visited

RecyclableValues := UsedValues − (ADOM(I0) ∪ ADOM(I))
pick set V of n service call results such that:
|V| = n = |CALLS(DO(I, α, σ))| and
if |RecyclableValues| ≥ n

then V ⊆ RecyclableValues % recycled values
else V ⊂ C −UsedValues % fresh values

F := ADOM(I0) ∪ ADOM(I) ∪ V
for each θ ∈ EVALSF (I, α, σ) such that Inext |= E

where Inext := DO(I, α, σ)θ do
Σ := Σ ∪ {Inext}

=⇒ := =⇒ ∪{(I, Inext)}
UsedValues := UsedValues ∪ ADOM(Inext)

Visited := Visited ∪ {(I, α σ)}
end

until Σ and =⇒ no longer change.
return 〈C,R,Σ, I0,=⇒〉

Observe that algorithm RCYCL performs several nondeterministic
choices in each iteration. The particular choices (and their order) do
not matter, by Theorem 5.4.

PROOF OF THEOREM 5.4. (Sketch)
First, we show that algorithm RCYCL builds a pruning. Items (i)

and (iii) in the definition of pruning are trivially satisfied in every
run of RCYCL. Item (ii) follows from the following claim:

Claim: for any choice of V such that |V| ≥
|CALLS(DO(I, α, σ))|, the set of equality commitments
represented by the successors of I generated by the eval-
uations in EVALSF (I, α, σ) coincides with the set of
commitments represented by the successors of I in ΥS .

Next, we show that if S is state-bounded, every run of RCYCL
terminates. Indeed, state-boundedness guarantees that in each it-
eration, only at most b service call values are needed, where b is
the state size bound. But after running “sufficiently” long, RCYCL
variable UsedValues accumulates at least 3b distinct values. At
each subsequent step of the algorithm, there will therefore exist
at least b values distinct from the active domains of I0 and I, so
the pick of V will always recycle values (observe that RCYCL only

picks evaluations from set ΘS ). UsedValues will no longer change,
and therefore Σ and =⇒ must eventually saturate (a key reason for
this is the bookkeeping of variable Visited , which avoids repeating
the nondeterministic pick for any combination of state, action and
parameter instantiation (I, α, σ)).

Finally, since RCYCL terminates, then it outputs a finite-state
pruning, which is trivially eventually recycling.

Theorem 5.4 and Theorem 3.2 directly imply Theorem 5.3.

C.4 GR-Acyclic DCDSs
PROOF OF THEOREM 5.5. For the proof, we reduce from the

undecidable problem of checking if the run of a deterministic Turing
Machine is confined to a bounded-length segment of the tape (we
say that the TM is tape-bounded). This in turn is undecidable by
reduction from the halting problem: Given deterministic TM T,
build TM T’ such that T’ is tape-bounded if and only if T halts. T’
simulates T but also records on the tape the historical configurations
of T. At each step, T’ checks if the most recent configuration of T
was seen in the history. If so, T’ stops simulating T and enters a
loop in which it keeps extending the right end of its tape. It is easy
to see that T’ is tape-bounded if and only if T halts.

We reuse without change the reduction exhibited in the proof of
Theorem 4.1. Recall that the reduction constructs for every Turing
Machine TM a DCDS with deterministic services S that simluates
the computation of TM. We recall from the proof that the only
service in the process layer, service newCell , is guaranteed to be
called only with distinct arguments across distinct transitions, and
so its behavior is unaffected by the choice of deterministic versus
nondeterministic semantics. We also note that the state of the DCDS
has size linear in the length of the tape segment visited by TM, so
tape-boundedness reduces to state-boundedness.

PROOF OF THEOREM 5.6 (SKETCH). We prove the result by
counting the maximum number of different values in a state of the
transition system.

Since this task is undecidable (by Theorem 5.5), we necessarily
have to approximate this value. The approximation is performed by
analysing a different, much more abstract transition system we call
dataflow transition system (to distinguish from the abstract system
that is bisimilar to the concrete system).

