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Abstract. The use of ontologies in various application domains, such
as Data Integration, the Semantic Web, or ontology-based data man-
agement, where ontologies provide the access to large amounts of data,
is posing challenging requirements w.r.t. the trade-off between the ex-
pressive power of a Description Logic and the efficiency of reasoning.
The logics of the DL-Lite family were specifically designed to meet such
requirements and optimized w.r.t. the data complexity of answering com-
plex types of queries. In this paper, we propose DL-Litebool, an extension
of DL-Lite with full Booleans and number restrictions, and study the
complexity of reasoning in DL-Litebool and its significant sub-logics. We
obtain our results, together with useful insights into the properties of the
studied logics, by a novel reduction to the one-variable fragment of first-
order logic. We study the computational complexity of satisfiability and
subsumption, and the data complexity of answering positive existential
queries (which extend unions of conjunctive queries). Notably, we extend
the LogSpace upper bound for the data complexity of answering unions
of conjunctive queries in DL-Lite to positive queries and to the possibility
of expressing also number restrictions, hence local functionality.

1 Introduction

Description Logics (DLs) provide the formal foundation for ontologies, and the
tasks related to the use of ontologies in various application domains are posing
new and challenging requirements w.r.t. the trade-off between the expressive
power of a DL and the efficiency of reasoning over knowledge bases (KBs) ex-
pressed in the DL. On the one hand, it is expected that the DL provides the
ability to express TBoxes without limitations. On the other hand, tractable rea-
soning is essential in a context where ontologies become large and/or are used to
access large amounts of data. This is a scenario emerging, e.g., in Data Integra-
tion [1], the Semantic Web [2], P2P data management [3, 4], ontology-based data
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access [5, 6], and biological data management. These new requirements have led
to the proposal of novel DLs with PTime algorithms for reasoning over KBs
(composed of a TBox storing intensional information, and an ABox representing
the extensional data), such as those of the EL-family [7, 8] and of the DL-Lite
family [9, 10].

The logics of the DL-Lite family, in addition to having inference that is
polynomial in the size of the whole KB, have been designed with the aim of
providing efficient access to large data repositories. The data that need to be
accessed are assumed to be stored in a standard relational database (RDB),
and one is interested in expressing, through the ontology, sufficiently complex
queries to such data that go beyond the simple instance checking case (i.e., asking
for instances of single concepts and roles). The logics of the DL-Lite family are
tailored towards such a task, in other words, they are specifically optimized w.r.t.
data complexity. More precisely, for the various versions of DL-Lite, answering
conjunctive queries or their union (UCQs) [11] can be done in LogSpace in data
complexity [9]. Indeed, the aim of the original line of research on the DL-Lite
family was precisely to establish the maximal subset of DLs constructs for which
one can devise query answering techniques that leverage on RDB technology, and
thus guarantee performance and scalability (see FOL-reducibility in [9]). Clearly,
a requirement for this is that the data complexity of query answering stays within
LogSpace.

In this paper, we pursue a similar objective and aim at providing useful in-
sights for the investigation of the computational properties of the logics in the
DL-Lite family. We extend the basic DL-Lite with full Booleans and number
restrictions, obtaining the logic we call DL-Litebool, and introduce two sublan-
guages of it, DL-Litekrom and DL-Litehorn. Notably, the latter strictly extends
basic DL-Lite with number restrictions, and hence local (as opposed to global)
functionality. We then characterize the first-order logic nature of this class of
newly introduced DLs by showing their strong connection with the one variable
fragment QL1 of first-order logic. The gained understanding allows us also to
derive novel results on the computational complexity of inference for the newly
introduced variants of DL-Lite.

