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Abstract. Existing process modelling notations ranging from Petri nets
to BPMN have difficulties capturing the essential features of the domain
under study. Process models often focus on the control flow, lacking an
explicit, conceptually well-founded integration with real data models,
such as ER diagrams or UML class diagrams. In addition, they essentially
rely on the simplifying assumption that each process model focuses
on a single, explicitly defined notion of case, representing the type of
objects that are separately manipulated when the process is instantiated
into actual executions. To overcome this key limitation, Object-Centric
Behavioural Constraints (OCBC) models were recently proposed as
a new notation where data and control-flow are described in a single
diagram, and where their interconnection is exploited to elegantly capture
real-life processes operating over a complex network of objects. In this
paper, we illustrate the essential and distinctive features of the OCBC
approach, and contrast OCBC with contemporary, case-centric notations.
We then relate the approach to recent developments in the conceptual
understanding of processes, events, and their constituents, introducing a
series of challenges and points of reflections for the community.

1. Introduction

Despite the plethora of notations available to model business processes, process
modellers struggle to capture real-life processes using mainstream notations such
as Business Process Model and Notation (BPMN), Event-driven Process Chains
(EPC), and UML activity diagrams. All such notations require the simplifying
assumption that each process model focuses on a single, explicitly defined notion
of case, representing the type of objects that are separately manipulated when
the process is instantiated into actual executions. The discrepancy between this
assumption and reality becomes evident when using process mining techniques to
reconstruct the real processes based on the available data [1]. Process mining starts
from the available data and, unless one is using a Business Process Management
(BPM) of Workflow Management (WFM) system for process executions, explicit
case information is typically missing. Real enterprise systems from vendors such
as SAP (S/4HANA), Microsoft (Dynamics 365), Oracle (E-Business Suite), and
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Salesforce (CRM) are database-centric. Process activities can be viewed as updates
on the underlying data, and the notion of process instance (i.e., case) does not
exist.

Process-centric diagrams using BPMN, EPCs, or UML describe the life-cycle
of individual cases. When formal languages like Petri nets, automata, and process
algebras are used to describe business processes, they also tend to model cases
in isolation. Moreover, the data perspective is secondary or missing completely.
Object-Centric Behavioural Constraint (OCBC) models [2] have been recently
proposed to address the following interrelated problems:

• Modelling the interaction between multiple process instances, specifically
when there is a one-to-many or many-to-many relationship between them.
For example, an order may relate to multiple order lines and one delivery
may refer to multiple order lines belonging to different orders. How to model
activities related to orders, order lines, and deliveries in a single diagram?

• Modelling both the data and the control-flow perspective in a unified and
integrated manner. Existing approaches focus on one of the two or resort
to the use of multiple diagrams. For example, the relation between class
diagrams and activity diagrams in UML is indirect and not visualized.

Note that languages like BPMN allow modellers to attach simple data objects to
processes, but the more powerful constructs present in Entity Relationship (ER)
models and UML class models cannot be captured in such process models. In
particular, complex constraints over data attached to processes (e.g., cardinality
constraints) must influence the behaviour of the process itself (think to the
activities that must generate those data objects). In contemporary languages,
neither complex constraints over data nor a way to capture how data can influence
processes are reflected at all. Also other mainstream business process modelling
notations can only describe the lifecycle of one type of process instance at a
time, but not the co-evolution of multiple, interacting instances (such as the
management of different orders, where the evolution of one order impacts on the
possible evolutions of the related orders).

Object-Centric Behavioural Constraint (OCBC) models have been proposed
as a modelling language that combines ideas from declarative, constraint-based
languages like DECLARE [3], and from structural conceptual modelling languages
(such as ER, UML, or ORM) [2]. OCBC allows to describe the temporal interaction
between activities in a given process and is able to attach (structured) data to
processes in a unified framework. In this way, we can capture in a uniform way
processes, data, and their interplay.

OCBC models are related to artifact- and data-centric approaches [4, 5, 6].
These approaches also aim to integrate data and processes. However, this is not
done in a single diagram representing different types of process instances and
their interactions (which are governed by the data). In addition, these approaches
usually assume complete knowledge over the data, and require to fully spell out
data updates when specifying the activities [7, 8]. The few proposals dealing with
artifact-centric models whose structural aspects are interpreted under incomplete
information [9] do not come with a fully integrated, declarative semantics, but
follow instead the Levesque functional approach [10] to separate the evolution
of the system from the inspection of structural knowledge in each state. The
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semantics of an OCBC model, instead, can be fully characterised by resorting to
first-order temporal logic, where the temporal dimension capturing the dynamics
of the process interacts with the structural dimension of objects and their mutual
relationships [11].

