
Foundations of Relational Artifacts Verification

Babak Bagheri Hariri1, Diego Calvanese1,
Giuseppe De Giacomo2, Riccardo De Masellis2, and Paolo Felli2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
{bagheri,calvanese}@inf.unibz.it

2 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
{degiacomo,demasellis,felli}@dis.uniroma1.it

Abstract. Artifacts are entities characterized by data of interest (con-
stituting the state of the artifact) in a given business application, and a
lifecycle, which constrains the artifact’s possible evolutions. In this pa-
per we study relational artifacts, where data are represented by a full
fledged relational database, and the lifecycle is described by a tempo-
ral/dynamic formula expressed in µ-calculus. We then consider business
processes, modeled as a set of condition/action rules, in which the exe-
cution of actions (aka tasks, or atomic services) results in new artifact
states. We study conformance of such processes wrt the artifact lifecy-
cle as well as verification of temporal/dynamic properties expressed in
µ-calculus. Notice that such systems are infinite-state in general, hence
undecidable. However, inspired by recent literature on database depen-
dencies developed for data exchange, we present a natural restriction
that makes such systems finite-state, and the above problems decidable.

1 Introduction

The artifact-centric approach to design and development of business processes
is emerging as an interesting alternative to the traditional methods that focus
mainly on processes [19,14,10,1,2,13]. This approach focuses simultaneously on
data and processes. Data correspond to key business-relevant entities, which
are seen as evolving over time following a so-called lifecycle. Processes compose
into a workflow atomic tasks or services that are available and of interest. The
artifact-centric approach provides a simple and robust structure for business
process development, which has been advocated to enhance efficiency, especially
in dealing with business transformations [6,7].

The interest in both data and processes as first-class citizens in artifact-centric
systems deeply challenges the research community in verification. Indeed, on the
one hand, such systems deal with full-fledged processes, which require analysis in
terms of sophisticated temporal properties [4]. On the other hand, the presence
of data makes the whole system become infinite-state in general, and hence the
usual verification techniques based on model checking of finite-state systems
cannot be applied [4,21].

In this paper, we study the foundations of artifact-centric systems that use
relational databases for their data component. Specifically, we consider several

S. Rinderle-Ma, F. Toumani, and K. Wolf (Eds.): BPM 2011, LNCS 6896, pp. 379–395, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

380 B. Bagheri Hariri et al.

artifacts (fixed in advance) forming a so called relational artifact system, each
constituted by a relational database evolving over time. To characterize such an
evolution, we rely on a very rich notion of lifecycle, directly based on stating
dynamic properties in terms of intra-artifact and inter-artifact dynamic con-
straints. (This generalized form of lifecycle has emerged in the research done
within the project ACSI, see http://www.acsi-project.eu/.) We express such
constraints, and other dynamic properties of interest, in a suitable variant of μ-
calculus, one of the most expressive temporal logics used in verification [18,11].

We consider processes over artifacts constituted by a set of actions (aka atomic
tasks, atomic services) and a set of condition-action rules, which specify when
such actions can be executed. The action specification is possibly the most char-
acterizing part of our framework. Following [9], actions are specified in terms of
preconditions and postconditions on artifacts’ databases. Such a specification is
strongly influenced by the notion of mappings in the recent literature on data
exchange and data integration [12,17]. In a nutshell, our actions specification
considers the current state of the database, and the one obtained by executing
an action as two databases related through a set of mappings. In the literature,
mappings typically establish correspondences between conjunctive queries, also
called tuple-generating dependencies (TGDs) in the database jargon [3]. However
here, differently from [9], we do use negation and more generally full first-order
queries in defining the preconditions of actions. Technically speaking, this choice
requires us to abandon the theory of conjunctive queries and homomorphisms
at the base of the results in [9,12,17].

We are interested in two main reasoning tasks. The first one is conformance
of a process to an artifact system, which consists in checking whether a given
process generates the correct lifecycle for the various artifacts and, more gen-
erally, whether it satisfies all intra-artifact and inter-artifact constraints. The
second reasoning task is process verification, that is checking whether a process
(over an artifact system) verifies general dynamic properties of interest. Both
these reasoning tasks in principle can be based on model checking, though, in
our setting, one has to deal with potentially infinite states.

We show that both reasoning tasks are undecidable even for very simple ar-
tifact systems and processes. We then introduce a very interesting class of pro-
cesses for which decidability is granted. We call such processes weakly acyclic,
since they satisfy a condition analogous to weak acyclicity of a set of mappings in
data exchange [12]. Under such a restriction, we are guaranteed that the number
of new objects introduced by the execution of actions is finite, and hence, the
whole process is finite-state.

2 Relational Artifacts Systems

In this section, we start the description of our framework by introducing rela-
tional artifact systems. In the following, we assume the reader to be familiar with
standard relational databases, and their connection with first-order logic (FOL).
In particular, queries are seen as (possibly open) FOL formulas. Also, we consider

http://www.acsi-project.eu/

Foundations of Relational Artifacts Verification 381

as special FOL queries conjunctive queries (CQs), i.e., formulas formed only by
conjunctions and existential quantifications, and their unions (UCQs) [3].

A relational artifact systems (RAS) is constituted by a set of artifacts, each
formed by a relational database evolving over time under restrictions imposed by
certain dynamic constraints. We deal with two types of constraints: intra-artifact
dynamic constraints, which involve each artifact in isolation, and inter-artifact
dynamic constraints, which take into account relations between artifacts. In this
section we introduce such systems.

