
Verification of Human Driven Data-Centric Dynamic Systems

Babak Bagheri Hariri
Diego Calvanese
Marco Montali

Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Giuseppe De Giacomo
Sapienza Università di Roma

Rome, Italy
degiacomo@dis.uniroma1.it

Alin Deutsch
UC San Diego

San Diego, USA
deutsch@cs.ucsd.edu

1 Introduction
Business Process Management (BPM) refers to a systematic,
holistic approach for overseeing how work is performed in
an organization, and aligning it with the business objectives
of the organization and the needs of its customers. The core
artifact in BPM is the notion of business process, an explicit
conceptual model that accounts for the way business activities
can be executed over time (control-flow perspective), who is
in charge of executing them (resource perspective), and how
the activity execution impact on data (data perspective).

A huge amount of research has been devoted to the devel-
opment of languages, methodologies, and techniques so as
to support business stakeholders throughout the entire busi-
ness process lifecycle (van der Aalst 2012): from design to
execution, a-posteriori analysis, mining and re-engineering.
However, as pointed out in (Harrison-Broninski 2005): “de-
spite advances in business automation over the past fifty
years, the heart and soul of every organization is still its peo-
ple [. . .]. Yet there is presently no complete way to manage
the complex, continually changing work processes carried
out by humans”.

Arguably, part of Harrison-Broninski’s criticism is due to
the fact that the majority of BPM approaches tend to mainly
focus on the (internal) control-flow dimension of business
processes, while neglecting the connection with data and
humans. Two main lines of research emerged, in the last
decade, to overcome these limitations:
• Data- and artifact-centric approaches have been proposed
to explicitly and conceptually tackle the interplay between
processes and data (Nigam and Caswell 2003; Hull 2008;
Calvanese, De Giacomo, and Montali 2013). In this light,
a business process is seen as a set of dynamic constraints
that determine the allowed evolutions of business-relevant
entities (like a purchase order or a loan). This does not only
contribute to better highlight how data are manipulated by the
process, but also to raise the level of abstraction in process
modelling and understandability (Bhattacharya et al. 2007).
• Declarative approaches have been studied, so as to put
minimal constraints on the way activities can be executed,
and give more freedom of choice to the involved humans
(see, e.g., (Montali et al. 2010; Slaats et al. 2013)). They are
suitable to support knowledge-intensive domains, where it

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is not possible to fully automatize in advance which are the
allowed courses of execution, but it is instead needed to let
humans dynamically decide how to proceed depending on
the given constraints, but also the context of execution and
their own background knowledge.
These two kinds of approaches ultimately converged in con-
crete languages and execution environments such as the
Guard-Stage-Milestone model by IBM (Damaggio, Hull, and
Vaculı́n 2013) and the OMG standard for Case Management
Model and Notation1.

In this work, we tackle the foundations of such processes,
by leveraging on the recently proposed framework of Data-
Centric Dynamic Systems (DCDSs) (Bagheri Hariri et al.
2013). Specifically, we extend DCDSs to better model human
driven processes, and we recast the verification results pro-
vided in (Bagheri Hariri et al. 2013) to such a revised frame-
work. It is worth noting that, in the rich setting where both
processes and data are simultaneously taken into account,
verification is highly undecidable even for simple proposi-
tional temporal properties (such as reachability) (Deutsch
et al. 2009; Bagheri Hariri et al. 2013). Therefore, suitable
decidable fragments need to be isolated.

DCDSs already support a declarative style of modelling,
tailored to human driven processes. In fact, the process
control-flow is declaratively specified by means of condition-
action rules that query the current data and determine which
actions can be executed, and with which parameters. The
action to be effectively executed is then freely chosen by the
responsible persons among the available alternatives. The
data manipulation induced by an action execution is specified
by means of forward rules, each of which queries the current
data and determines which facts will be asserted in the next
state. Such facts are instantiated with values extracted by
such queries, or with new values. To reflect human interac-
tion with the process, we study here three main possible ways
for inputting new values during an action execution:
• Deterministic input - when the user is asked to provide for
the first time an input starting from a given combination of
values, she freely choses the value to return; in the future,
whenever the same kind of input is asked starting from the
same combination of values, the returned value does not
change. An example is the amount of money on the user’s