In this paper, we illustrate the essential and distinctive features of the OCBC
approach, using a simple, yet very sophisticated example, and contrast OCBC
with contemporary, case-centric notations. We then relate the approach to recent
developments in the conceptual understanding of processes, events, and their
constituents, introducing a series of challenges and points of reflections for the
community that could be effectively attacked by relying on recent works by Nicola
and colleagues.

2. Case-Centric Notations and Many-to-Many Processes

As pointed out in the introduction, contemporary process modelling notations
such as BPMN, EPC, and UML activity diagrams typically require a one-to-one
correspondence between a process1 and a corresponding notion of case. This notion
of case represents the main object type targeted (and manipulated) by the process.
For this reason, in the remainder of the paper we use the umbrella term case-
centric to refer to such notations. Examples of cases are orders in order-to-cash
e-commerce scenarios, or prospective students in the context of admission processes
to university study programs.

The intuition behind this correspondence is that each instance of the process
will target (and evolve) a single object of the corresponding case class. Since
contemporary notations mainly focus on the process control-flow, that is, on the
activities/tasks to be executed and on their acceptable execution orderings, being
case-centric also implies that each task execution in a given process instance will
target, again, a single case object. A limited form of one-to-many relationship
between cases and tasks is supported through the usage of loops and multi-instance
constructs in the process. Such constructs usually implicitly indicate the presence
of object classes acting as subcases, where many subcases may refer to the same
case. An example here consists of the various order lines composing an order. The
usage of loops or multi-instance constructs in the process is only possible if the
evolution of all subcases can be synchronously bound to that of the corresponding
case and of the other “sibling" subcases referring to the same case object. This is
not obvious, nor feasible in general.

All in all, case-centric notations fall short when managing complex one-to-
many relationships, and many-to-many relationships relating different objects
that are co-evolved by the same process. Such situations are widespread in real
organisations. For example, e-commerce companies like Amazon© flexibly handle
order-to-delivery processes by relating multiple customer orders with multiple
packages, so that a package sent to a customer may contain a mix of order lines
belonging to different orders placed by that customer. This makes it impossible
to fix a single notion of case when capturing the process as a whole, since it
intrinsically relates objects of different types (such as orders and packages) in a

1Recall that, in the BPM literature, process is a synonym for process schema.
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Figure 1. UML class diagram capturing the main object and relationship types of the job hiring
domain.

many-to-many fashion. Depending on the subjective view and scope of interest
within the process, different case objects may be selected to understand how the
process works. For example, a courier may see the order-to-delivery process as
centred around the notion of package. A customer, instead, may prefer a view
centred on each single order in isolation, ranging from the order placement and
payment to its delivery (which is materially realised by delivering all packages
containing order lines for that order).

Similarly, in a job hiring process there is a many-to-many relationship between
candidates seeking a job, and job offers placed to fill available positions. This
requires to decouple the flow of activities under the responsibility of the company
placing the job offer, from that followed by each applying candidate. In the
following, we take inspiration from [12] and discuss in more details a fragment of
a typical job hiring process, pointing out the challenges it pose to case-centric
notations.

2.1. A Job Hiring Process

We consider the fragment of a job hiring process enacted by an organisation
whenever there is the need of filling an internal position. For simplicity, we consider
only two types of actors involved in the process:

• The organisation itself, responsible for the publishing and management of
job offers, as well as for the selection of winning applications.

• Candidates interested in the offered positions, who participate to the se-
lection process by registering their personal data and by submitting their
applications.

The complexity of the process resides in the fact that it relates many candidates
to many job offers, using the key notion of application as relator. In the following,
we assume that the main object and relationship types of the job hiring domain
are those illustrated in the UML class diagram of Figure 1. We illustrate various
constraints to describe tasks in the job hiring process together with their mutual
temporal relations. For the sake of readability, we use the following fonts and
colors:

• boxed, violet sans-serif font to indicate object types;

• violet, underlined sans-serif font to indicate relationship types;
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• blue, bold typewriter font within a rounded rectangle to indicate
tasks;

• blue, italics font to highlight temporal aspects, such as the amount of times
a task can be repeated, or whether some task is expected to occur before or
after another task;

• green, dash-underlined italics sans-serif font to point out relationships be-
tween tasks and object types.

• blue, dash dot-underlined italics font to denote a co-reference indicating
which instances of tasks are related via the objects they manipulate.

The relevant constraints for our job hiring example are (see also Figure 7):

C.1 The register data task is about a Person .

C.2 A Job Offer is created by executing the post offer task.

C.3 A Job Offer is closed by determining the winner .

C.4 A Job Offer is stopped by canceling the hiring .

C.5 An Application is created by executing the submit task.

C.6 An Application is promoted by marking it as eligible .

C.7 An Application can be submitted only if, beforehand , the data about

the Candidate who made that Application has been registered .