Relational artifact. A relational artifact is a relational database evolving over
time. Hence, it is characterized by the usual notions of database schema, giving
the structure of the database, and database instance, detailing the actual data
contained in it, and it is furthermore augmented by a set of intra-artifact dynamic
constrains. These are temporal constraints expressed in the temporal logic μL
introduced later, which allows us to express various constraints over the database:
we can assert the usual ones, such as inclusion dependencies, which now become
safety temporal constrains, and also what is typically called the artifact lifecycle,
namely, dynamic constrains on the sequencing of database configurations. More
formally, a relational artifact is a tuple A = 〈R, I0, Φ〉
– R = {R1, . . . , Rn} is a database schema, i.e., a set of relation schemas;
– I0 is a database instance, compliant with the schema R, that represents the

initial state of the artifact;
– Φ is a μL formula over R constituted by the conjunction of all intra-artifact

dynamic constraints of A.

Notice that if we project the dynamic formula Φ over the initial artifact instance
I0, we may get (depending on the structure of Φ) static, i.e., local, constraints on
I0. From now on, we assume to deal with well formed artifacts, namely, artifacts
whose initial instance satisfies such local constraints.

Relational artifact system. A relational artifact system is composed of several
relational artifacts in execution at the same time, each consisting of a database
and a set of intra-artifact dynamic constraints. The dynamic interaction between
the artifacts is regulated through additional constraints, also expressed in μL,
which we call inter-artifact-dynamic constraints.

In this paper, we make the assumption that artifacts cannot be created or
destroyed during the evolution of the system. Under such an assumption we
get quite interesting undecidability and decidability results. We are indeed very
interested in dropping these limitations in future works, starting from the results
presented here. For this reason we start with a finite set of artifacts, and over
the whole evolution of the system these will remain the only ones of interest. If
an artifact has a terminating lifecycle it becomes dormant, but it will persist in
the system.

Formally, an artifact system is a pair A = 〈{A1, . . . , An}, Φinter 〉, where
{A1, . . . , An} is the finite set of artifacts of the system (each with its own
database and intra-artifact dynamic constraints expressed in μL), and Φinter

382 B. Bagheri Hariri et al.

is a μL formula expressing the conjunction of inter-artifact dynamic constraints.
To distinguish relations of various artifacts in A, we use the usual dot notation of
object-orientation, hence, a relation Rj of artifact Ai of A is denoted by Ai.Rj .
When clear from the context, we drop the artifact Ai and we use Rj for the re-
lation. We denote by I0 the disjoint union of all initial instances of the artifacts
in A, i.e., I0 =

⋃
i=1,...,n I0,i. More generally, I represents the instance obtained

by the (disjoint) union of the current instances of each artifact in A.
Given a database instance I, we denote by CI the active domain of I, i.e., the

set of individuals (typically constants) appearing in I. Hence, the active domain
of I0 is CI0 , which is made up by all constants appearing in the initial instances
of the various artifacts in A.

Notice that, while artifact systems evolve over time, they do not include a
predefined mechanism for progression. Progression is due to the execution of
actions, tasks, or services over the system, according to a given process that
we will introduce later on. Here it is sufficient to assume that a progression
mechanism exists, and its execution results in moving from the initial state,
given by the instance I0, to the next one, and so on.

In this way we build a transition system [4] A, whose states represent possible
system instances, and each transition an atomic step in the progression mecha-
nism (whatever it is). In principle, we can model-check such a transition system
to verify dynamic properties [4], that is exactly what we are going to do next.
However, one has to consider that, in general, A is infinite, hence the classical re-
sults on model checking [4,11], which are developed for finite transition systems,
do not apply. The main goal of this paper is to find interesting conditions under
which such a transition system is finite.

Example 1. We model the process of purchasing items within a company. In par-
ticular, when a company’s employee, who assumes the role of a requester, wants
to purchase some items, he has to turn to a buyer, also internal to the company,
who is responsible for purchasing such items from external suppliers. In our sce-
nario, we have five actors: two requesters (Bob and Alice), a buyer (Trudy) and
two suppliers (SupplierA and SupplierB). The whole purchasing process works
as follows: in a first phase, the requester has to fill a so-called requisition order
with some line items chosen from a catalogue. In our simple example the cata-
logue contains only a monitor, a mouse, and a keyboard. Once the requester has
completed this process, he sends the order to the buyer, who extracts the line
items from it, and purchases each of them separately. In particular, the buyer
groups together into a procurement order line items (belonging to a requisition
order) that will be purchased from a particular supplier. As a result of this phase,
we get different procurement orders, each containing line items that the buyer
requests from a single supplier. Then the supplier ships back to the buyer the
items included in the procurement order he received, and finally, the items are
delivered to the original requester. Of course, we can have many orders processed
simultaneously in the system, although we will impose some restrictions.

Foundations of Relational Artifacts Verification 383

All items
requested

All req.
OR

purchased

All purch.
OR

shipped
Empty All

purchased
All

shipped

A CB D E F

Fig. 1. Informal representation of dynamic intra-artifact constraints

In this example, we consider the relational artifact system A =
〈{ReqOrders,ProcOrders}, Φinter 〉 containing two relational artifacts, holding all
relevant data about requisition orders and procurement orders in the system.

ReqOrders = 〈RRO , I0,RO , ΦRO 〉, where
– RRO = {RO(RoCode ,ReqName ,BuName), ROItem(RoCode, ProdName, Status),

Requester(ReqName), LineItem(ProdName ,Price),
Buyer(BuName), Status(StatusName) }

A requisition order is meant to hold the data associated to every pending req-
uisition order: indeed, as soon as the items are delivered to the corresponding
requester, each information associated to them is removed from the system. Re-
lation RO(RoCode,ReqName,BuName) holds basic information associated to a
single order, i.e., order’s code and both requester’s and buyer’s names. The
requested items are kept in the relation ROItem(RoCode,ProdName,Status),
whose attribute Status keeps track of the status of each line item in-
cluded in the order (it can be either requested, purchased or shipped). Rela-
tions Requester(ReqName), LineItem(ProdName ,Price), Buyer(BuName), and
Status(StatusName) are included in the schema for technical convenience; in
particular, the relation Status is needed in order to easily bind values of the
attribute Status of each line item in an order.