1
http://www.omg.org/spec/CMMN/1.0/Beta1/

lastname@inf.unibz.it
degiacomo@dis.uniroma1.it
deutsch@cs.ucsd.edu
http://www.omg.org/spec/CMMN/1.0/Beta1/

bank account on a given date.
• Nondeterministic input - whenever the user is asked to
provide an input, she freely choses the value to return, inde-
pendently from the previously returned values. An example
is the actual amount of money on the user’s bank account.
• Selection input - the user is asked to choose an input value
from a predefined set of alternatives. An example is the 1-to-5
star rating for an item.
These three input modalities can be used to formalize the
typical web-based interaction with users, such as text fields,
optional choices, and combo boxes. Notice that the first two
ways have already been introduced in the original DCDS pro-
posal (Bagheri Hariri et al. 2013), in the form of deterministic
vs nondeterministic service calls, but were never mixed in
the same specification. The third modality is instead studied
here for the first time.

With this extended framework, we reconstruct the decid-
ability results studied in (Bagheri Hariri et al. 2013) for the
classes of run-bounded and state-bounded DCDSs. Further-
more, we show how the sufficient, syntactic checks intro-
duced in (Bagheri Hariri et al. 2013) for determining whether
a DCDS with (non)deterministic service calls is run- or state-
bounded, have to be reconsidered when all the aforemen-
tioned types of user input are mixed in the same specification.

For the detailed proofs refer to (Bagheri Hariri 2013) (Sec-
tions 5 and 6.5)2.

2 Human Driven DCDSs
Data-centric dynamic systems (DCDSs), originally intro-
duced in (Bagheri Hariri et al. 2013), are systems in which
both the process controlling the system dynamics and the
manipulated data are equally central. DCDSs are a pristine
version of several proposals in the literature (e.g., (Berardi et
al. 2005; Deutsch et al. 2009)), and are in particular equally
expressive to the most sophisticated business artifact mod-
els, such as (Damaggio, Hull, and Vaculı́n 2013). To better
account for human interaction, in this paper we introduce
human driven data-centric dynamic systems as an extension
of the original model. In this extension, the system can simul-
taneously support different types of user inputs: deterministic,
nondeterministic, finite-range, and infinite-range (see below).
In the rest of this paper, we maintain the acronym of “DCDS”
to refer to human driven DCDSs.

A DCDS is constituted by (i) a data layer, which holds the
relevant information to be manipulated by the system, and is
technically a full-fledged relational database; (ii) a process
layer, formed by invokable (atomic) actions, and declarative
process rules that determine which actions are executable.

Executing an action has effects on the data manipulated
by the system, on the process state, and on the information
exchanged with the external users. Specifically, an action
may request users to input new data into the system. 3 As
a result, the transition system that accounts for the DCDS
execution semantics is in general infinite-state.

2
http://www.inf.unibz.it/˜bbagheri/thesis.pdf

3In (Bagheri Hariri et al. 2013), the term “external service call” is
used to denote a user request. Here we stick on the second acception.

2.1 Syntax
Formally, a DCDS is a pair S = 〈D,P〉 formed by two
interacting layers: a data layer D and a process layer P over
it. Intuitively, the data layer keeps all the data of interest,
while the process layer modifies and evolves such data.

Data Layer The data layer D is a tuple 〈C,R, E , I0〉
where: C is a countably infinite set of constants/values4,
R = {R1, . . . , Rn} is a database schema, constituted by
a finite set of relation schemas, E is a finite set {E1, . . . , Em}
of equality constraints, and I0 is a database instance that
represents the initial state of the data layer. I0 must conform
to the schema R and satisfy all constraints in E . Each Ei
has the form Qi →

∧
j=1,...,k zij = yij where Qi is a do-

main independent FOL query over R using constants from
ADOM(I0) whose free variables are ~x, and zij and yij are
either variables in ~x or constants in ADOM(I0), which is the
set of constants explicitly appearing in I0.