C.8 A winner can be determined for a Job Offer only if at least

one Application , responding to that Job Offer , has been previously

marked as eligible .

C.9 For each Application responding to a Job Offer , if the Application

is marked as eligible then a winner must be finally determined

for that Job Offer , and this last task is executed only once for that

Job Offer .

C.10 When a winner is determined for a Job Offer , Applications responding to

that Job Offer cannot be marked as eligible anymore.

C.11 A Job Offer closed by a determine winner task cannot be stopped by

executing the cancel hiring task (and vice-versa).

2.2. Capturing the Job Hiring Example with Case-Centric Notations

The most fundamental issue when trying to capture the job hiring example of
Section 2.1 using case-centric notation is to identify what is the case. This, in
turn, determines what is the orchestration point for the process, that is, which
participant coordinates process instances corresponding to different case objects.
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(b) A job hiring process receiving multiple applica-
tions in a sequential way; a new application is only
handled when the previous applications has been
checked for eligibility

Figure 2. Common beginner mistakes when capturing a job hiring process (diagrams inspired
from [12])

This problem is apparent when looking at BPMN, which specifies that each process
should correspond to a single locus of control, i.e., confined within a single pool.2

In our example, we have two participants: candidates (in turn responsible for
managing Applications), and the job hiring organisation (in turn responsible for
the management of JobOffers). However, we cannot use neither of the two to
act as unique locus of control for the process: on the one hand, candidates may
simultaneously create and manage different applications for different job offers; on
the other hand, the organisation may simultaneously spawn and manage different
job offers, each one resulting in multiple applications being evaluated. A typical
modelling mistake done by novices is to select the job hiring organisation as unique
locus of control, and squeeze all tasks therein. This leads to very cumbersome
courses of execution as shown in Figure 2.

As clearly pointed out in textbooks (see, e.g., Chapter 8 of [12]), the only
way to handle in BPMN a many-to-many process such as the job hiring process
considered here, is to distribute the process across multiple, separate pools – in
our case study, the candidate and the hiring company. Each of such pools focuses
on a different case class – in our case study, the hiring company focuses on job
offers, whereas the candidate focuses on his/her own applications. However, such
multiple pools cannot execute their internal flows in separation, but must instead
be properly interconnected using suitable synchronisation mechanisms, so as to
ensure that the evolution of certain process instance within a pool is properly
aligned with the evolution of process instances within another pool. For example,
in our case study a job offer can be canceled only if no candidate has created an
application for it, which also implicitly indicates that once a job hiring has been
canceled, none of its applications can be marked as eligible for it. This requires to
relate job offers with applications, which can only be done by introducing complex
event or data-based synchronisation mechanisms [12] that are not at all mentioned
in the description of the process provided in Section 2.1.

2Recall that a BPMN pool represents a participant [13].

A. Artale et al. / Enriching Data Models with Behavioral Constraints262



3. The OCBC Model

We now present the syntax and graphical appearance of OCBC models, and
informally comment about their formal semantics. We use the job hiring example
of Section 2.1 to illustrate the main concepts and to show the sophistication of this
approach. The original proposal of the OCBC model [14, 11] is the way activities
and data are related. In particular, an OCBC model captures, at once:

• data dependencies, represented using standard data models containing
classes , relationships and constraints between them;

• activities , accounting for units of work within a process;
• mutual relationships between activities and classes , linking the execution of

activities in a given process with the data objects they manipulate;
• temporal constraints between activities;
• co-reference constraints that enforce the application of temporal dependen-

cies, and in particular scope their application to those activities instances
that indirectly co-refer thanks to the objects and relationships they point to.

We start by recalling data models and temporal constraints, which are then
used as the basic building blocks of the OCBC approach.

3.1. The Data Model – ClaM

We assume that data used by the activities is structured according to the ClaM
data model (which stands for CLAss data Model). While we do not advocate
here for a new data model, for simplicity, we assume ClaM to be a simplified
version of UML, with object classes that can be organized along ISA hierarchies
(with possibly disjoint sub-classes and covering constraints), binary relationships
between object classes and cardinalities expressing participation constraints of
object classes in relationships. More formally we have:

Definition 1 (ClaM Syntax). A conceptual schema Σ in the Class Model, ClaM,
is a tuple

Σ = (UC ,UR, τ,#dom,#ran, ISA, ISAR,disj,cov), where:

• UC is the universe of object classes. We denote object classes as O1, O2, . . .;
• UR is the universe of binary relationships among object classes. We denote

relationships as R1, R2, . . .;
• τ : UR → UC ×UC is a total function associating a signature to each binary

relationship. If τ(R) = (O1, O2) then O1 is the range and O2 the domain of
the relationship;