– I0,RO = {Requester(Bob), Requester(Alice), Buyer(Trudy),
Status(requested), Status(purchased), Status(shipped),
LineItem(keyboard, 20), LineItem(mouse, 10), LineItem(monitor, 200) }

According to the previous description of this example scenario, in the initial
instance we only have data concerning existing requesters, buyers, suppliers,
and the catalogue, featuring three line items. There are no pending orders.

– As for the intra-artifact constraints ΦRO , here we only give an intuition
of what will be presented formally later. We want to trace the status of an
ordered line item through the attribute ROItem.Status, so we express constraints
on the evolutions of all orders in the system by relying on this attribute, as
informally depicted in Figure 1. Intuitively, at the beginning, we do not have any
order placed by requesters: in the current situation (henceforth called phase) the
relations RO and ROItem are empty [A]. As orders are placed, and new requisition
orders are created, we will have a phase in which all currently pending orders have
status requested [B], and such condition will hold until, eventually, some item in
such a status will be purchased by the buyer by creating procurement orders to
send to suppliers, hence changing status to purchased. At this point, we will be
in a phase such that all items belonging to existing orders are either requested or

384 B. Bagheri Hariri et al.

purchased [C] and finally, at some point, all items will be purchased [D]. Having
all procurement orders sent to suppliers, some of them will be shipped back, i.e.,
setting the status of corresponding items to shipped [E], and at the end, all of
them will be shipped back to the buyer [F]. Finally, as the items are delivered
to the requester, they will be removed from the system and the initial condition
will be eventually met again. Notice that we are imposing some restrictions
over the evolution of the artifact: for instance, we won’t allow for creating new
requisition orders (for ordering new line items) as soon as all the existing ones
have been purchased [D]. Notice also that we will need a way to force the system
to eventually exit self-loops. Moreover, in addition to such dynamic constraints,
we also have some static ones, such as inclusion dependencies.

ProcOrders = 〈RPO , I0,PO , ΦPO 〉, where
– RPO ={PO(PoCode,RoCode ,SupName), POItem(PoCode, RoCode,ProdName),

Supplier(SupName), LineItem(ProdName, Price)}.
Recall that all line items assigned to the same procurement order must belong to
the same requisition order. Hence, similarly to requisition orders, a procurement
order’s schema includes a relation PO(PoCode ,RoCode,SupName) holding its
code, the code of the corresponding requisition order, and the name of the chosen
supplier. Relation POItem(PoCode ,RoCode,ProdName) holds instead the set of
line items in each procurement order. Attribute RoCode is replicated in this
relation for convenience. Supplier(SupName) keeps the set of existing suppliers
whereas LineItem(ProdName,Price) is the same as the one in the requisition
order artifact.

– I0,PO = {LineItem(keyboard, 20), LineItem(mouse, 10), LineItem(monitor, 200),
Supplier(SupplierA), Supplier(SupplierB)}.

– In this example we don’t want to constrain the dynamic evolution of the
artifact, so the only intra-artifact constraints we will consider are those needed
for consistency.

3 Dynamic Constraints Formalism

We turn to the dynamic constraints formalism, used both to specify intra and
inter dynamic constraints of artifact systems (including artifact lifecycles), and
to specify dynamic properties of processes running over such systems. Several
choices are possible: here we focus on a variant of μ-calculus [11], one of the
most powerful temporal logics, subsuming both linear time logics, such as LTL
and PSL, and branching time logics such as CTL and CTL* [4]. In particular,
we introduce a variant of μ-calculus, called μL, whose syntax is as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ∃x ∈ CI0 .Φ | ∀x ∈ CI0 .Φ |
�Φ | �Φ | μZ.Φ | νZ.Φ | Z,

where Q is a possibly open FOL formula over the relations in the artifacts of
A, and Z is a second-order predicate variable. The symbols μ and ν can be

Foundations of Relational Artifacts Verification 385

(¬Φ)AV = ΣA − (Φ)AV
(Φ1 ∧ Φ2)

A
V = (Φ1)

A
V ∩ (Φ2)

A
V

(Φ1 ∨ Φ2)
A
V = (Φ1)

A
V ∪ (Φ2)

A
V

(∃x ∈ CI0 .Φ)
A
V =

⋃{(Φ)AV[x/c] | c ∈ CI0}
(∀x ∈ CI0 .Φ)

A
V =

⋂{(Φ)AV[x/c] | c ∈ CI0}

(Z)AV = ZV ⊆ ΣA

(Q)AV = {I ∈ ΣA | ans (QV, I)}
(�Φ)AV = {I ∈ ΣA | ∃I′. I ⇒A I′ and I′ ∈ (Φ)AV}
(�Φ)AV = {I ∈ ΣA | ∀I′. I ⇒A I′ implies I′ ∈ (Φ)AV}
(μZ.Φ)AV =

⋂{E ⊆ ΣA | (Φ)AV[Z/E] ⊆ E}
(νZ.Φ)AV =

⋃{E ⊆ ΣA | E ⊆ (Φ)AV[Z/E]}

Fig. 2. Semantics of µL formulas

considered as quantifiers, and we make use of the notions of scope, bound and
free occurrences of variables, closed formulas, etc., defined as in FOL. In fact, we
consider only closed formulas as specifications of temporal properties to verify.