Process Layer The process layer constitutes the progres-
sion mechanism for the DCDS. We assume that at every
time the current instance of the data layer can be arbitrar-
ily queried, and can be updated through action executions,
possibly requesting user input to introduce new data into the
system. Specifically, the process layer is constituted by: (i)
actions, which are the atomic update steps on the data layer;
(ii) user inputs, which can be requested during the execution
of actions; and (iii) a process specification, which is essen-
tially a nondeterministic program that use actions as atomic
instructions. The process is specified in a declarative way by
means of condition-action rules. Such rules determine, at any
time point, the set of currently executable action, letting the
human users decide which action has to be executed among
the available alternatives. This execution pattern is known in
BPM as deferred choice.

Formally, a process layer P over a data layer D =
〈C,R, E , I0〉, is a tuple P = 〈F ,A, %〉 where F is a finite
set of functions (each representing the template of a user
request),A is a finite set of actions (whose execution updates
the data layer, and may involve user requests), and % is a
finite set of condition-action rules that form the specification
of the overall process (telling at any moment which actions
can be executed).

The crucial aspect of actions is how they affect the data
layer. Actions query the current state of the data layer and
use the results of such queries, together with the requested
user inputs, so as to instantiate the data layer in the new
state. To specify the action effects, we resort to rules that
resemble tuple-generating dependencies (TGDs) (Abiteboul,
Hull, and Vianu 1995), except that we allow for negation
when querying the database and we replace user requests
with actual values instead of considering them as labeled
nulls. Note that negation is key to capturing “if-then-else”
style business rules.

Formally, an action α ∈ A is an expression
α(p1, . . . , pn) : {e1, . . . , em} where: α(p1, . . . , pn) is the
action signature, constituted by a name α and a sequence

4Constants are interpreted as themselves, blurring their distinc-
tion with values. We will use the two terms interchangeably.

http://www.inf.unibz.it/~bbagheri/thesis.pdf

p1, . . . , pn of parameters, to be substituted with values when
the action is invoked, and {e1, . . . , em}, also denoted as
EFFECT(α), is a set of specifications of effects, which are
assumed to take place simultaneously. Each effect specifica-
tion ei has the form q+i ∧ Q

−
i Ei, where q+i ∧ Q

−
i is a

query overR whose terms are variables, action parameters,
and constants from ADOM(I0), where q+i is a Union of Con-
junctive Queries (UCQ), and Q−i is an arbitrary FOL formula
whose free variables are among those of q+i . Intuitively, q+i
selects the tuples to instantiate the effect, andQ−i filters away
some of them. Ei is the effect, i.e., a set of facts forR, which
includes as terms: terms in ADOM(I0), free variables of q+i
(including action parameters), and Skolem terms formed by
applying a function f ∈ F to one of the previous kinds of
terms. Such Skolem terms involving functions represent ex-
ternal service calls and are interpreted so as to return a value
chosen by an external user/environment when executing the
action.

Each condition-action rule in the process % has the form
Q 7→ α, where α is an action in A and Q is a FOL query
overR, whose free variables are exactly the parameters of α,
and whose other terms can be either quantified variables or
constants in ADOM(I0).

2.2 User Requests
We detail now the different user requests that can be used
in a DCDS. First of all, each user request is bound to range,
i.e., a set of values D ⊆ C of constants among which the
user can choose. Given a user request template f ∈ F , we
use fD to show the range of f . If D = C, then we omit the
range. We say that a user request template fD is finite-range
(resp. infinite-range), if its range D is a finite (resp. infinite)
set. When D = C, then the input that has to be provided by
the user is completely unconstrained.
Example 1. Finite-range requests are in fact typically used to
model the user’s option given a set of pre-defined alternatives. For
example, rate{“1”,“2”,“3”,“4”,“5”}(item) models the 1-to-5 star
rating for a given item. Consider now the unconstrained user request
template password(username). Each corresponding (ground) re-
quest asks the user to choose a password for the provided username.
E.g., password(“helen1981”) requests to enter a password for
“helen1981”.

We now differentiate between deterministic and non-
deterministic requests. Deterministic requests are those for
which the returned input value is independent from the mo-
ment in which the input is provided: whenever, along a run
of the system, a request is issued twice with the same pa-
rameters, the user will return the same value. In contrast,
nondeterministic requests, do not obey to this assumption:
the user can freely return a value from the range of the re-
quest, even if the same request is issued many times with the
same parameters. To disambiguate deterministic and nonde-
terministic request templates, we respectively put n and d as
subscript of the corresponding functions.
Example 2. Deterministic requests can be typically used to model
human interaction regarding historical data. An example is the re-
quest template balanced(account , date), used to ask the balance
present in the given account at the given date. Nondeterministic
requests are instead used to account for the possibly continuously

changing behavior of humans. E.g., both requests templates men-
tioned in Example 1 are, in fact, nondeterministic.

