
Full Satisfiability of UML Class Diagrams
(Extended Abstract)

Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{artale,calvanese}@inf.unibz.it yibanez@gmail.com

Abstract. Class diagrams are one of the most important components
of UML, the de-facto standard formalism for the analysis and design of
software. The semantics of UML class diagrams is by now well estab-
lished, and one can exploit automated reasoning tools that are based on
the languages underlying their formalization to detect relevant proper-
ties, such as class satisfiability and subsumption. Among the reasoning
tasks of interest, the basic one is detecting full satisfiability of a diagram,
i.e., whether all classes and associations of the diagram can be simultane-
ously populated without violating any constraints of the diagram. While
the complexity of class satisfiability has been studied extensively, full sat-
isfiability received less attention. In this paper we address this problem,
and establish tight upper and lower bounds for full satisfiability of UML
class diagrams. Our results confirm the intuition that full satisfiability
has the same computational complexity as class satisfiability.

1 Introduction

UML (Unified Modeling Language)1 is the de-facto standard formalism for the
analysis and design of software. One of the most important components of UML
are class diagrams (UCDs), which model the information on the domain of in-
terest in terms of objects organized in classes and associations between them
(representing relations between class instances). The semantics of UCDs is by
now well established, and several works propose to represent it using various
kinds of formal systems, e.g., [12,11,13,4]. Hence, one can in principle reason
on a UCD and formally prove properties about it. The properties that one is
interested in are, e.g., subsumption between two classes, i.e., the fact that each
instance of one class is necessarily also an instance of another class, satisfiability
of a specific class or association in the diagram, i.e., the fact that the informa-
tion encoding it in the diagram is not contradictory, and full satisfiability of the
diagram [15], i.e., the fact that all classes and associations in the diagram are si-
multaneously satisfiable. The latter property is of importance since the presence
of some unsatisfiable class or association actually means either that the diagram
contains unnecessary information that should be removed, or that there is some
modeling error that lead to the loss of satisfiability. In fact, it can be considered
as the most fundamental property that should be satisfied by a UCD.
1 http://www.omg.org/spec/UML/

http://www.omg.org/spec/UML/

2 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

The proposed formalizations of UCDs indicate that one can resort to the
powerful automated inference mechanisms provided by the adopted models to
verify the above mentioned properties. Such a reasoning support [9] is of im-
portance for various tasks related to the design, maintenance, evolution, and
integration of UCDs. For example, the formalization in terms of expressive De-
scription Logics (DLs) [3] provided in [4] is well suited for this purpose. DLs are
decidable logics that are specifically designed for the conceptual representation
of an application domain in terms of classes and relationships between them.
Representing conceptual data models by means of DLs has gathered consensus
over the years, cf. [5,6,2,9,10,7,4], and allows one to exploit state-of-the-art DL
reasoners [17] for inference in such models.

However, to avoid possible performance bottlenecks that could result from us-
ing a too powerful inference mechanism, and to be able to select the appropriate
one to use for the above mentioned tasks, a fundamental question that needed
to be addressed was that of the intrinsic complexity of reasoning on UCDs (in-
dependently of the formal tool adopted for describing them). This problem was
addressed first in [4], where, somewhat surprisingly, it was shown that the simul-
taneous presence of multiplicity constraints and of completeness constraints on
class and association hierarchies leads to ExpTime-hardness of class satisfiabil-
ity. This result was then strengthened in [1] to UCDs2 with simple ISA between
associations (and completeness constraints on class hierarchies only).

However, no work had addressed explicitly the complexity of full satisfiability
of UCDs3. In this paper, we fill this gap, by showing that the complexity of full
satisfiability coincides with that of classical satisfiability. Our results build on
the formalization of UML CDs in terms of DLs given in [4]. In fact, the upper
bound is an almost direct consequence of the corresponding upper bound for
UCDs derived from the DL formalization. Instead, our lower bound is more
involved, as it requires a careful analysis of the corresponding proof for class
satisfiability.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTime-complete. In Section 3, we recall the formalization of UCDs.
In Section 4, we provide our main results on full satisfiability of UCDs. Finally,
in Section 5, we draw some conclusions.

2 Full Satisfiability in the Description Logic ALC

We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [3]. The basic elements of ALC are atomic concepts and roles, denoted
by A and P , respectively. Complex concepts C, D are defined by the following

2 The results in [1] are formulated in terms of the Entity-Relationship model, but they
carry directly over also to UML class diagrams.