Specifically, we show that KB satisfiability (or subsumption w.r.t. a KB) is
NLogSpace-complete for DL-Litekrom, P-complete for DL-Litehorn, and NP-
complete (resp. coNP-complete) for DL-Litebool. We prove that data complex-
ity of both satisfiability and instance checking is in LogSpace for DL-Litebool.
We then look into the data complexity of answering positive existential queries,
which extend the well-known class of UCQs by allowing for an unrestricted inter-
action of conjunction and disjunction. We extend the LogSpace upper bound al-
ready known for UCQs in DL-Lite to positive existential queries in DL-Litehorn.
Due essentially to the presence of disjunction, the problem is coNP-hard for
DL-Litekrom, and hence for DL-Litebool [10].

The DL-Litebool family has been shown to be expressive enough to capture
conceptual data models like UML and Extended ER [12]. Such correspondence



provided new complexity results for reasoning over various fragments of the
Extended ER language.

The rest of the paper is structured as follows. In the next section we introduce
the three variants of DL-Lite mentioned above. Then we exhibit the translation
to QL1 and derive the complexity results for satisfiability and subsumption. We
proceed with the analysis of data complexity, and conclude with techniques and
data complexity results for answering positive existential queries. (All proofs can
be found at http://www.dcs.bbk.ac.uk/~roman.)

2 The DL-Lite family

We begin by introducing the following extension DL-Litebool of the descrip-
tion logic DL-Lite [9, 10]. The language of DL-Litebool contains object names
a0, a1, . . . , concept names A0, A1, . . . and role names P0, P1, . . . . Complex roles
R and concepts C of DL-Litebool are defined as follows:

R ::= Pk | P−
k , B ::= ⊥ | Ak | ≥ q R,

C ::= B | ¬C | C1 u C2,

where q ≥ 1. Concepts of the form B are called basic concepts. A DL-Litebool
TBox, T , consists of axioms of the form C1 v C2, and an ABox, A, of assertions
of the form Ak(ai) or Pk(ai, aj). Together T and A constitute a DL-Litebool
knowledge base (KB) K = (T ,A). (Note that, assertions involving complex con-
cepts C(ai) and inverse roles P−

k (ai, aj) can be expressed as AC(ai), AC v C
and Pk(aj , ai), respectively, where AC is a fresh concept name.)

A DL-Litebool interpretation is a structure of the form

I = (∆, aI0 , aI1 , . . . , AI
0 , AI

1 , . . . , P I
0 , P I

1 , . . . ), (1)

where ∆ 6= ∅, aIi ∈ ∆, AI
k ⊆ ∆, P I

k ⊆ ∆ × ∆, and aIi 6= aIj , for all i 6= j. The
role and concept constructors are interpreted in I as usual:

(P−
k )I = {(y, x) ∈ ∆×∆ | (x, y) ∈ P I

k }, (⊥)I = ∅, (¬C)I = ∆ \ CI ,

(≥q R)I = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI} ≥ q}, (C1 u C2)I = CI
1 ∩ CI

2 .

We also use the standard abbreviations ∃R ≡ ≥ 1 R and ≤ q R ≡ ¬(≥ q + 1 R).
The satisfaction relation |= is defined in the standard way:

I |= C1 v C2 iff CI
1 ⊆ CI

2 ,

I |= Ak(ai) iff aIi ∈ AI
k ,

I |= Pk(ai, aj) iff (aIi , aIj ) ∈ P I
k .

A KB K = (T ,A) is satisfiable if there is an interpretation, called a model for
K, satisfying all axioms of T and A.

We also consider two sublanguages of DL-Litebool: the Krom fragment,
DL-Litekrom, and the Horn fragment, DL-Litehorn (in the following, Bi, B are
basic concepts).



– A TBox of a DL-Litekrom KB only contains axioms of the form: B1 v B2, or
B1 v ¬B2, or ¬B1 v B2. KBs with such TBoxes will be called Krom KBs.

– A TBox of a DL-Litehorn KB only contains axioms of the form:
d

k Bk v B.
KBs with such TBoxes will be called Horn KBs.