For formulas of the form μZ.Φ and νZ.Φ, we require the syntactic monotonicity
of Φ wrt Z: every occurrence of the variable Z in Φ must be within the scope
of an even number of negation signs. In μL, given the requirement of syntactic
monotonicity, the least fixpoint μZ.Φ and the greatest fixpoint νZ.Φ always exist.

To define the meaning of a μL formula over an artifact system, we resort to
transition systems. Let A be a transition system generated by a given progression
mechanism over the artifact system A. We denote by ΣA the states of A, and by
CA all terms (which are in general infinite) occurring in any state of A. Notice
that trivially CI0 ⊆ CA.

Let V be a predicate and individual variable valuation on A, i.e., a mapping
from predicate variables to subsets of the states ΣA, and from individual vari-
ables to constants in CA. Then, we assign meaning to μL formulas by associating
to A and V an extension function (·)A

V , which maps μL formulas to subsets of
ΣA. The extension function is defined inductively as shown in Figure 2, where
QV (resp., ZV) denotes the application of variable valuation V to query Q (resp.,
variables Z), and ans (QV, I) denotes the result of evaluating the (boolean) query
QV over the instance I. Moreover, I ⇒A I ′ holds iff the progression mechanism
allows to progress from I to I ′.

Intuitively, the extension function (·)A
V assigns to the various μL constructs

the following meanings: The boolean connectives have the expected meaning,
while (individual) quantification involving transitions from some state to the
next is restricted to constants of CI0. The extension of �Φ consists of the states
I such that for some state I ′ with I ⇒A I ′, we have that Φ holds in I ′, while the
extension of �Φ consists of the states I such that for all states I′ with I ⇒A I ′,
we have that Φ holds in I ′. The extension of μZ.Φ is the smallest subset Eμ

of ΣA such that, assigning to Z the extension Eμ, the resulting extension of Φ
is contained in Eμ. That is, the extension of μZ.Φ is the least fixpoint of the
operator (Φ)A

V[Z/E] (here V [Z/E] denotes the predicate valuation obtained from
V by forcing the valuation of Z to be E). Similarly, the extension of νZ.Φ is the
greatest subset Eν of ΣA such that, assigning to Z the extension Eν , the resulting
extension of Φ contains Eν . That is, the extension of νZ.Φ is the greatest fixpoint
of the operator (Φ)A

V[Z/E]. When Φ is a closed formula, (Φ)A
V does not depend on

V , and we denote it by ΦA.

386 B. Bagheri Hariri et al.

We say that a closed μL formula Φ holds for A, denoted as A |= Φ, iff I0 ∈ ΦA.
We call model checking verifying whether A |= Φ holds.

Example 2 (Continues from Example 1). Now that we have defined our con-
straints formalism, we are in the position to express the constraints informally
discussed in Example 1.

For ReqOrders, we first define formulas corresponding to the phases of the
diagram in Figure 1:

ψA = ¬∃x, y, z.ROItem(x, y, z)
ψB = ∀x, y, z.(ROItem(x, y, z) → z = requested) ∧ ∃x, y.ROItem(x, y, requested)
ψC = ∀x, y, z.(ROItem(x, y, z) → (z = requested ∨ z = purchased)) ∧

∃x, y.ROItem(x, y, requested) ∧ ∃x, y.ROItem(x, y, purchased)
ψD = ∀x, y, z.(ROItem(x, y, z) → z = purchased) ∧ ∃x, y.ROItem(x, y, purchased)
ψE = ∀x, y, z.(ROItem(x, y, z) → (z = purchased ∨ z = shipped)) ∧

∃x, y.ROItem(x, y, purchased) ∧ ∃x, y.ROItem(x, y, shipped)
ψF = ∀x, y, z.(ROItem(x, y, z) → z = shipped) ∧ ∃x, y.ROItem(x, y, shipped).

Then, the dynamic constraints of ReqOrders are captured by the formula

ΦRO = ψA ∧ νZ.(∧i=1,...,11 Φi ∧ �Z).

It requires that in the initial state of A there are not any items included in any
pending order, i.e., the relation ROItem is empty, and that all formulas Φi listed
below hold in every state. Each of Φ1 to Φ6 corresponds to a single transition as in
Figure 1, expressing the constraint that the artifact remains in its current phase
until it reaches the following one, also requiring that such a phase is eventually
reached in a finite number of steps, and that no other phase is reached until
then:

Φ1 = ψA → μZ.(ψB ∨ (ψA ∧ �Z))
Φ2 = ψB → μZ.(ψC ∨ (ψB ∧ �Z))
Φ3 = ψC → μZ.(ψD ∨ (ψC ∧ �Z))

Φ4 = ψD → μZ.(ψE ∨ (ψD ∧ �Z))
Φ5 = ψE → μZ.(ψF ∨ (ψE ∧ �Z))
Φ6 = ψF → μZ.(ψA ∨ (ψF ∧ �Z)).

The remaining formulas express static constraints, specifically inclusion depen-
dencies and range restrictions:

Φ7 = ∀x, y, z.(ROItem(x, y, z) → ∃u, v.RO(x, u, v))
Φ8 = ∀x, y, z.(ROItem(x, y, z) → Status(z))
Φ9 = ∀x.(Status(x) → (x = requested ∨ x = purchased ∨ x = shipped))
Φ10 = ∀x, y, z.(ROItem(x, y, z) → ∃w.LineItem(y, w))
Φ11 = ∀x, y, z.(RO(x, y, z) → (Requester(y) ∧ Buyer(z)).