• #dom : UR ×UC �→ N× (N ∪ {∞}) is a partial function defining cardinality
constraints of the domain of a relationship. #dom(R,O) is defined only if
there is O1 s.t. τ(R) = (O,O1);

• #ran : UR × UC �→ N× (N ∪ {∞}) is a partial function defining cardinality
constraints of the range of a relationship. #ran(R,O) is defined only if there
is O1 s.t. τ(R) = (O1, O);
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Figure 3. Types of temporal constraints between activities

• ISA ⊆ UC × UC is a binary relation defining the super-class and sub-class
hierarchy on object classes. If ISA(C1, C2) then C1 is said to be a sub-class
of C2 while C2 is said to be a super-class of C1;

• ISAR ⊆ UR × UR, similar to ISA, allows to specify sub-relationships in the
model;

• disj ⊆ 2UC × UC is a binary relation defining the set of disjoint sub-classes
in an ISA hierarchy on object classes;

• cov ⊆ 2UC × UC is a binary relation defining the set of sub-classes covering
the super-class in an ISA hierarchy on object classes. �

As for the formal set-theoretic semantics of ClaM and its translation to DLs we
refer to [15, 16, 17]. There, cardinality constraints are interpreted as the number of
times each instance of the involved class participates in the given relationship, ISA
is interpreted as sub-setting, while disj and cov are interpreted in the obvious
way using disjointness/union between the denotation of the involved classes. More
specifically, since we are using data models in a dynamic setting where object and
relationships evolve over time, we interpret them along the temporal semantics
presented in [18, 19, 20] for temporal data models. Essentially, the constraints
captured therein must be satisfied in each snapshot (i.e., time point) of the system.

Example 1. Figure 1 can be represented as a ClaM conceptual schema as:

UC = {Person,Candidate,Application, Job Offer, Job Profile};
UR = {made by, responds to, refers to};

τ(made by) = (Application,Candidate); . . .

ISA = {(Candidate,Person)};
#dom(made by,Application) = (1,∞); . . .

#ran(made by,Candidate) = (1, 1); . . .

Note that cardinalities are shown in the diagram of Figure 1 using the UML
reading. �
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response(A,B) If A is executed, then B must be executed afterwards.
unary-response(A,B) If A is executed, then B must be executed exactly once afterwards.
precedence(A,B) If A is executed, then B must have been executed before.
unary-precedence(A,B) If A is executed, then B must have been executed exactly once

before.
responded-existence(A,B) If A is execute, then B must also be executed (either before or

afterwards).
non-response(A,B) If A is executed, then B will not be executed afterwards.
non-precedence(A,B) If A is executed, then B was never executed before.
non-coexistence(A,B) A and B cannot be both executed.

Figure 4. Intuitive meaning of temporal constraints

3.2. Temporal Constraints over Activities

Taking inspiration from the DECLARE patterns [3], we present here the temporal
constraints between (pairs of) activities that can be expressed in OCBC. Figure 3
graphically renders such constraints, while their textual representation is defined
next.

Definition 2 (Temporal constraints). Let
• UA be the universe of activities, denoted with capital letters A1, A2, . . .;
• UTC be the universe of temporal constraints, i.e., UTC = {response,
unary-response, precedence, unary-precedence, responded-existence,
non-response, non-precedence, non-coexistence}, as shown in Figure 3,
where each tc ∈ UTC is a binary relation over activities, i.e., tc ⊆ UA × UA.

The set of temporal constraints in a given OCBC model is denoted as ΣTC and
is conceived as a set of elements of the form tc(A1, A2), where tc ∈ UTC and
A1, A2 ∈ UA. �

In the literature, such constraints are typically formalised using linear temporal
logic over finite traces [21, 22]. We report their intuitive meaning in Figure 4.

We observe that the non-precedence constraint is syntactic sugar, as it can be
emulated using non-response:

non-precedence(A,B) ≡ non-response(B,A).

Thus, in the following we will not consider it anymore. When defining later
on the OCBC model we will consider the set Σ+

TC of positive constraints
containing response, unary-response, precedence, unary-precedence, and
responded-existence, and the set Σ−

TC of negative constraints containing
non-response and non-coexistence.