Note that the restricted negation of the original variants of DL-Lite [9, 10] can
only express disjointness of basic concepts, while full negation in DL-Litebool
allows one to define a concept as the complement of another one. In DL-Litehorn
we can express disjointness of basic concepts by using ⊥ in the right-hand side
of axioms. Also, the explicit functionality assertions of DL-Lite (and DL-LiteF,u
in [10]) stating that some roles R are globally functional can be expressed in
DL-Litebool and its sublanguages DL-Litehorn and DL-Litekrom as ≥ 2 R v ⊥.
Moreover, local functionality of a role, i.e., functionality restricted to a (basic)
concept B, can be expressed in DL-Litebool and DL-Litekrom as B v ¬(≥ 2 R),
and in DL-Litehorn as B u ≥ 2 R v ⊥. Thus, DL-Litehorn strictly extends DL-
Lite and DL-LiteF,u with local functionality of roles and, more generally, with
number restrictions.

3 Embedding DL-Lite into the one-variable fragment of
first-order logic

Our main aim in this section is to show that satisfiability for DL-Litebool KBs
can be polynomially reduced to the satisfiability problem for the one-variable
fragment QL1 of first-order logic without equality and function symbols.

Let K = (T ,A) be a DL-Litebool KB. Denote by role(K) the set of role names
occurring in T and A, by role±(K) the set {Pk, P−

k | Pk ∈ role(K)}, and by ob(A)
the set of object names in A. Let qT be the maximum numerical parameter in T .
Note that qT ≥ 2 if the functionality axiom (≥ 2 R v ⊥) is present in T . With
every object name ai in ob(A) we associate the individual constant ai of QL1

and with each concept name Ak the unary predicate Ak(x) from the signature
of QL1. For each role R ∈ role±(K), we also introduce qT fresh unary predicates
EqR(x), for 1 ≤ q ≤ qT . Intuitively, E1Pk(x) and E1P

−
k (x) represent the domain

and range of Pk—i.e., E1Pk(x) and E1P
−
k (x) are the sets of points with at

least one Pk-successor and at least one Pk-predecessor, respectively. Predicates
EqPk(x) and EqP

−
k (x) represent the sets of points with at least q distinct Pk-

successors and at least q distinct Pk-predecessors, respectively. Additionally, for
every Pk ∈ role(K), we take two fresh individual constants dpk and dp−k of QL1

which will serve as ‘representatives’ of the points from the domain of Pk and
P−

k , respectively (provided that they are not empty). Furthermore, for each pair
of objects ai, aj ∈ ob(A) and each R ∈ role±(K), we take a fresh propositional
variable Raiaj of QL1 to encode R(ai, aj). By induction on the construction of
a DL-Litebool concept C we define the QL1-formula C∗:

(⊥)∗ = ⊥, (Ak)∗ = Ak(x), (≥q R)∗ = EqR(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗

1 (x) ∧ C∗
2 (x),



where Ak is a concept name and R is a role. Then a DL-Litebool TBox T corre-
sponds to the QL1-sentence

T ∗ =
∧

C1vC2∈T ∀x
(
C∗

1 (x) → C∗
2 (x)

)
. (2)

It should be also clear how to translate an ABox A into QL1:

A† =
∧

Ak(ai)∈A Ak(ai) ∧
∧

Pk(ai,aj)∈A Pkaiaj . (3)

The following QL1-sentences express some natural properties of the role domains
and ranges: for every R ∈ role±(K),

ε(R) = ∀x
(
E1R(x) → inv(E1R(dr))

)
, (4)

δ(R) =
∧qT −1

q=1 ∀x
(
Eq+1R(x) → EqR(x)

)
, (5)

where inv(E1R(dr)) is E1P
−
k (dp−k ) if R = Pk, and E1Pk(dpk) if R = P−

k . Sen-
tence (4) says that if the domain of, say, Pk is not empty then its range is not
empty either: it contains the representative dp−k . We also need formulas relating
each Raiaj to the unary predicates for the role domain and range. For each
R ∈ role±(K), let R† be the conjunction of the following QL1-sentences

qT∧
q=1

∧
a,aj1 ,...,ajq∈ob(A)

ji 6=ji′ for i 6=i′

(∧q
i=1 Raaji

→ EqR(a)
)
, (6)