The dataflow system is a DCDS obtained as follows from the
dataflow graph and I0: For each node of the dataflow graph, there is
a unary relation in the dataflow system, and for each normal (special)
edge in the dataflow graph, there is a normal (special) transition
in the dataflow system between the corresponding relations. The
schema of the dataflow system is a set of relation names with arity
one, in correspondence to the nodes of the dataflow graph. A state
of the dataflow system is an instantiation of its schema using values
from the domain C.

For each term t appearing in a relation in the initial state of the
concrete system, there is a term t in the corresponding relation of
the initial state of the dataflow system. Being in one state of the
dataflow system, the next state is constructed as follows:

• for each normal transition from a relation A to a relation B,
for each term t in the relation A of the current state, there is a
term t in the relation B of the next state.

• for each special edge from a relation A to a relation B, for
each term t in the node A of the current state, there is a fresh
term t′ in node B of the next state.

It is easy to see the following claim:



Claim 1. For any run τ of length m ≥ 0 in the concrete
system, there is a run τd of length m in the dataflow
system, such that the size of the active domain of state
τ(i) is at most the size of the active domain of state
τd(i).

As a result, any state bound for the dataflow system also bounds the
state of the concrete system. We compute such a bound next.

Consider the dataflow graph of A. GR-acyclicity forces cycles
with special edges to not be connected to any other cycles in the
dataflow graph. More specifically, each connected component of the
dataflow graph must have one of the following types:

A: A simple cycle C (possibly with special edges), possibly con-
nected with several directed acyclic graphs (DAG)s, such that
the component contains no additional cycle beyond C.

B: Several cycles C1, . . . , Cm containing only normal edges,
each Ci possibly connected to several DAGs, such that the
component contains no other cycle beyond the Ci’s, and there
is no path with special edges connecting two cycles Ci, Cj .

C: A DAG, possibly containing normal and special edges.

Denote with

d: the longest path of the dataflow graph after deleting the cycles,
b: the maximum number of special edges going out of a node of

the dataflow graph plus one, and
n: the number of nodes of the dataflow graph.

It is easy to see that in each transition of the dataflow system, for
each term in the current state, there can be at most n · b distinct
terms in the next state.

First, consider the components of type A. Call the DAGs D
connected to the unique cycle C via edges from D to C, input
DAGs. Call output DAGs the DAGs connected via edges from C to
D. It is easy to see that after d transition steps, in any run of the
dataflow system there is no term in any relation of an input DAG
(all have been forgotten), and at most

m := |ADOM(I0)|+n·b·|ADOM(I0)|+· · ·+nd ·bd ·|ADOM(I0)|

distinct terms may co-exist within the relations of the cycle. More-
over, after d steps, the total number of distinct terms in the cycle
will no longer increase in any run suffix starting from step d + 1.
Consider now how the m terms can be copied into the output DAGs.
It is again easy to see that there can be at most nd · bd ·m distinct
terms in any relation of an outgoing DAG. As a result, in any step
at most nd+1 · bd ·m distinct terms may co-exist within a type A
component.

Second, consider the components of type B. A similar argument
yields at most nd+1 · bd ·m different terms that may co-exist within
a type B component.

Third, it is easy to see that there can be at most nd·bd·|ADOM(I0)|
different terms within a type C component.

All in all, at most |ADOM(I0)| · n2d+1 · b2d distinct terms may
co-exist in a state of the concrete transition system.

D. DISCUSSION
PROOF OF THEOREM 6.1 (SKETCH). The technical problem

here is to force the results of nondeterministic service calls to con-
form to historic evaluations.

Let D be a deterministic DCDS. We rewrite D to obtain a new
DCDS N whose semantics under nondeterministic services coin-
cides with that of D under deterministic services. For each term
f(a1, . . . , an) appearing in some effect of D e := q+ ∧Q−  E,
we rewrite D as follows. We extend the schema with a new

n + 1-ary relation Rf . Intuitively, Rf (a1, . . . , an, r) states that
the call f(a1, . . . , an) evaluates to r. We extend the effect to
record this fact, replacing e with : e′ := q+ ∧ Q−  E ∧
Rf (a1, . . . , an, f(a1, . . . , an)). To ensure that Rf records all past
calls of f , we add to each action an effect that simply copiesRf . We
also add the functional dependency a1, . . . , an → r on Rf . Notice
that any attempt to record a service call with a result distinct from a
past invocation violates the functional dependency and the transition
does not occur. It is easy to see that, if we project the states of ΥN

on the schema of D, we obtain ΥD .