3 An exception is [15], which provides a PSpace upper bound for full satisfiability.
However, our results here show that the algorithm of [15] must be incomplete.

Full Satisfiability of UML Class Diagrams (Extended Abstract) 3

rules:
C,D ::= A | ¬C | C uD | ∃P.C

The semantics of ALC, as usual in DLs, is specified in terms of an interpre-
tation. An interpretation I = (∆I , ·I), with a non empty domain ∆I and an
interpretation function ·I , assigns to each concept C a subset of ∆I , and to each
role name P a binary relation in ∆I ×∆I such that the following conditions are
satisfied:

AI ⊆ ∆I ,
(¬C)I = ∆I \ CI ,

(C uD)I = CI ∩DI ,
(∃P.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ P I ∧ b ∈ CI} .

We use the standard abbreviations C1 t C2 := ¬(¬C1 u ¬C2), and ∀P.C :=
¬∃P.C, with the corresponding semantics.

An ALC terminological box (TBox) T is a finite set of concept inclusion
axioms of the form C v D. An interpretation I satisfies an axiom of the form
C v D iff CI ⊆ DI . A TBox T is satisfiable if there is an interpretation I
that satisfies every axiom in T (such an interpretation is called a model of T).
A concept C is satisfiable w.r.t. a TBox T if there is a model I of T such that
CI 6= ∅. It can be shown that TBox satisfiability and concept satisfiability w.r.t.
a TBox are reducible to each other (in polynomial time). Moreover, reasoning
w.r.t ALC TBoxes is ExpTime-complete (see e.g., [3]).

We now define the notion of full satisfiability of a TBox and show that for
ALC it has the same complexity as classical satisfiability.

Definition 1 (TBox Full Satisfiability). Let T be an ALC TBox. T is said
to be fully satisfiable if there exists a model I of T such that AI 6= ∅, for every
atomic concept A in T .

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [8],
C is satisfiable w.r.t. T if and only if C u AT is satisfiable w.r.t. the TBox T1

consisting of the single assertion

AT v
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi. AT

where AT is a fresh new atomic concept and P1, . . . , Pn are all the atomic roles
in T and C. In order to reduce the problem to full satisfiability, we extend T1 to
T2 = T1 ∪{AC v C uAT }, with AC a fresh new atomic concept, and prove that

C uAT is satisfiable w.r.t. T1 iff T2 is fully satisfiable

4 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

(⇒) Let I be a model of T1 such that (C u AT)I 6= ∅. Construct a model of T2,
J = (∆I ∪ {dtop}, ·J), with dtop 6∈ ∆I , such that:

AJT = AIT , AJC = (C uAT)I ,

AJ = AI ∪ {dtop} for all atomic concepts A in T and C,

PJ = P I for all atomic roles,

Obviously, the extension of every atomic concept is non empty in J . Next,
we show that J is indeed a model of T2, relying on the fact (easily proved
by structural induction) that DI ⊆ DJ , for each subconcept D of concepts
in T1. Then, it is easy to show that J satisfies every assertion in T2:

AJT = AIT ⊆ (
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi.AT)I ⊆

⊆ (
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi. AT)J

AJC = (C uAT)I ⊆ (C uAT)J

(⇐) Conversely, every full model J of T2 is also a model of T1 with (CuAT)J 6= ∅,
as AJC ⊆ (C uAT)J . ut

Theorem 3. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward, as deciding full satisfiabil-
ity of an ALC TBox T can be reduced to deciding satisfiability of the TBox

T ∪
⋃

1≤i≤n

{> v ∃P ′. Ai},

where A1, . . . , An are all the atomic concepts in T , and P ′ is a fresh new atomic
role. The ExpTime-hardness follows from Lemma 2. ut

We now modify the reduction of Lemma 2 so that it applies also to primitive
ALC− TBoxes, i.e., TBoxes that contain only axioms of the form:

A v B, A v ¬B, A v B tB′, A v ∀P.B, A v ∃P.B,

where A, B, B′ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC− TBoxes is ExpTime-
complete.