3.3. OCBC Models and their Components

We are now ready to define the OCBC model, and comment on its constitutive
components, starting from data models and temporal constraints as respectively
defined in Sections 3.1 and 3.2.
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Definition 3 (OCBC syntax). An OCBC model, M, is a tuple:

(ClaM,UA,URAC
, τRAC

,#act,#obj, cref,neg-cref), where:

• ClaM is a data model as in Definition 1;
• UA is the universe of activities;
• URAC

is the universe of activity-object relationships being a set of binary
relationships;

• τRAC
:URAC

→ UA × UC is a total function associating a signature to each
activity-object relationship. If τRAC

(R) = (A,O) then A ∈ UA and O ∈ UC ;
• #act :URAC

×UA �→ N× (N∪{∞}) is a partial function defining cardinality
constraints on the participation of activities in activity-object relationships.
#act(R,A) is defined only if there is O s.t. τRAC

(R) = (A,O);
• #obj :URAC

× UC �→ {1} is a partial function that, when defined, denotes
the activity that generated a given object in O. #obj(R,O) is defined only if
there is O s.t. τRAC

(R) = (A,O);
• cref is the partial function of co-reference constraints s.t.

cref : Σ+
TC × URAC

× URAC
�→ UC ∪ UR;

• neg-cref is the partial function of negative co-reference constraints s.t.
neg-cref : Σ−

TC × URAC
× URAC

�→ UC ∪ UR.
�

In the following we detail the semantics of an OCBC model by concentrating on
the two main aspects, i.e., activity-object relationships and co-reference constraints.

Activity-object relationships capture how activities relate to classes. Let R ∈
URAC

so that τRAC
(R) = (A,O). The intuitive meaning of R is that each instance

of activity A operates over a objects of type O (typically, a single one). In this
light, inverses of activity-object relationships are assumed to be functional. On top
of this, we single out activity-object relationships capturing the fact that objects of
the related class are generated when instances of the related activity are executed.
We call these special relationships as generating activity-object relationships while
we denote the task as object generating task. If R is o a generating activity-
object relationship, then it is associated to a cardinality constraint of the form
#obj(R,O) = 1. The semantics of this cardinality constraint is as follows: whenever
an object o is of type O at a given time t, then there must have been a previous
time t′ at which an activity instance a of type A was executed on o (i.e., such that
R(a, o) held at time t′).

Cardinality constraints for participation of activities in activity-object rela-
tionships (#act) are instead captured as classical cardinalities in data models
(see [15, 18, 20]) with the intended meaning that a task can manipulate many
objects.

In the following, we show how activity-object relationships can be used to
capture some of the constraints of our job hiring case study, and comment on
interesting properties of the resulting OCBC model.

Example 2. Figure 5 shows how constraints C.1–C.6 from the job hiring case study
from Section 2.1 can be captured in OCBC. We maintain the shape, color and font
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Figure 5. Activity-object relationships in the job hiring scenario of Section 2.1

coding schemes used in Section 2.1, so as to facilitate establishing a connection
between the textual description of constraints, and their corresponding OCBC
representation.

The activities submit and post offer are object generating activities,

and the relationships connecting submit to Application and post offer to

Job Offer are generating activity-object relationships. In particular, while a person
can exist in the domain even if no data have been registered for him/her, an
application can exist in the domain only if it was created by an instance of the
submit task (similarly for a job offer).

Notably, even though the OCBC model in Figure 5 does not contain any
explicit temporal constraint, the presence of activity-object relationships that
generate objects, and their interplay with the constraints present in the data
model, already imply the existence of implicit constraints over the allowed activity
executions. First and foremost, activities pointing to a class that is also pointed
by a generating activity-object relationship, can only be executed on an object if
that very same object was previously created. This means that an application can
be marked as eligible only if it was previously created through the execution of a
submit activity instance. Similarly, a job offer can be stopped by a cancel hiring
activity instance, or closed by a determine winner activity instance, only if it has
been previously created by executing a post offer activity instance.

These temporal dependencies could also propagate further, depending on how
the pointed classes are related to each other. We discuss in particular two examples
from Figure 5. When a job offer is created by posting it, given the cardinality
constraints, it must also refer to exactly one job profile. Thus, such profile must
belong to the class Job Profile at the same time when the relationship holds. Even
more interesting is the creation of an application, which requires, on the one hand,
the candidate owning that application and, on the other hand, a job offer. Thus,
due to the interplay between the two generating activity-object relationships for
Application and Job Offer , mediated by the responds to relationship linking

each application to exactly one job offer (but not viceversa), a complex precedence
constraint is implicitly introduced stating that: whenever an Application is

submitted responding to some Job Offer , that Job Offer must have been

posted simultaneously or before. �
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Example 2 already gives an intuition about the sophistication, but also the sub-
tleties, arising when adopting the OCBC approach. This is an intrinsic charac-
teristic of declarative process modelling notations, as extensively discussed in
[21, 23].

Co-reference constraints constitute the most powerful construct in OCBC. They
have the ability of scoping the temporal constraints defined in Section 3.2, in such
a way that they do not apply to any instances of the corresponding activities, but
only to those activity instances that co-refer to each other via the objects they
refer to. The co-reference may insist on a class, thus requiring such manipulated
objects to be the same object, or on a relationship, thus requiring such manipulated
objects to be related to each other via that relationship.