2.3 Execution Semantics
The semantics of a DCDS is defined in terms of a possi-
bly infinite transition system whose states are labeled by
database instances. The resulting transition system represents
all possible computations that the process layer can do on
the data layer. This means that the human behaviors related
to (i) selecting an action (among the available alternatives),
(ii) providing an input for a deterministic request issued for
the first time, (iii) and providing an input a nondeterministic
request, have to be considered in a purely nondeterministic
way, exploring all the possible alternatives (which, in the case
of infinite-range user requests, could be infinitely many).

Each state of the transition system maintains the current
database instance I , which is made up of constants in C, con-
forms to the schemaR and satisfies the equality constraints
in E . In addition, it also needs to remember all user inputs pro-
vided for the deterministic requests so far, so as to make sure
that deterministic requests are substituted by values in a con-
sistent way. More precisely, we define the set of (terms repre-
senting) user requests as SC = {fD(v1, . . . , vn) | f/n ∈ F
and {v1, . . . , vn} ⊆ C}, where fD/n stands for a function
fD of arity n. Then we introduce a user request map, which is
an assignmentM : SC → C such thatM(fD(v1, . . . , vn))
is either undefined or belongs to D. For convenience, we
extend the map to constants by requiring that for each
c ∈ ADOM(I0),M(c) = c. When convenient, we also con-
siderM as a (functional) binary relation. With this notion at
hand, we can define a state as a pair 〈I,M〉.

We consider now the semantics of executing an action.
Let α be an action of the form α(p1, . . . , pn) : {e1, . . . , em}
with ei = q+i ∧Q

−
i Ei. The parameters for α are guarded

by a condition-action rule Q 7→ α in %. Let σ be a sub-
stitution for the input parameters p1, . . . , pn with values
taken from C. We say that σ is legal for α in state 〈I,M〉
if 〈p1, . . . , pm〉σ ∈ ans (Q, I). This attests that the user can
choose to apply α with paramater assignment σ (denoted ασ)
to the current database instance I . To capture the semantics of
this execution, we introduce the function DO(). The result of
DO(I, ασ) is a database instance obtained from the union of
the results of applying the effects specifications EFFECT(α)
(partially grounded using σ). The result of each effect spec-
ification q+i ∧ Q

−
i Ei is, in turn, the set of facts Eiσθ

obtained from Eiσ grounded on all the assignments θ that
satisfy the query q+i ∧Q

−
i over I. Formally: DO(I, ασ) =⋃

q+i ∧Q
−
i Ei∈EFFECT(α)

⋃
θ∈ans ((q+i ∧Q

−
i)σ,I)Eiσθ.

Notice that the set of facts returned by DO(I, ασ) does not
constitute a database instance. In general, such facts contain
some ground user requests that need to be substituted with
actual values, capturing the interaction with the user. As
discussed before, the application of this substitution depends,
for a given request, on whether the request is deterministic or
not.

As for nondeterministic requests, we introduce the func-
tion USER-INPUTn(I, ασ), which returns a (temporary) user
request map that puts in correspondence all the nondeter-
ministic user requests contained in DO(I, ασ) with corre-

sponding input values. This map is temporary because, being
the requests nondeterministic, there is no need for keeping
their correspondence with values in the resulting state. Tech-
nically, a nondeterministic user input ϑ for I and ασ is an
assignment to each user request in DO(I, ασ) of a value in
the corresponding domain. Formally:

ϑ = {fDn (~v) 7→ d | fDn (~v) occurs in DO(I, ασ) and d ∈ D}

We denote with USER-INPUTn(I, ασ) the set of all nonde-
terministic user inputs for I and ασ.