For ProcOrders, we just need to express some static specifications over in-
stances. Hence, ΦPO is the conjunction of the following formulas, expressing
inclusion dependency constraints:

νZ.(∀x, y, z.(PO(x, y, z) → Supplier(z)) ∧ �Z)
νZ.(∀x, y, z.(POItem(x, y, z) → ∃u.PO(x, y, u)) ∧ �Z)
νZ.(∀x, y, z.(POItem(x, y, z) → ∃u.LineItem(u, z)) ∧ �Z).

Foundations of Relational Artifacts Verification 387

Finally, the set of inter-artifact dynamic constraints Φinter is the conjunction
of the following formulas:

νZ.(∀x, y.(ReqOrders.LineItem(x, y) ↔ ProcOrders.LineItem(x, y)) ∧ �Z)
νZ.(∀x, y, z.(POItem(x, y, z) → ROItem(y, z, purchased)) ∧ �Z)
νZ.(∀x, y, z.(PO(x, y, z) → ∃w, k.RO(y, w, k)) ∧ �Z).

The first formula requires that the LineItem relations in both artifacts have the
same set of tuples, the second one that every item belonging to a procurement
order is also included in some requisition order, and the third one that every
procurement order corresponds to a requisition order.

4 Processes over Artifact Systems

We now concentrate on progression mechanisms for relational artifact systems.
In particular, we specify such a mechanism in terms of one or more processes
that use actions as atomic steps. Actions represent atomic tasks or services that
act over the artifacts and make them evolve.

Actions. We give a formal specification of actions in terms of preconditions
and postconditions, inspired by the notion of mapping in the literature on data
exchange [16]. However, we generalize such a notion in order to include nega-
tion, arbitrary quantification in preconditions, and the generation of new terms,
through the use of Skolem functions in postconditions. Notice that, while it is
conceivable that most of the actions will act on one artifact only, we do not make
such a restriction. Indeed our actions are generally inter-artifact, which lets us
easily account for synchronisation between artifacts.

An action ρ for A has the form

ρ(p1, . . . , pm) : {e1, . . . , em} where:

– ρ(p1, . . . , pm) is the signature of the action, constituted by a name ρ and
a sequence p1, . . . , pm of input parameters that need to be substituted by
constants for the execution of the action, and

– {e1, . . . , em} is a set of effects, called the effects’ specification.

We denote by σ a (ground) substitution for the input parameters with terms
not involving variables. Given such a substitution σ, we denote by ρσ the action
with actual parameters. All effects in the effects’ specification are assumed to
take place simultaneously. Specifically, an effect ei has the form

qi � I ′i where:

– qi is a query whose terms are variables x, action parameters, and constants
from CI0 . Moreover, qi has the form q+i ∧Q−

i , where q+i is a UCQ, and Q−
i ,

is an arbitrary FOL formula whose free variables are included in those of
q+i . Intuitively, q+i selects the tuples to instantiate the effect, and Q−

i filters
away some of them.

388 B. Bagheri Hariri et al.

– I ′i is a set of facts for the artifacts in A, which includes as terms: terms in
CI0 , input parameters, free variables of qi, and in addition terms formed by
applying an arbitrary Skolem function to one of the previous kinds of terms.
Such Skolem terms are used as witnesses of values chosen by the external
user/environment when executing the action. Notice that different effects
can share a same Skolem function.

Given an instance I of A, an effect ei as above, and a substitution σ for the
parameters of ei, the effect ei extracts from I the set ans (qiσ, I) of tuples of
terms, and for each such tuple θ asserts the set I ′iσθ of facts obtained from I ′iσ
by applying the substitution θ for the free variables of qi. In particular, in the
resulting set of facts we may have terms of the form f(t)σθ where t is a set
of terms that may be either free variables in x, parameters, or terms in CI0 .
We denote by eiσ(I) the overall set of facts, i.e., eiσ(I) =

⋃
θ∈ans(qiσ,I) I

′
iσθ.

The overall effect of the action ρ with parameter substitution σ over I is a new
instance I ′ = do(ρσ, I) :=

⋃
1≤i≤m eiσ(I) for A.

Some observations are in order: (i) In the formalization above, actions are
deterministic, in the sense that, given an instance I of A and a substitution σ
for the parameters of an action ρ, there is a single instance I′ that is obtained
as the result of executing ρ in I. (ii) The effects of an action are naturally a
form of update of the previous state, and not of belief revision [15]. That is, we
never learn new facts on the state in which an action is executed, but only on the
state resulting from the action execution. (iii) We do not make any persistence
(or frame) assumption in our formalization [20]. In principle at every move we
substitute the whole old state, i.e., instance, I, with a new one, I′. On the other
hand, it should be clear that we can easily write effect specifications that copy
big chunks of the old state into the new one. For example, R(x) � R(x) copies
the entire set of assertions involving the relation R.

Processes. Essentially processes are (possibly nondeterministic) programs that
use artifacts in A to store their (intermediate and final) computation results, and
use actions as atomic instructions. We assume that at every time the current in-
stance I can be arbitrarily queried through the query answering services, while it
can be updated only through actions. Notice that, while we require the execution
of actions to be sequential, we do not impose any such constraints on processes,
which in principle can be formed by several concurrent branches, including fork,
join, and so on. Concurrency is to be interpreted by interleaving, as often done
in formal verification [4,11]. There can be many ways to provide the control
flow specification for processes for A. Here we adopt a very simple rule-based
mechanism. Notice, however, that our results can be immediately generalized to
any process formalism whose processes control flow is finite-state. Notice also
that the transition system associated to a process over an artifact might not be
finite-state, since its state is formed by both the control flow state of the process
and the data in the artifact system, which are in general unbounded.

Formally, a process Π over a relational artifact system A is a pair 〈ρ,π〉,
where ρ is a finite set of actions and π is a finite set of condition-action rules.