∧
ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
, (7)

where inv(R)ajai is the propositional variable P−
k ajai if R = Pk, and Pkajai if

R = P−
k . Finally, for K, we set

K† =
[
T ∗ ∧

∧
R∈role±(K)

(
ε(R) ∧ δ(R)

)]
∧

[
A† ∧

∧
R∈role±(K)

R†
]
.

It is worth noting that all of the conjuncts of K† are universal sentences.

Theorem 1. A DL-Litebool KB K is satisfiable iff the QL1-sentence K† is sat-
isfiable.

The translation K† of K is too lengthy to provide us with reasonably low com-
plexity results. However, we can define a more concise equi-satisfiable translation
K[ of K, whose size is linear in the size of K, no matter whether the numerical pa-
rameters are coded in unary or in binary (see http://www.dcs.bbk.ac.uk/~roman
for the details).

Theorem 2. Satisfiability is NP-complete for DL-Litebool KBs, NLogSpace-
complete for DL-Litekrom KBs and P-complete for DL-Litehorn KBs.

Many other reasoning tasks are reducible to the satisfiability problem. Consider,
for example, the subsumption problem: given a KB K and two concepts C and
D, decide whether K |= C v D. The following complexity results hold:

Theorem 3. The subsumption problem is coNP-complete for DL-Litebool,
NLogSpace-complete for DL-Litekrom and P-complete for DL-Litehorn.



4 Data complexity

In terms of the classification suggested in [13], so far we have been considering
the combined complexity of the satisfiability problem. When the size of data is
the crucial parameter (as in ontologies for huge data sets) the most relevant
complexity measure becomes data (or ABox ) complexity, where the complexity
is only measured in terms of the size of the ABox A, while the knowledge in
the TBox T is assumed to be fixed. In this section we show that as far as data
complexity is concerned, reasoning problems for DL-Litebool KBs can be solved
using only logarithmic space in the size of the ABox.

In what follows, without loss of generality, we assume that all role names of a
given KB K = (T ,A) occur in its TBox and write role±(T ) instead of role±(K).
Let Σ(T ) be the set {E1R(dr) | R ∈ role±(T )} and, for Σ0 ⊆ Σ(T ),

coreΣ0(T ) =
^

E1R(dr)∈Σ0

E1R(dr) ∧
^

R∈role±(T )

“
T ∗[dr] ∧

^
R′∈role±(T )

`
ε(R′)[dr] ∧ δ[(R′)[dr]

´”
,

projΣ0
(K, a) =

^
inv(E1R(dr))∈Σ(T )\Σ0

¬E1R(a) ∧ T ∗[a] ∧
^

R′∈role±(T )

δ[(R′)[a] ∧ A[(a),

where T ∗[c], ε(R′)[c] and δ[(R′)[c] are instantiations of the universal quantifier in
the respective formulas with the constant c, andA[(a) is the maximal subformula
of A[ containing only occurrences of predicates with a as their parameter.

Lemma 1. K[ is satisfiable iff there is Σ0 ⊆ Σ(T ) such that coreΣ0(T ) and the
projΣ0

(K, a), for a ∈ ob(A), are all satisfiable.

Note that coreΣ0(T ) and the projΣ0
(K, a), for a ∈ ob(A), are in essence

propositional Boolean formulas and their size does not depend on the size of A.
This is clearly the case for coreΣ0(T ) and the first three conjuncts of projΣ0

(K, a).
As for the last conjunct of projΣ0

(K, a), its length does not exceed the number
of concept names in T plus qT · |role±(T )| and, therefore, only depends on the
structure of T . The above lemma states that satisfiability of a DL-Litebool KB can
be checked locally: first, for the elements dr representing the domains and ranges
of all roles, and second, for every object name in the ABox. This observation
suggests a high degree of parallelism in the satisfiability check.