PROOF OF THEOREM 6.2 (SKETCH). The challenge here lies
in forcing a deterministic service fd to return possibly distinct re-
sults for same-argument calls of the nondeterministic service fn it
corresponds to.

The trick is to call fd with one additional argument, which plays
the role of a timestamp, where each state in the run has its own
unique timestamp. This way same-argument calls of fn at distinct
steps in the run correspond to distinct-argument calls of fd, which
therefore simulates the desired nondeterministic behavior.

An additional trick is used to get the run to generate a sequence of
unique values to act as timestamps. We use a deterministic service
new(x) to generate a new timestamp, we record the successor
relation over timestamps in binary relation succ, and the most recent
timestamp in unary relation now . We add to each action
• the effect

now(x) now(new(x)) ∧ succ(x,new(x ))

which extends the successor relation by one timestamp and
sets the new timestamp as most recent; and
• the effect

succ(x, y) succ(x, y)

which accumulates the historical succ entries.
We are not quite done, as we still need to ensure that succ induces
a linear order on the collection of timestamps generated during
the run. For this purpose we employ the same trick as the proof
of Theorem 4.1. We describe it below for the sake of proof self-
containment.

Observe that, by definition of the effect extending succ, at each
step, the generated timestamp has at most one successor.

However, if the call new(x) returns a previously seen timestamp,
then there can be some timestamp with several predecessors in succ.
We rule out this case by declaring the second component of succ
to be a key. It follows that succ must be either (i) a linear path
over timestamps (possibly starting from a source node that has a
self-loop), or (ii) must contain a simple cycle involving more than
one timestamp. The simple cycle is created when new returns the
minimal element of the succ relation.

We wish to force case (i). To rule out case (ii), we proceed
as follows: we initialize succ to contain a source node 0 that can
never be a timestamp because it cannot be returned by new without
violating the key constraint on succ. To this end, we initialize succ
in I0 to succI0 = {(0, 0), (0, 1)} and nowI0 = {1}. Notice that
succI0 has type (i). An easy induction shows that every run prefix
must also construct a succ relation of type (i), since any attempt to
extend succ with an edge back to one of its existing nodes violates
the key constraint. It also follows easily that during the run, now
takes values from the linear path starting at 1, and never includes
0.

E. EXAMPLE DCDS:
TRAVEL REIMBURSEMENT SYSTEM



We model the process of reimbursing travel expenses in a univer-
sity, and the corresponding audit system, in two different subsystems.
In particular, the first subsystem, called the request system manges
the submission of reimbursement requests by an employee, and
preliminary inspection and approval of the request by an employee
in the accounting department (we shall call her the monitor). A log
of accepted requests will be submitted to the second subsystem, the
audit system, in which requests can be accumulated, and they can be
checked for accuracy by calling external web services (for instance
to obtain the exchange rate from foreign currency to USD on a past
date, or to check that the employee actually was on the declared
flight).

Request system. To keep the example simple we model a travel
reimbursement request as being associated to the name of the re-
quester, and infor- mation related to the corresponding flight and
hotel costs. After a request is submitted, a monitor will check the
request and will decide to accept or reject the request. If a request is
rejected, the employee needs to modify the information regarding
hotel and flight, while employee name will not be changed while
updating. After the update by the employee, the monitor will again
check the request, and the reject-check loop continues until the
monitor accepts the request. After a request is accepted a log of the
request will be sent to the audit system, and the request system will
be ready to process the next travel request.

We model the request system by a DCDS SR = 〈D,P〉, in
which D = 〈C,R, E , I0〉 such that C is a countably infinite set
of constants, I0 = {Status(‘readyForRequest’), true}, andR is a
database schema as follows:

• Status = 〈status〉, a unary relation that keeps the state of
the request subsystem, and can take three different values:

‘readyForRequest’, ‘readyToVerify’, and ‘readyToUpdate’,

• Travel = 〈eName〉, holding the name of the employee;

• Hotel = 〈hName, date, price, currency, priceInUSD〉, hold-
ing the hotel cost information of the employee’s travel, which
might have been paid in some other currency than USD,

• Flight = 〈date, fNum, price, currency, priceInUSD〉, hold-
ing the flight cost information.