This is of utmost importance. Take for example constraint C.7 from Section 2.1.
That constraint is not satisfied if submitting an application is preceded by an
arbitrary instance of the register data task. The constraint requires that there

exists a preceding instance of the register data task that is about the very

same candidate who is related to that Application via the made by relationship.

Similarly, according to C.11, the execution of an instance of the cancel hiring

task on some Job Offer does not prevent the possibility of determining the

winner for other offers.
According to Definition 3, there are two kinds of co-reference constraints:

positive and negative, and they can range either over object classes (as illustrated in
Fig. 6a and 6c) or over relationships (as illustrated in Fig. 6b and 6d). The semantics
of co-reference temporal constraints, considering response and not-response
as prototypical example, is informally given in Figure 6. A similar meaning
can be assigned to precedence and not-precedence (by substituting aftewards
with before), and to responded-existence and not-coexistence (by removing
afterwards and considering the entire timeline).

To better clarify the usage of such constraints, and also their interesting (and
subtle) features, we make again use of our case study in the job hiring domain.

Example 3. The OCBC model illustrated in Figure 7 captures all constraints
described in Section 2.1. Interestingly, each constraint mentioned in Section 2.1
is mirrored into a corresponding activity-object relationship or co-referenced
temporal constraint in the diagram.

The co-reference constraints involving object classes specify constraints on
how objects connected to different activities can/cannot be shared. For example,
the Job Offer instance stopped by a cancel hiring activity cannot be the

same one closed by a determine winner activity due to the non-coexistence
constraint. This means that when one of the two activities is executed on a job
offer, the other cannot be executed on the same offer, but may be still executable
for other offers. This constraint can be expressed using the following OCBC syntax:

neg-cref
(
non-response(determine winner, cancel hiring), closes, stops

)
= Job Offer
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A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o, t1)),
then an instance a2 of A2 must be executed afterwards
on the same object o (i.e., with R2(a2, o, t2) and t1 < t2)

(a) Co-reference of response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o1 of type O1 (i.e., with R1(a1, o1, t1)),
then an instance a2 of A2 must be executed afterwards
on some object o2 of type O2 (i.e., with R2(a2, o2, t2) and t1 < t2)
that relates to o1 via R at the moment of execution of a2
(i.e., having R(o1, o2, t2)).

(b) Co-reference of response over a relationship

A1 A2

O

R1 R2

Every time an instance a1 of A1 is executed
on some object o of type O (i.e., with R1(a1, o, t1)),
then no instance a2 of A2 that relates to the same object o
can be executed afterwards (i.e., with R2(a2, o, t2) and t1 < t2)

(c) Co-reference of non-response over an object class

A1 A2

O1 O2

R

R1 R2

Every time an instance a1 of A1 is executed
on some object o1 of type O (i.e., with R1(a1, o1, t1)),
then no instance a2 of A2 that relates to o1 via R can be executed afterwards
(i.e., there is no a2, o2 with R2(a2, o2, t2), R(o1, o2) and t1 < t2)

(d) Co-reference of non-response over a relationship

Figure 6. Co-reference response constraints over (a) object classes and (b) relationships, with
their negated versions (c-d)

The co-reference constraints involving relationships specify constraints on how
activities can/cannot occur on given objects connected to each other through the
data model. As an example, the co-reference precedence temporal constraint relat-
ing submit to register data enables the possibility of submitting only appli-
cations made by candidates who already registered their data. The corresponding
OCBC syntax is:

cref(precedence
(
submit, register data), creates, is about

)
= made by.

Obviously, although not directly linked to Candidate , the is about activity-

object relationship is inherited by that class given the ISA linking it to Person .
It is interesting to notice that this constraint does by no means affect when and
how many times the register data task can be executed for a given Person .
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is about 1
1

creates

1

promotes

1 creates
1

1
stops

1

closes

1

Person

Candidate Application Job Offer Job Profile1

� made by

1..∗ ∗
responds to

1 ∗
refers to

1

register

data
submit

mark as

eligible

post

offer

cancel

hiring

determine

winner

Figure 7. OCBC model for the job hiring scenario of Section 2.1, where each one of C.1–C.11
therein corresponds to either an activity-object relationship or a co-reference temporal constraint
in the OCBC model. The lightweight non-response constraint is redundant: it is implied by the
other constraints in the diagram.

Indeed, the model implicitly captures the fact that the same Person may update
his/her personal data multiple times.

Of particular interest is the unary-response constraint that relates
mark as eligible to determine winner (which captures C.9 from Section 2.1),

in particular when multiple applications submitted to the same job offer (say, job of-
fer jo) are marked as eligible. In this case, the constraint requires that every instance
of the mark as eligible task promoting an Application that responds to

jo, is eventually followed by a single instance of the determine winner task
that closes offer jo. Such a single instance of determine winner for offer jo
will be actually the same for all such eligible applications. In fact, having two
distinct instances of determine winner for offer jo would violate the fact that
the constraint is a unary response. This has a twofold implication:

• The (unique) instance of determine winner for jo must occur after all the
occurrences of mark as eligible for applications that respond to jo.