Foundations of Relational Artifacts Verification 389

A condition-action rule π in π is an expression of the form

Q → ρ,

where ρ is an action in ρ and Q is a FOL formula over artifacts’ relations
whose free variables are exactly the parameters of ρ, and whose other terms
can be either quantified variables or terms in CI0 . Such a rule has the following
semantics: for each tuple σ for which condition Q holds, the action ρ with actual
parameters σ can be executed. If ρ has no parameters then Q will be a boolean
formula. Observe that processes don’t force the execution of actions but constrain
them: the user of the process will be able to choose any of the actions that the
rules forming the process allow.

The execution of a process Π = 〈ρ,π〉 over a relational artifact system A is
defined as follows: we start from I0, and for each rule Q → ρ in π, we evaluate
Q, and for each tuple σ returned, we execute ρσ, obtaining a new instance I′ =
do(ρσ, I0), and so on. In this way we build a transition system Υ (Π,A) whose
states represent possible system instances, and where each transition represents
the execution of an instantiated action that is allowed according to the process.
A transition I ⇒Υ (Π,A) I ′ holds iff there exists a rule Q → ρ in Π such that
there exists a σ ∈ ans (Q, I) and I ′ = do(ρσ, I). That is, there exist a rule in Π
that can fire on I and produce an instantiated action ρσ, which applied on I,
results in I ′.

The transition system Υ (Π,A) captures the behavior of the processΠ over the
whole system A. We are interested in formally verifying properties of processes
over artifact-based systems, in particular we are interested in conformance and
verification, defined as follows:

Conformance. Given a process Π and an artifact system A, the process is said
to be acceptable if it fulfills all intra-artifact and inter-artifact dynamic con-
straints. In this case, we say that Π conforms to A. In order to formally
check conformance, we can resort to model checking and verify that:

Υ (Π,A) |= Φinter ∧
∧

i=1,...,n Φi.

Verification. Apart from intra-artifacts and inter-artifact dynamic constraints,
we are interested in other dynamic properties of the process over the artifact
system. We say that a processΠ over an artifact system A verifies a dynamic
property Φ expressed in μL if Υ (Π,A) |= Φ.

It becomes evident that model checking of the transition system Υ (Π,A) gener-
ated by a process over an artifact system is the critical form of reasoning needed
in our framework. We are going to study such a reasoning task next.

Example 3 (Continues from Example 2). We consider a process Π = 〈ρ,π〉
constituted by the following actions ρ and conditions-action rules π. When spec-
ifying an action, we will use [. . .] to delimit each of the two parts q+i and Q−

i of
the formula q+i ∧Q−

i in the left-hand side of an effect specification. Note that in
such a formula the part corresponding to Q−

i might be missing.

390 B. Bagheri Hariri et al.

Actions. The set ρ of actions is the following. Action RequestItem(r, i, b) is used
by the requester r to request a new line item i to buyer b. Such an action results
in adding i to the requisition order of r. Notice that the RoCode denoting the
requisition order is computed as a function of r and b only: performing this
action multiple times for the same requester and buyer will result into adding
line items to the same requisition order.

RequestItem(r, i, b) : { [∃w.(Requester(r) ∧ LineItem(i, w) ∧ Buyer(b))] �
{RO(f(r, b), r, b), ROItem(f(r, b), i, requested)},

CopyAll }
Action Purchase(r, i, b, s) is used by buyer b for purchasing an item i belonging

to requisition order r from supplier s, thus creating (or updating) procurement or-
ders (i.e., the relation ProcOrders.PO) and updating the status of the correspond-
ing items kept by the relation ReqOrders.ROItem. Again, notice that PoCode is
not a function of the item i passed as parameter. By writing CopyAll \ ROItem
we denote the copy of all relations except ROItem.

Purchase(r, i, b, s) : { [∃w.RO(r,w, b) ∧ ROItem(r, i, requested) ∧ Supplier(s)] �
{PO(g(r, b, s), r, s), POItem(g(r, b, s), r, i),
ROItem(r, i, purchased)},

[ROItem(x, y, z)] ∧ [¬ROItem(r, i, requested)] � {ROItem(x, y, z)},
CopyAll \ ROItem }

The following actions are used to ship all items included in a given procure-
ment order p, and to deliver items belonging to a requisition order r to the
corresponding requester, respectively. Notice that the first avoids copying all
facts concerning p whereas the latter does the same with all facts related to r.

Ship(p) : { [POItem(p, x, y) ∧ ∃z.ROItem(x, y, z)] � {ROItem(x, y, shipped)},
[POItem(x, y, z)] ∧ [¬POItem(p, y, z)] � {POItem(x, y, z)},
[PO(x, y, z)] ∧ [¬PO(p, y, z)] � {PO(x, y, z)},
CopyAll \ (POItem and PO) }

Deliver(r) : { [ROItem(x, y, z)] ∧ [¬ROItem(r, y, z)] � {ROItem(x, y, z)},
[RO(x, y, z)] ∧ [¬RO(r, y, z)] � {RO(x, y, z)},
CopyAll \ (ROItem and RO) }

Condition-action rules. In each condition-action rule of our process, we instan-
tiate the parameters passed to the action, while simply checking that they are
meaningful, i.e., that they are in the current instance. Hence:

π = {∃x.(Requester(r) ∧ LineItem(i, x) ∧ Buyer(b)) �→ RequestItem(r, i, b),
∃x.(RO(r, x, b) ∧ ROItem(r, i, requested) ∧ Supplier(s)) �→ Purchase(r, i, b, s),
∃x, y.PO(p, x, y) �→ Ship(p), ∃x, y.RO(r, x, y) �→ Deliver(r) }

We close our example by observing that the process we have specified conforms
to the lifecycle in Example 2.