The process layer is defined as P = 〈F ,A, %〉 where F is a set
of the following nondeterministic service calls, each modeling an
input of an external value by the employee. Specifically,

• INENAME() : models the input of the employee name (filled
in by the employee),

• INHNAME() : hotel name,

• INHDATE() : arrival date,

• INHPRICE() : sum paid to the hotel (possibly in foreign cur-
rency),

• INHCURRENCY() : currency exchange rate at that date,

• INHPINUSD() : amount paid to the hotel in USD,

• INFDATE() : flight date,

• INFNUM() : flight number,

• INFPRICE() : ticket price, possibly in foreign currency,

• INFCURRENCY() : currency exchange rate at date of ticket
payment,

• INFPUSD() : ticket price in USD.

There is one additional service.

• MAKEDECISION() : a nondeterministic service modeling the
decision of the human monitor. It returns ‘requestConfirmed’
if the request is accepted, and returns ‘readyToUpdate’ if the
request needs to be updated by the employee.

The set A of actions includes (among others):

InitiateRequest :

true Status(‘readyToVerify’)

true Travel(INENAME())

true Hotel(INHNAME(),
INHDATE(),
INHPRICE(),
INHCURRENCY(),
INHPINUSD())

true Flight(INFDATE(),
INFNUM(),
INFPRICE(),
INFCURRENCY(),
INFPUSD())

VerifyRequest:

true Status(MAKEDECISION())

Travel(n) Travel(n)

Hotel(x1, . . . , x5) Hotel(x1, . . . , x5)

Flight(x1, . . . , x5) Flight(x1, . . . , x5)

UpdateRequest:

true Status(‘readyToVerify’)

Travel(n) Travel(n)

true Hotel(INHNAME(),
INHDATE(),
INHPRICE(),
INHCURRENCY(),
INHPINUSD())

true Flight(INFDATE(),
INFNUM(),
INFPRICE(),
INFCURRENCY(),
INFPUSD())

AcceptRequest:

Status(‘requestConfirmed’) Status(‘readyForRequest’)

When a request is initiated (modeled by the action
InitiateRequest), (i) the system changes state “to waiting for verifi-
cation”, (ii) a travel event is generated and the employee fills in his
name, (iii) the employee fills in all hotel information, and (iv) the
employee fills in all flight information.

Action VerifyRequest models the preliminary check by the mon-
itor. Travel event, hotel and flight information are unchanged,
but the system status is set by the non-deterministic service call
MAKEDECISION(), which models the monitor’s decision for cur-
rent active travel information.

If the monitor rejects, then she sets the next state to
‘readyToUpdate’, which will trigger the action UpdateRequest,
which in turn collects once again the hotel and flight information
from the employee, and moves the status to ‘readyToVerify’.

Finally, action AcceptRequest returns the system in the state
‘readyForRequest’, in which it is ready to accept a new request.
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Figure 9: Dataflow graph for request system

Notice the use of the always true predicate true, with the evident
meaning. A convenient way to model its meaning in the DCDS
framework is to think of it as a nullary relation, initialized to contain
the empty tuple, which is copied in perpetuity by each action (true
never changes its interpretation). We omit the corresponding copy
effects, treating them as built-in.

Notice how the condition-action rules in the set % below guard
the actions by the current state of the system:

Status (‘readyForRequest’) 7→ InitiateRequest
Status (‘readyToVerify’) 7→ VerifyRequest

Status (‘readyToUpdate’) 7→ UpdateRequest
Status (‘requestConfirmed’) 7→ AcceptRequest

The dataflow graph corresponding to the request system is de-
picted in Figure 9, where special edges are starred. Notice that there
can be multiple special edges between the same two nodes (these
are distinguished by unique edge ids, which we omit in the figure to
avoid clutter).

In particular, the group of special edges from the true node to
the Hotel node corresponds to the action of employee filling in the
hotel information, modeled by calls to such services as INHNAME().
Similarly for the special edges from true to Flight.