The handling of deterministic requests differs from that
of nondeterministic ones in two respects. First of all, the
current user request mapM must be taken into account, so
as to apply determinism for those requests that were already
issued in the past. Second, the current requestM needs to be
suitably extended when constructing the next state: for new
deterministic requests (which behave nondeterministically),
the corresponding results need to be stored into the resulting
user request map, in addition to those already present inM.
Technically, we introduce the set USER-INPUTd(I, ασ,M)
of deterministic user inputs, each of which is defined as:

M∪ {fD
d (~v) 7→ d | d ∈ D, fD

d (~v) occurs in DO(I, ασ),
andM(fD

d (~v)) is undefined}

Putting everything together, we now define the notion
of “possible execution step”. Given two states 〈I,M〉 and
〈I ′,M′〉, and an action α ∈ A with parameter assignment
σ, we call 〈〈I, M〉, ασ, 〈I ′, M′〉〉 ∈ EXECS a possible
execution step in the DCDS S, if:
1. both I and I ′ satisfy E ;5
2. σ is a legal parameter assignment for α in state 〈I,M〉;
3. M′ ∈ USER-INPUTd(I, ασ,M);
4. given Mtemp = M ∪ ϑ, where ϑ ∈
USER-INPUTn(I, ασ), we have I ′ =Mtemp(DO(I, ασ)).

The execution step relation EXECS is the core notion for
constructing the transition system that defines the execution
semantics for DCDS S. Intuitively, it is constructed as fol-
lows. We start from the initial state s0 = 〈I0, ∅〉. For each
condition-action rule Q 7→ α in P , we evaluate Q over I0,
and for each resulting assignment σ, we consider the ap-
plication of ασ as a possible execution step. Specifically,
we compute all states s such that 〈s0, ασ, s〉 ∈ EXECS . We
then repeat this procedure starting from each such state s.
Observe that the resulting transition system is in general
infinite-branching, due to the presence of infinite-range user
requests, and contains infinite runs, in which each state is
labeled by a different database instance.

3 Verification Formalisms
To specify dynamic properties over a DCDS, we rely on the µ-
calculus (Emerson 1996), one of the most powerful temporal
logics for which model checking has been investigated in the
finite-state setting. Indeed, µ-calculus subsumes linear time
logics such as LTL, and branching time logics such as CTL
and CTL*. From a technical viewpoint, µ-calculus separates
local properties, i.e., properties asserted on the current state

5This means that it is forbidden to execute an action that pro-
duces a database instance violating some constraint in E .

or its immediate successors, and properties that talk about
states that are arbitrarily far away from the current one. The
latter are expressed using fixpoints.

Since a DCDS manipulates a relational database, it is im-
portant to have the ability of querying it inside the temporal
properties. This is why we focus on first-order variants of the
µ-calculus, and in particular on the two logics µLA and µLP
introduced in (Bagheri Hariri et al. 2013). Such logics differ
in the way they can combine first-order quantification with
temporal operators, so as to compare values across different
states of the system. Details on semantics and properties of
these logics can be found in (Bagheri Hariri et al. 2013).

The first logic, µLA, requires first-order quantification to
range over the active domain of the state in which it is eval-
uated. This is syntactically enforced by using the special
predicate LIVE(x), which states that x belongs to the current
active domain.6 Note that µLA is able to implicitly “remem-
ber” values encountered in the past, even if they disappeared
in intermediate states. Specifically, µLA is defined as:
Φ ::= Q | ¬Φ | Φ1∧Φ2 | ∃x.LIVE(x)∧Φ | 〈−〉Φ | Z | µZ.Φ
where Q is a possibly open FOL query, and Z is a second
order predicate variable (of arity 0).

The second logic we consider, µLP , limits the active do-
main quantification of µLA: it is able only to quantify over
values that continuously persist in the active domain along
the system evolution. As soon as a value disappears from
the active domain, a µLP formula predicating over such a
value trivially evaluates to false or true. This makes it im-
possible, for µLP , to distinguish new values from values
encountered in the past, but that disappeared in intermediate
states. Specifically, µLP is defined as:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ |
LIVE(~x) ∧ 〈−〉Φ | LIVE(~x) ∧ [−]Φ | Z | µZ.Φ

where Q is a possibly open FOL query, Z is a second or-
der predicate variable, and the following assumption holds:
in 〈−〉(LIVE(~x) ∧Φ) and [−](LIVE(~x) ∧Φ), variables ~x are
exactly the free variables of Φ, with the proviso that we substi-
tute to each bounded predicate variable Z in Φ its bounding
formula µZ.Φ′. This mechanism ensures that the formula
trivializes either to false or true (depending on the use of
negation) for values that disappear from the active domain.