Foundations of Relational Artifacts Verification 391

5 Undecidability of Conformance and Verification

Next, we consider conformance and verification over relational artifact systems.
We show that they are both undecidable in general. The undecidability result
does not come as a surprise, since the transition system of a process over an
artifact system can easily be infinite-state. Moreover, our framework is so general
that it does not enforce a regularity of the infinite state space that would allow
one to apply known results on model checking on infinite state systems. However,
we show that the undecidability holds even in a very simple case.

We consider a relational artifact system of the form Au = 〈{A}, true〉 with
A = 〈R, I0, true〉. That is Au is formed by a single artifact A with no intra-
artifact or inter-artifact dynamic constraints. In addition, we consider processes
with only one action ρu and only one condition-action rule true → ρu that has a
true condition and hence allows the execution of the action ρu at every moment.
The action ρu is without parameters, its effects have the form q+i � I ′i, where
q+i is a CQ (hence without any form of negation and of universal quantification),
and it includes CopyAll effects. We call these kinds of relational artifact systems
and processes simple. The next lemma shows that it is undecidable to verify in
such cases the μL formula μZ.(q ∨�Z), expressing that there exists a sequence
of action executions leading to an instance where a boolean CQ q holds.

Lemma 1. Verifying whether the μL formula μZ.(q ∨ �Z) holds for a simple
process over a simple artifact is undecidable.

Proof (sketch). We observe that we can use the set of effects of ρu to encode
a set of tuple-generating dependencies (TGDs) [3]. Hence we can reduce to the
above verification problem the problem of answering boolean CQs in a relational
database under a set of TGDs, which is undecidable [5]. (In fact, special care is
needed because of the use of Skolem terms instead of labeled nulls.) ��
Theorem 1. Conformance checking and verification are both undecidable for
processes over relational artifacts systems.

Proof (sketch). Lemma 1 gives us undecidability of verification, already for
simple relational artifact systems and processes. To get undecidability of confor-
mance it is sufficient to consider the simple processΠu over relational artifact sys-
tems of the form Acu = 〈{Ac}, true〉, with Ac = 〈R, I0, μZ.(q ∨�Z)〉. Note that
Acu is a variant of simple artifact systems Au in which the artifact has as intra-
artifact dynamic constraint exactly μZ.(q ∨ �Z). The claim follows again from
Lemma 1, considering that, by definition, checking conformance of the simple
processΠu wrt Acu is equivalent to checking whether Υ (Πu,Au) |= μZ.(q∨�Z).

��

6 Decidability of Weakly Acyclic Processes

Next we tackle decidability, and, inspired by the recent literature on data ex-
change [16], we isolate a notable case of processes over relational artifact systems

392 B. Bagheri Hariri et al.

for which both conformance and verification are decidable. Our results rely on
the possibility of building a special process that we call “positive approximate”.
For such a process there exists a tight correspondence between the application
of an action and a step in the chase of a set of TGDs [3,16]

Given a process Π = 〈ρ,π〉, the positive approximate of Π is the process
Π+ = 〈ρ+,π+〉 obtained from Π as follows. For each action ρ in ρ, there is an
action ρ+ in ρ+, obtained from ρ by

– removing all input parameters from the signature, and
– substituting each effect q+i ∧Q−

i � I ′i with the one that uses only the positive
part of the head of the effect specification, i.e., with q+i � I ′i.

Note that the variables in q+i that used to be parameters in ρ, become free
variables in ρ+. Then, for each condition-action rule Q → ρ in π, there is a rule
true → ρ+ in π+. Hence, Π+ allows for executing every action at every step.

Now, relying again on the parallelism between chase in data exchange and
action execution in artifact systems, we take advantage of the notion of weak
acyclicity in data exchange [16] to devise an interesting class of processes that
are guaranteed to generate a finite-state transition system, when run over a
relational artifact system. This in turn guarantees decidability of conformance
and verification.

Let Π be a process over an artifact system A, and Π+ = 〈ρ+,π+〉 its posi-
tive approximate. We call dependency graph of Π+ the following (edge labeled)
directed graph:

Nodes : for every artifact A = 〈R, I0, Φ〉 of A, every relation symbol Ri ∈ R, and
every attribute att or Ri, there is a node (Ri, att) representing a position;

Edges : for every action ρ+ of ρ+, every effect q+i (t) � I ′i(t
′, f1(t1), . . . , fn(tn))

of ρ+ (where for convenience we have made explicit the terms occurring in
q+i and I ′i , and where consequently t′, t1, . . . , tn ⊆ t are either constants or
variables), every variable x ∈ t, and every occurrence of x in q+i in position
p, there are the following edges:
– for every occurrence of x in I ′i in position p′, there is an edge p→ p′;
– for every Skolem term fk(tk) such that x ∈ tk occurs in I ′i in position
p′′, there is a special edge (i.e., one labeled by ∗) p ∗−→ p′′.

We say that Π is weakly acyclic if the dependency graph of Π+ has no cycle
going through a special edge.

Intuitively, ordinary edges keep track of the fact that a value may propagate
from position p to position p′ in a possible trace. Moreover, special edges keep
track of the fact that a value in position p can be taken as parameter of a Skolem
function, thus contributing to the creation of a (not necessarily new) value in any
position p′′. If a cycle goes through a special edge, then a new value appearing
in a certain position may determine the creation of another one, in the same
position, later during the execution of actions. Since this may happen again and
again, no bound can be put on the number of newly generated Skolem terms,
and thus on the number of new values appearing in the instance. Note that the
definition allows for cycles as long as they do not include special edges.