The special edge between true and Travel is due to the employee
filling in his name into the created travel request. The special edge
from true to Status reflects the monitor’s insertion of her deci-
sion (see the call to MAKEDECISION() in the first effect of action
VerifyRequest in Example E), while the normal edge corresponds
to change of the status without calling a service (this happens in
other actions). The self-loops on Flight, Hotel, and Travel are due
to the remaining (copy) effects of VerifyRequest. The self-loop on
node true is due to the modeling of this value by a singleton nullary
relation containing the empty tuple, which keeps being copied in
each action.

An inspection of this dataflow graph reveals that the request
system is not GR-acyclic, since it contains several instances of two
simple cycles connected by a path that includes a special edge. For
instance, the path π comprised of the self-loops around true and
Travel, and the special edge beetween them. However, the request
system is GR+-acyclic. To illustrate this, notice that the path π is
allowed by GR+-acyclicity because the special edge leading into
the Travel loop is caused by action InitiateRequest, while all the
subsequent edges in π are caused by other actions (in this case there
is only one subsequent edge in π, namely the self-loop on Travel,
caused by actions VerifyRequest and UpdateRequest).

We illustrate some µLP properties pertaining to the proper oper-
ation of the request system:

A property of interest is that once initiated, a request will even-
tually be decided by the monitor, and the decision can only be

‘readyToUpdate’ or ‘requestConfirmed’ (a liveness property). We
show the property in the easier-to-read CTL syntactic sugar:

AG(∀n Travel(n)→
A(Travel(n)U(Status(‘readyToUpdate’) ∨

Status(‘requestConfirmed’))

The until operator U (for this example, it is the strong flavor, in
which ψUφ means that φ is guaranteed to eventually hold, and until

it does ψ must hold in every step). We note that for a property to
belong to µLP , it must require the bindings of quantified variables
to be continuously live between the step when the quantification
was evaluated and the step when the variable is used. This can be
done by using LIVE or by using any relation, in our example Travel.
The µLP version of the property is given below:

νX.(∀n.Travel(n)→
µY.(Status(‘readyToUpdate’) ∨ Status(‘requestConfirmed’)

∨ [−](Travel(n) ∧ Y ))) ∧ [−]X

Another property of interest is that if the flight cost is not specified,
then the request is not accepted (a safety property). We use the
special constant ⊥ to denote a null value (this need not be treated
specially in the semantics, any value of the domain can be reserved
for this purpose):

G¬( Status(‘requestConfirmed’)∧
∃x1, . . . , x4 Flight(x1, x2,⊥, x3, x4)).

The µLP version is given below:

νX.{¬(Status(‘requestConfirmed’) ∧
∃x1, . . . , x4.Flight(x1, x2,⊥, x3, x4))} ∧ [−]X

Audit system. After a request is verified by the monitor in the re-
quest system, it will be migrated to the audit system. The migration
is performed by a logging subsystem which might perform such
operations as: we extend each travel event with a freshly generated
travel id, which guarantees uniqueness across the entire history of
requests. We store these tuples in a database. We can model this
migration using the DCDS formalism, but we omit the specification
and focus directly on the audit system.

More specifically, we model the audit system by a DCDS SA =
〈DA,PA〉, in which DA = 〈C,R, E , I0〉. C is a countably infinite
set of constants. R is a database schema as follows:

• Status = 〈status〉 is a unary relation keeping the state of re-
quest subsystem, which can take two different values: ‘check-
Price’, and ‘checkTravel’, whose role is to sequence the actions
of the audit system appropriately.

• Travel = 〈id, eName, passed〉 extends the homonymous re-
lation of the request system with two fields: id (the travel
identifier), and passed, which will be set by the audit system
to reflect whether both the hotel and the flight price checks
succeed.

• Hotel = 〈trId, hName, date, price, currency, priceInUSD,
passed〉, where trId is a foreign key to the travel id and passed
is set by the audit system to reflect whether the claimed price
and the calculated price match.

• Flight = 〈trId, fNum, date, price, currency, priceInUSD,
passed〉, where trId and passed are analogous to the ones in
the Hotel relation.

Finally, I0 is the output of the logging subsystem to which we add
the fact Status(‘checkPrice’), to initialize the audit system status.