• Once the (unique) instance of determine winner for jo is executed,
it is no more possible to mark as eligible any application respond-
ing to jo. For otherwise, they would require a later occurrence of
determine winner for jo, which would clash with the uniqueness

requirement. This shows that the non-response constraint relating
determine winner to mark as eligible via the responds to relation-

ship is actually redundant: it is implied by the unary-response constraint re-
lating mark as eligible to determine winner via the same responds to
relationship. Notice that further applications may be still submitted for a
closed job offer, but they will not be marked as eligible.

• For similar reasons, the following is also implied: once an eligible Application

responds to a Job Offer , then that Job Offer cannot anymore be
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stopped . Indeed, an eligible Application requires that the (unique)

Job Offer is eventually closed (and thus cannot anymore be stopped

due to the non-coexistence constraint between determine winner and
cancel hiring ). �

4. Conclusion and Discussions

We have presented the OCBC model, which enriches structural conceptual models
with behavioural constraints. By means of a small, but relevant case study, we have
shown how OCBC captures the interconnection between the process and the data
perspective, in a way that allows one to elegantly capture complex many-to-many
processes simultaneously operating over different objects. We have discussed that
such processes are recurrent in practice, but they can hardly be represented using
conventional, case-centric process modelling notations.

We believe that the OCBC approach can constitute the basis for novel re-
search at the intersection of business process management, conceptual modelling,
automated reasoning, and formal ontology. A line of research focussed on the
discovery of OCBC models from event logs of process executions has been already
started [24, 25] . We discuss next some of the main challenges that are still open,
and were we believe the synergy with recent works by Nicola and colleagues is
essential to effectively attack them.

4.1. Formal semantics and relationship with other process modelling approaches

As already recalled in the introduction, the formal semantics of OCBC can be
defined in pure logical terms by resorting to first-order temporal logic, FOL(<),
i.e., first-order logic equipped with a special sort that represents time points and
the usual < binary relation over time points. In particular, every construct present
in the OCBC model of interest is translated into a corresponding FOL(<) formula,
and the semantics of the entire model is then simply obtained as the conjunction
of all so-obtained formulae.

It is interesting to notice that while this approach is customary in structural
conceptual modelling, it departs from the usual approach followed in business
process management, where the formal (execution) semantics of the process is
given in terms of a Petri net or transition system, whose states can possibly be
annotated with the configuration of the data characterising the corresponding
state of affairs. This shows that, typically, processes semantically decouples the
structural and temporal/dynamic aspects of the system. In addition, if such data
have to be interpreted under the assumption of incomplete information, then this
semantics cannot capture the evolution of “what is true”, but only the evolution of
“what is certainly known to be true” [10, 9].

A preliminary attempt to define the formal semantics of OCBC can be found
in [11]. One of the main assumptions in that paper is that activity occurrences
executed within the process should be identified always by the same object, acting
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as a sort of global process (or scenario) identifier. However, this is only needed
if one wants to incorporate in the OCBC model also global temporal constraints
that do not correlate activities via the data model, but just mutually relate all
their possible occurrences. If we only consider temporal constraints that co-refer
activities via the structural conceptual model, like those presented in this paper,
then we do not need such a global identifier, and we can in fact safely assume that
each activity occurrence is not important per sè, but only in terms of how it relates
to the objects in the data model. This reflects the intuition that a candidate in our
job hiring example is interested in knowing the identifier of the application (s)he
submitted, but never explicitly refers to the different identifiers of the activity
occurrences used to evolve that application.

From the ontological point of view, it remains open to understand whether it
is an essential property of activities to refer to the structural conceptual model,
and of temporal constraints to co-refer via the structural conceptual model, or
whether we should instead conceive also processes that have “global” activities and
constraints. This requires a research agenda focused on the nature of processes
and their participants, which has been recently initiated by Adamo et al. in [13],
but that still misses an ontological characterisation of how data objects participate
to processes.

4.2. Reasoning over OCBC Models

It is notoriously known that domain experts have difficulties in understanding
declarative process models, both when indicating whether an execution trace
conforms to the modelled constraints [23], and when it comes to determine which
implicit constraints implied by those modelled explicitly [21]. In fact, several
hidden dependencies may arise from the (complex) interplay between temporal
constraints. At the same time, some modelled constraints may turn out to be
redundant, in the sense that they are implied by the other constraints in the
model. We have discussed this particular aspect in Example 3. Reasoning becomes
therefore essential in the context of OCBC, to support humans in ascertaining
properties of the model, as well as in checking whether a given execution trace
conforms to the model.