4 Restrictions on DCDSs
The expressive power of DCDSs makes verification undecid-
able even for simple propositional temporal properties (such
as reachability) (Bagheri Hariri et al. 2013).

In (Bagheri Hariri et al. 2013), the two interesting classes
of run-bounded and state-bounded DCDS have been studied,
providing decidability and undecidability results for the veri-
fication of µLA and µLP properties. We now reassess these
results by considering the extended notion of DCDS with
(mixed) user requests. In particular, we show that:
• the same decidability results apply in the extended setting;
• the sufficient syntactic conditions proposed in
(Bagheri Hariri et al. 2013) to check run- and state-
boundedness must be refined.

6We also use LIVE(x1, . . . , xn) =
∧

i∈{1,...,n} LIVE(xi).

4.1 Semantic Restrictions
We recall the restrictions of run- and state-boundedness for
DCDS. Notice that these are “semantic” restrictions, which
are undecidable to check (Bagheri Hariri et al. 2013).

Run-Bounded DCDSs Consider the transition system Υ
for a DCDS S. A run τ = s0s1s2 · · · in Υ is bounded if the
number of values mentioned inside the databases instances
associated to such states is bounded. We say that S is run-
bounded if there exists a bound b such that every run in
Υ is bounded by b. Notice that run boundedness does not
impose any restriction on the branching of Υ. Intuitively,
an unbounded run represents an execution of S in which
infinitely many distinct values are injected by the user. We
show that this restriction guarantees decidability for µLA
verification of run-bounded DCDSs with deterministic user
requests.

The next theorem shows that verification of µLA prop-
erties over run-bounded DCDSs is decidable. Since µLA is
more expressive than µLP , this result applies to µLP as well.

Theorem 1. Verification of µLA properties on run-bounded
DCDSs is decidable, and can be reduced to model checking
of propositional µ-calculus over a finite transition system.

The presence of both nondeterministic and deterministic
user requests in the same specification was not foreseen in
(Bagheri Hariri et al. 2013), and hence Theorem 1 extends
the decidability result in (Bagheri Hariri et al. 2013).

State-Bounded DCDSs Given a DCDS S and its transi-
tion system Υ, we say that S is state-bounded if there is a
finite bound b such that for each database instance I appear-
ing in a state of Υ, |ADOM(I)| < b. Notice that, in contrast
to run-boundedness, state-boundedness allows runs in which
infinitely many distinct values are encountered. The restric-
tion, however, forbids the possibility of accumulating such
infinitely many values within a single state.

Interestingly, verification of µLA properties over state-
bounded DCDSs is undecidable (Bagheri Hariri et al. 2013).
The situation changes for µLP , as attested by the follow-
ing theorem, which extends the one in (Bagheri Hariri et al.
2013) by considering DCDSs where both deterministic and
nondeterministic user requests are considered.

Theorem 2. Verification of µLP properties on state-bounded
DCDSs is decidable, and can be reduced to model checking
of propositional µ-calculus over a finite transition system.

4.2 Syntactic Restrictions
To mitigate the fact that state- and run-boundedness are un-
decidable to check, in (Bagheri Hariri et al. 2013) sufficient,
checkable syntactic conditions have been introduced: weak
acyclicity to test run-boundedness, and GR-acyclicity to test
state-boundedness. Such conditions are tested over a depen-
dency graph constructed by considering the effect specifi-
cations contained in the actions of the DCDS. If they are
met, then the DCDS is guaranteed to be run-/state-bounded,
otherwise nothing can be said. We discuss how these syn-
tactic conditions can be applied in the extended framework
considered in this paper.

Weakly Acyclic DCDSs Weak acyclicity is a polynomially
checkable syntactic condition borrowed from data exchange,
where the notion of weakly acyclic TGDs (Fagin et al. 2005)
is introduced to guarantee chase termination.

In (Bagheri Hariri et al. 2013), weakly acyclic DCDSs
are guaranteed to be run-bounded when deterministic ser-
vice calls (i.e., deterministic user requests in our extended
framework) are considered. However, weak acyclicity does
not work anymore when nondeterministic, infinite-range user
requests come into play:
Theorem 3. There exists a weakly acyclic (human driven)
DCDS which is not run-bounded.