The process layer is defined as P = 〈F ,A, %〉 in
which F contains a deterministic service, where the call
CONVERTANDCHECK(price, currency , date, priceInUSD) per-
foms the official exchange rate acquisition and computation de-
scribed above, returning true if and only if the claimed price and the
computed one match.
A = {CheckPrice,CheckTravel} includes the following actions.



CheckPrice :

true Status(‘checkTravel’)

Travel(i, n, v) Travel(i, n, v)

Hotel(x1, x2, date, price, currency , priceInUSD , x7) 

Hotel(x1, x2, date, price, currency , priceInUSD ,

CONVERTANDCHECK(date, price, currency , priceInUSD))

Flight(x1, x2, date, price, currency , priceInUSD , x7) 

Flight(x1, x2, date, price, currency , priceInUSD ,

CONVERTANDCHECK(date, price, currency , priceInUSD))

Notice that the first effect changes the audit system’s state to enter
the stage in which the the two checks (for hotel and flight) are
combined. The second effect simply copies the request information.
The third and fourth each check the claimed price (for hotel,
respectively flight), performing the conversion described above.

The second action works on the result of the first (this is ensured
by the appropriate status changes).

CheckTravel:

true Status(‘checkPrice’)

Travel(x1, x2, x3) ∧
Hotel(x1, y1 . . . , y5, ph) ∧

Flight(x1, z1 . . . , z7, pf ) ∧ ¬(ph ∧ pf ) Travel(x1, x2, false)

Travel(x1, x2, x3) ∧
Hotel(x1, y1 . . . , y5, true) ∧

Flight(x1, z1 . . . , z7, true) Travel(x1, x2, true)

Hotel(x1, . . . , x7) Hotel(x1, . . . , x7)

Flight(x1, . . . , x7) Flight(x1, . . . , x7)

Notice that the second and third effects set the passed field for
the request, computed as the conjunction of the corresponding fields
set by the price check on flight and hotel.

The process % is defined as follows:

Status(‘checkPrice’) 7→ CheckPrice
Status(‘checkTravel’) 7→ CheckTravel

The corresponding dependency graph is as shown in Figure 10.
In this picture nodes correspond to the positions of the schema. To
avoid clutter, we represent each relation by its first letter, and denote
the position number with a subscript. For instance, T1 stands for the
first (id) position of the relation Travel, and S stands for the only
position of the relation Status. Moreover, the edges without label
represent regular edges in the dependency graph, while the starred
edges depict special edges. For instance, the edge F5

∗−→ F7

is introduced due to the fourth effect of action CheckPrice. It is
starred because it reflects the service call of CONVERTANDCHECK,
taking as argument the currency attribute of Flight (at position 5),
and storing its result in an Flight tuple at position 7 (the passed
attribute).

An inspection of the dependency graph reveals that the audit
system is weakly acyclic, since there is no cycle including a special
edge.
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Figure 10: Weakly-acyclic dependency graph of the audit sys-
tem

We illustrate a desirable property of the audit system: it guaran-
tees that the request cannot pass the audit if one of the flight or hotel
checks fail:

AG(∃i, n, v, x2, . . . , x6.Travel(i, n, v) ∧
(Hotel(i, x2, . . . , x6, false) ∨ Flight(i, x2, . . . , x6, false))

→ F Travel(i, n, false))

The µLA version of the property is given below:

νX.(∃i, n, v, x2, . . . , x6.Travel(i, n, v) ∧
(Hotel(i, x2, . . . , x6, false) ∨ Flight(i, x2, . . . , x6, false))

→ µY.(Travel(i, n, false) ∨ 〈−〉Y )) ∧ [−]X

Notice that, since the audit system uses deterministic services,
if we wish to verify it in isolation from the other subsystems, we
can verify an µLA property, which is what the above is (we are not
enforcing the liveness of the variables i, v, n between the step at
which the quantification was evaluated, and the eventual step when
the passed attribute of Travel is set to false).

Recall however from Section 6 that we can verify mixed semantics
DCDS by reduction to non-deterministic services. If we wished to
verify the above property over the collection of subsystems, we
would have to express it as an µLP property. This is easily done
using an until operator U (as illustrated above for the request system).
Moreover, it is actually compatible with our expectation about the
system’s operation: while a request is being audited, we expect it to
persist in the system.
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