Reasoning over OCBC models presents at least two interesting challenges.
First of all, provably correct techniques to carry out fundamental reasoning tasks
such as consistency and constraint implication are needed. This requires, first, to
understand the boundaries of decidability and complexity for such reasoning tasks.
While the semantics in [13] does not directly help towards this goal, we believe
that capturing OCBC constraints that always co-refer through the structural
conceptual model can lead to a much simpler formalisation. In particular, we are
currently working on a formalisation that can be fully captured within the temporal
description logics TUSALCQI and fragments thereof [26, 27, 28, 29, 30]. Such a
formalisation would then provide a concrete basis for automated reasoning, given
that the main reasoning tasks for TUSALCQI are not only decidable, but also
present the same worst-case complexity of reasoning on (non-temporal) ALCQI
knowledge bases.

A second, key aspect is related to a deeper understanding of OCBC in terms
of ontological analysis. This requires, as a starting point:
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Application
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Assigned
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responds to

1 0..1

wins for

mark as
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promotes

1

1

closes

1

Figure 8. Combining behavioural constraints and subtyping to capture phases and how objects
enter in a given phase. The figure modifies the OCBC model for the job hiring example shown
in Figure 7, by introducing the explicit characterisation of an Assigned Job Offer . This is a

phase entered by a Job Offer when the winner is determined , which in turn requires to pick

one Eligible Application among those that respond to that offer. The two temporal constraints

now express that when at least one Application that responds to Job Offer o is promoted

to Eligible , then determine winner closing o can (and is expected) to occur exactly once.

Since determine winner references the subtype Assigned Job Offer , upon an occurrence of this

activity o migrates from being just a generic Job Offer , to now be a member of the Assigned
phase.

• To study how metaprofiles, in the style of well-known approaches such
as ONTOCLEAN [31], apply to OCBC activities, but also how OCBC
constraints interact with metaprofiles used in the structural conceptual
schema. Figure 8 shows an example of how an OCBC constraint may interact
with phase types.

• To study how OCBC activities can be conceived as (ontological) events.
This is a rather unexplored, but extremely important, topic, not just in
the context of OCBC, but also within business process management in
general. This appears to be extremely difficult when considering foundational
ontologies such as DOLCE [32], which adopt an eternalist view according to
which all event occurrences are fully determined (although some of them
may be unknown). Fortunately, recent developments by Guizzardi et al. [33]
and by Guarino [34] are now putting forward an approach where only past
events are considered frozen in time, whereas future events may be genuinely
subject to change. This constitutes a solid basis for understanding events in
the context of business processes in general, and OCBC in particular.

4.3. Enactment, monitoring, and ontological characterisation of process traces

Understanding the relationship between OCBC models and the general notion of
event becomes particularly important when the OCBC model is instantiated into
an actual execution. This relationship can be established at a twofold level: the
level of activity occurrences, and that of the entire execution trace.

At the activity level, during enactment one has to clearly distinguish the
events that have already occurred (and that are consequently frozen in time)
from those that may occur in the future. For the latter, it would be interesting

A. Artale et al. / Enriching Data Models with Behavioral Constraints 273



to understand how the foundational approach in [34] can be used to reconstruct
the expectations about the occurrence of future events. In particular, depending
on the current execution trace and the temporal constraints in the model, one
should distinguish between activity occurrences that are expected to occur in the
future, those that are forbidden to occur in the future, and those that instead may
happen. Monitoring goes even beyond that, suggesting that not only future event
occurrences have to be considered in terms of these executability criteria, but also
that the status of temporal constraints themselves has to be considered [35, 36, 37].

At the overall execution trace level, it has to be noted that there is a fundamen-
tal difference between case-centric approaches and declarative, constraint-based
approaches such as OCBC. On the one hand, the execution of an instance of a
case-based process is, in the terminology of Guarino [34], an episode, because it
requires to eventually reach one of the ending states foreseen by the process model
(e.g., the delivery of an order, or the assignment/cancelation of a job offer). On
the other hand, the execution of an instance of a constraint-based process is what
Guarino calls in [34] a process, since it has no culminating part characterising
its full realisation, but can instead be stopped whenever all temporal constraints
present in the model are satisfied. In addition, it may happen that an evolving
process instance deviates from the acceptable courses of executions foreseen by
a case-centric process model, or causes the violation of one or more constraints
in a declarative process model (either because of a direct violation of a single
constraint, or because of multiple conflicting constraints that could not anymore
be all satisfied, no matter how the execution continues [38]). How to characterise
these different types of events and episodes is extremely important, also towards
analysing processes and their execution in relationship with the broader challenge
of organisational compliance, risk, and governance.
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