On the positive side, weak acyclicity can be again used to
check whether a human driven DCDS is run-bounded, when
no user request is allowed to be both nondeterministic and
infinite-range:
Theorem 4. Every weakly acyclic DCDS whose nonde-
terministic user request templates are finite-range is run-
bounded.

GR-Acyclic DCDSs GR-acyclicity is proposed in
(Bagheri Hariri et al. 2013) to ensure that only a bounded
number of (new) values accumulate in the same state of the
system. In essence, GR-acyclicity forbids that the actions
of the DCDS realize a combination of a “generate cycle”
(which potentially produces infinitely many values due to
infinitely many user requests) that feeds a corresponding
“recall cycle” (which accumulates all such values). The
following theorem shows that this result continues to be true
also in the extended framework considered here:
Theorem 5. Every GR-acyclic DCDS is state-bounded.

5 Example: Travel Reimbursement System
We model part of the process of reimbursing travel expenses
in a university, which manages the submission of reimburse-
ment requests by an employee, and the preliminary inspection
and approval steps. A more detailed model of the complete
reimbursement system is provided in (Bagheri Hariri 2013).

To keep the example simple we model a travel reimburse-
ment request as being associated to the name of the requester,
and the travel information. After a request is submitted, a
monitor will check the request and will decide whether to
accept or reject it. If a request is rejected, the employee needs
to modify the travel information. Then, the monitor will again
check the request, and the reject-check loop continues until
the monitor accepts the request. After a request is accepted
a log of the request is generated, and the system is ready to
process the next travel request.

The system schema includes (i) Status = 〈status〉,
which is a unary relation that keeps in a single tuple the
state of the system, and can take three different values:

‘readyForRequest’, ‘readyToVerify’, and ‘readyToUpdate’,
(ii) Travel = 〈eName〉, holding the name of the employee,
and (iii) TravelInfo = 〈tInfo〉, holding the travel information.

The process layer includes the user requests
(i) INENAMEn(), for the employee’s name;
(ii) INTRAVELINFOn(), for the travel information, and
(iii) DECIDEDn (), with the specified range D = {‘accepted’,

‘readyToUpdate’}, which models the decision of the human
monitor, returning ‘accepted’ if the request is accepted, and

‘readyToUpdate’ if the request needs to be updated.
The actions are as follows:

• InitiateRequest. When a request is initiated (i) a travel
event is generated and the employee fills in his name, (ii) the
employee fills in the travel information, and (iii) the system
changes state “ready for verification”:

true Travel(INENAMEn())
true TravelInfo(INTRAVELINFOn())
true Status(‘readyToVerify’)

• VerifyRequest models the preliminary check by the moni-
tor. Travel information are copied unchanged to the next state,
which is necessary to preserve such information according to
our semantics. Instead, the system status is set based on the
input of a human monitor, modeled by the finite-range user re-
quest DECIDEDn (). If the monitor accepts, the next state is set
to ‘accepted’, triggering action AcceptRequest, otherwise it
is set to ‘readyToUpdate’, triggering action UpdateRequest:

Travel(x) Travel(x)
TravelInfo(x) TravelInfo(x)

true Status(DECIDEDn ())

• UpdateRequest collects once again the travel information
from the employee, moving the status to ‘readyToVerify’:

Travel(x) Travel(x)
true TravelInfo(INTRAVELINFOn())
true Status(‘readyToVerify’)

• AcceptRequest:
true Status(‘readyForRequest’)

The following condition-action rules guard the actions by
the current system’s state:

Status(‘readyForRequest’) 7→ InitiateRequest
Status(‘readyToVerify’) 7→ VerifyRequest

Status(‘readyToUpdate’) 7→ UpdateRequest
Status(‘accepted’) 7→ AcceptRequest

The request system is not run-bounded. This is because
there is no a priory bound on the number of different requests
that can be submitted to the system. Moreover, it violates the
finite-range requirement of nondeterministic user requests in
the weak acyclicity definition. As a result, the system is also
not weakly acyclic. On the other hand, it is easy to show that
the system is GR-acyclic, and consequently is state-bounded.
State-boundedness is also an immediate consequence of the
fact that in each moment there is only one active request.