Theorem 4. The data complexity of the satisfiability and instance checking
problems for DL-Litebool KBs is in LogSpace.

5 Query answering

By a positive existential query q(x1, . . . , xn) we understand any first-order for-
mula constructed by means of conjunction, disjunction and existential quan-
tification starting from atoms of the from Ak(t) and Pk(t1, t2), where Ak is a
concept name, Pk is a role name, and t, t1, t2 are terms taken from the list of
variables y0, y1, . . . and the list of object names a0, a1, . . . , i.e.,

q ::= Ak(t) | Pk(t1, t2) | q1 ∧ q2 | q1 ∨ q2 | ∃yi q.



The free variables of q are called its distinguished variables and the bound ones
its non-distinguished variables. We write q(x1, . . . , xn) for a query with distin-
guished variables x1, . . . , xn. A conjunctive query (CQ) is a positive existen-
tial query which contains no disjunction—that is, constructed from atoms by
means of conjunction and existential quantification. Given a query q(x), with
x = x1, . . . , xn, and an n-tuple a of object names, we write q(a) for the result
of replacing every occurrence of xi in q(x) with the ith member of a. Queries
containing no distinguished variables will be called ground.

Let I be a DL-Litebool model of the form (1). An assignment a in ∆ is a
function associating with every variable y an element a(y) of ∆. We will use the
following notation: aI,a

i = aIi and yI,a = a(y). Define the satisfaction relation
for positive existential formulas with respect to a given assignment a:

I |=a Ak(t) iff tI,a ∈ AI
k , I |=a q1 ∧ q2 iff I |=a q1 and I |=a q2,

I |=a Pk(t1, t2) iff (tI,a
1 , tI,a

2 ) ∈ P I
k , I |=a q1 ∨ q2 iff I |=a q1 or I |=a q2,

I |=a ∃yi q iff I |=b q, for some b that may differ from a on yi.

For a ground query q(a) the satisfaction relation does not depend on the assign-
ment a, thus we write I |= q(a) instead of I |=a q(a). Given a KB K = (T ,A),
we say that a tuple a of objects from ob(A) is an answer to q(x) and write
K |= q(a) if I |= q(a) whenever I |= K.

The query answering problem we analyse here is formulated as follows: given
a DL-Litebool KB K = (T ,A), a query q(x) and a tuple a of object names from
ob(A), decide whether K |= q(a). The variant of this problem requiring to ‘list
all the answers a to q(x) with respect to K’ is LogSpace-equivalent to the
previous one [11, Exercise 16.13]. We are interested in the data complexity of the
query answering problem. We first recall known results [14, 10, 15] for the case
of conjunctive queries and obtain the following:

Theorem 5. The data complexity of the conjunctive and positive existential
query answering problems for both DL-Litekrom and DL-Litebool KBs is coNP-
complete.

Next, we show that the LogSpace data complexity upper bound for conjunc-
tive queries over DL-Lite KBs established in [9, 10], can be extended to positive
existential queries over DL-Litehorn KBs:

Theorem 6. The data complexity of the positive existential query answering
problem for DL-Litehorn KBs is in LogSpace.

6 Conclusions

The LogSpace data complexity result for query answering provides the basis
for the development of algorithms that operate on a KB whose ABox is stored
in a relational database (RDB), and that evaluate a query by relying on the
query answering capabilities of a RDB management system, cf. [9]. The known



algorithms for DL-Lite are based on rewriting the original query using the TBox
axioms. We aim at developing a similar technique also for answering positive
existential queries in DL-Litehorn.

We are further investigating the complexity of logics obtained by adding
further constructs to DL-Lite. Preliminary results show that already by adding
role inclusion axioms to DL-Litebool the combined complexity raises to ExpTime.
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