Foundations of Relational Artifacts Verification 393

Lemma 2. Let Π be a weakly acyclic process over a relational artifact system
A with initial instance I0, and let Π+ be the positive approximate of Π. Then
there exists a polinomial in the size of I0 that bounds the size of every instance
generated by Π+.

Proof (sketch). The proof follows the line of that in [16] on chase termination for
weakly acyclic TGDs. The difference here is that we use Skolem terms and don’t
have the inflationary behavior of TGDs in applying action effects. However, the
key notion of rank used in [16] can still be used to bound the number of terms
generated through the Skolem functions. ��

Notice that, as a direct result of this lemma, the transition system generated by
the positive approximate over A has a number of states that is finite, and in fact
at most exponential in the size of the initial instance I0 of A. Now we show that
a similar result holds for the original process Π . The key to this is the following
observation that easily follows from the definition of ρ+ for an action ρ.

Lemma 3. For every action ρ over A, instances I1, I2 of A, and ground sub-
stitution σ for the parameters of ρ, if I1 ⊆ I2 then do(ρσ, I1) ⊆ do(ρ+, I2).

We can extend the result above to any sequence of actions, by induction on the
length of the sequence. Hence, we get that the instance obtained from the initial
instance by executing a sequence of actions of the original processΠ is contained
in the instance obtained by executing the same sequence of actions of Π+. From
this observation, considering the bound in Lemma 2, we get the desired result
for the original process.

Lemma 4. Let Π be a weakly acyclic process over a relational artifact system
A with initial instance I0. Then there exists a polinomial in the size of I0 that
bounds the size of every instance generated by Π.

From this, we obtain our main result.

Theorem 2. Conformance and verification of μL formulas are decidable for
weakly acyclic processes over relational artifact systems.

Proof (sketch). From Lemma 4, it follows that the transition system generated
by a weakly acyclic process over a relational artifact system A has a number of
states that is at most exponential in the size of the initial instance I0 of A. The
claim then follows from known results on verification of μ-calculus formulas over
finite transition systems (see e.g., [11]). ��

From the exponential bound on the number of states of the generated transition
system mentioned in the proof above, we get not only decidability of verification
and conformance, but also an ExpTime upper bound for its computational
complexity (assuming a bound on the nesting of fixpoints).

394 B. Bagheri Hariri et al.

7 Conclusions

In this paper we have looked at foundations of artifact-centric systems, and
we have shown that weakly acyclic processes over relational artifacts are very
interesting both from a formal point of view, since reasoning on them is decidable,
and from a practical point of view, since weak-acyclicity appears to be a quite
acceptable restriction.

Further research can take several directions. First, one can easily focus on
different temporal logics for specifying dynamic constraints, such as LTL or
CTL. Observe that the results presented here would apply, being mu-calculus
more expressive than both LTL and CTL, but certainly they can be refined.
Second, we may introduce special equality generating constraints to allow to
equate different terms, e.g., a Skolem term and a constant. We are particularly
interested in how to extend our decidability result to this case. Also we have
assumed that no artifacts are added or destroyed during the execution of a
process. We are very interested in relaxing this restriction. Notice that to do so
we would need to introduce Skolem terms to denote artifacts, and then extend
the notion of weakly acyclic process to block the infinite accumulation of new
artifacts. Finally, we are interested in moving from a relational setting to a
semantic one, based on ontologies for data access [8], believing that similar results
apply.

Acknowledgments. This work has been supported by the EU FP7-ICT Project
ACSI (grant no. 257593).

References

1. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A frame-
work for lightweight interacting workflow processes. Int. J. of Cooperative Informa-
tion Systems 10(4), 443–481 (2001)

2. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML artifact model.
In: Proc. of TIME 2009, pp. 11–17 (2009)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co., Reading (1995)

4. Baier, C., Katoen, J.P., Guldstrand Larsen, K.: Principles of Model Checking. The
MIT Press, Cambridge (2008)

5. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg
(1981)

6. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

7. Bhattacharya, K., Guttman, R., Lyman, K., Heath, F.F., Kumaran, S., Nandi,
P., Wu, F.Y., Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven
approach to industrializing discovery processes in pharmaceutical research. IBM
Systems Journal 44(1), 145–162 (2005)

Foundations of Relational Artifacts Verification 395

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The Mastro system for ontology-based
data access. Semantic Web J (2011)

9. Cangialosi, P., De Giacomo, G., De Masellis, R., Rosati, R.: Conjunctive artifact-
centric services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 318–333. Springer, Heidelberg (2010)

10. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Bull. on Data Eng. 32(3), 3–9 (2009)

11. Emerson, E.A.: Automated temporal reasoning about reactive systems. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 41–101.
Springer, Heidelberg (1996)

12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comp. Sci. 336(1), 89–124 (2005)

13. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In: Proc. of ICDT 2009, pp. 225–238 (2009)

14. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)

15. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base
and revising it. In: Proc. of KR 1991, pp. 387–394 (1991)

16. Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In:
Proc. of PODS 2005, pp. 61–75 (2005)

17. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002,
pp. 233–246 (2002)

18. Luckham, D.C., Park, D.M.R., Paterson, M.: On formalised computer programs.
J. of Computer and System Sciences 4(3), 220–249 (1970)

19. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifica-
tion. IBM Systems Journal 42(3), 428–445 (2003)

20. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press, Cambridge (2001)

21. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

	Foundations of Relational Artifacts Verification
	Introduction
	Relational Artifacts Systems
	Dynamic Constraints Formalism
	Processes over Artifact Systems
	Undecidability of Conformance and Verification
	Decidability of Weakly Acyclic Processes
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