6 Conclusion
The following schema summarizes our results:

St
at

e-
bo

un
de

d
D

C
D

Ss Decidable for µLP , (Theorem 2)

R
un

-b
ou

nd
ed

D
C

D
Ss Decidable for µLA, (Theorem 1)

GR-acyclic DCDSs
(Theorem 5)

Weak acyclic DCDSs
(with finite-range
nondeterministic

user requests)
(Theorem 4)

References
[Abiteboul, Hull, and Vianu 1995] Abiteboul, S.; Hull, R.;
and Vianu, V. 1995. Foundations of Databases. Addison
Wesley Publ. Co.

[Bagheri Hariri et al. 2013] Bagheri Hariri, B.; Calvanese, D.;
De Giacomo, G.; Deutsch, A.; and Montali, M. 2013. Verifi-
cation of relational data-centric dynamic systems with exter-
nal services. In Proc. of PODS.

[Bagheri Hariri 2013] Bagheri Hariri, B. 2013. Borders of
Decidability in Verification of Data-Centric Dynamic Systems.
Ph.D. Dissertation, Free University of Bozen - Bolzano.

[Berardi et al. 2005] Berardi, D.; Calvanese, D.; De Giacomo,
G.; Hull, R.; and Mecella, M. 2005. Automatic composition
of transition-based Semantic Web services with messaging.
In Proc. of VLDB, 613–624.

[Bhattacharya et al. 2007] Bhattacharya, K.; Caswell, N. S.;
Kumaran, S.; Nigam, A.; and Wu, F. Y. 2007. Artifact-
centered operational modeling: Lessons from customer en-
gagements. IBM Systems Journal 46(4):703–721.

[Calvanese, De Giacomo, and Montali 2013] Calvanese, D.;
De Giacomo, G.; and Montali, M. 2013. Foundations of
data-aware process analysis: A database theory perspective.
In Proc. of PODS, 1–12. ACM Press.

[Damaggio, Hull, and Vaculı́n 2013] Damaggio, E.; Hull, R.;
and Vaculı́n, R. 2013. On the equivalence of incremental and
fixpoint semantics for business artifacts with Guard-Stage-
Milestone lifecycles. Information Systems.

[Deutsch et al. 2009] Deutsch, A.; Hull, R.; Patrizi, F.; and
Vianu, V. 2009. Automatic verification of data-centric busi-
ness processes. In Proc. of ICDT, 252–267.

[Emerson 1996] Emerson, E. A. 1996. Automated tempo-
ral reasoning about reactive systems. In Moller, F., and
Birtwistle, G., eds., Logics for Concurrency: Structure versus
Automata, volume 1043 of LNCS. Springer. 41–101.

[Fagin et al. 2005] Fagin, R.; Kolaitis, P. G.; Miller, R. J.;
and Popa, L. 2005. Data exchange: Semantics and query
answering. Theoretical Computer Science 336(1):89–124.

[Harrison-Broninski 2005] Harrison-Broninski, K. 2005. Hu-
man Interactions: The Heart And Soul Of Business Process
Management. Meghan Kiffer.

[Hull 2008] Hull, R. 2008. Artifact-centric business process
models: Brief survey of research results and challenges. In
OTM Confederated Int. Conf.

[Montali et al. 2010] Montali, M.; Pesic, M.; van der Aalst,
W. M. P.; Chesani, F.; Mello, P.; and Storari, S. 2010. Declara-
tive specification and verification of service choreographiess.
ACM Trans. on the Web.

[Nigam and Caswell 2003] Nigam, A., and Caswell, N. S.
2003. Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3).

[Slaats et al. 2013] Slaats, T.; Mukkamala, R. R.; Hildebrandt,
T. T.; and Marquard, M. 2013. Exformatics declarative case
management workflows as dcr graphs. In Proc. of BPM.

[van der Aalst 2012] van der Aalst, W. M. P. 2012. A decade
of business process management conferences: Personal re-
flections on a developing discipline. In Proc. of BPM.

	Introduction
	Human Driven DCDSs
	Syntax
	User Requests
	Execution Semantics

	Verification Formalisms
	Restrictions on DCDSs
	Semantic Restrictions
	Syntactic Restrictions

	Example: Travel Reimbursement System
	Conclusion