Proof. The ExpTime membership follows from Theorem 3. For proving the
ExpTime-hardness, we use a result in [4] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC−
TBoxes. Let T − = {Aj v Dj | 1 ≤ j ≤ m} be a primitive ALC− TBox, and A0

Full Satisfiability of UML Class Diagrams (Extended Abstract) 5

an atomic concept. By Lemma 2, we have that A0 is satisfiable w.r.t. T − if and
only if the TBox T ′2 containing the axioms

AT − v
l

AjvDj∈T −
(¬Aj tDj) u

l

1≤i≤n

∀Pi. AT − , A′0 v A0 uAT − .

is fully satisfiable, with AT − , A′0 fresh new atomic concepts. T ′2 is not a primitive
ALC− TBox, but it is equivalent to the TBox containing the assertions:

A′0 v AT −

A′0 v A0

AT − v ¬A1 tD1

...
AT − v ¬Am tDm

AT − v ∀P1. AT −
...

AT − v ∀Pn. AT − ,

Finally, to get a primitive ALC− TBox, T −2 , we replace each axiom of the form
AT − v ¬Aj t Dj by AT − v B1

j t B2
j , B1

j v ¬Aj , and B2
j v Dj , with B1

j , B
2
j

fresh new atomic concepts, for j = 1, . . . ,m.
We show now that T ′2 is fully satisfiable iff T −2 is fully satisfiable:

(⇒) Let I = (∆I , ·I) be a full model of T ′2 . We extend I into a full model J
of T −2 . Let ∆J = ∆I ∪ {d+, d−}, with {d+, d−} ∩∆I = ∅, and define ·J as
follows:

AJT − = AIT − , (A′0)J = (A′0)I ,

AJ = AI ∪ {d+}, for every other atomic concept in T ′2 ,
(B1

j)J = (¬A)J , and (B2
j)J = (Dj)J , for each AT − v B1

j tB2
j ∈ T −2 ,

PJ = P I ∪ {(d+, d+)}, for every atomic role P in T −2 .

It is easy to see now, that J fully satisfies T −2 .
(⇐) Trivial. Every model of T −2 is a model of T ′2 . ut

3 Formalizing UML Class Diagrams

In this section, we briefly describe UCDs and provide their semantics in terms
of First Order Logic (the formalization adopted here is based on previous pre-
sentations in [4,10]).

A class in a UCD denotes a set of objects with common features. Formally,
a class C corresponds to a unary predicate C. An association represents a rela-
tion between instances of two or more classes. Names of associations (as names
of classes) are unique in a UCD. A binary association between two classes C1

and C2 is graphically rendered as in Fig. 1. The multiplicity constraint nl..nu

written on one end of the binary association specifies that each instance of
the class C1 participates at least nl times and at most nu times in the asso-
ciation R, and the multiplicity constraint ml..mu specifies an analogous con-
straint for each instance of the class C2. When a multiplicity constraint is omit-
ted, it is intended to be 0..∗. Formally, an association R between the classes

6 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

 ml..mu nl..nu

R
C1 C2

Fig. 1. Binary association

ml..mu nl..nuC1 C2

CR

Fig. 2. Binary assoc. with related class

C1, C2 is captured by a binary predicate R that satisfies the FOL assertion
∀x1, x2. (R(x1, x2) → C1(x1) ∧ C2(x2)), while multiplicities are formalized by
the following FOL assertions:

∀x. (C1(x)→ ∃≥nl
y.R(x, y) ∧ ∃≤nu

y.R(x, y))
∀y. (C2(y)→ ∃≥ml

x.R(x, y) ∧ ∃≤mu
x.R(x, y)),

where we use counting quantifiers to abbreviate the FOL formula encoding the
multiplicity constraints.

An association class describes properties of the association, such as at-
tributes, operations, etc. (see Fig. 2). A binary association with a related as-
sociation class CR is formalized in FOL by reifying the association into a unary
predicate CR with two binary predicates P1, P2, one for each component of the
association. We enforce the following semantics for i = 1, 2:

∀x.(CR(x)→ ∃y. Pi(x, y)),
∀x, y.(CR(x) ∧ Pi(x, y)→ Ci(y)),

∀x, y, y′.(CR(x) ∧ Pi(x, y) ∧ Pi(x, y′)→ y = y′),
∀y1, y2, x, x

′.(CR(x) ∧ CR(x′) ∧ (
∧

i∈{1,2} Pi(x, yi) ∧ Pi(x′, yi))→ x = x′).

For associations with a related class, the multiplicity constraints are formal-
ized by the following FOL assertions:

∀y1.(C1(y1)→ ∃≥nl
x. (CR(x) ∧ P1(x, y1)) ∧ ∃≤nux. (CR(x) ∧ P1(x, y1))) ,

∀y2.(C2(y2)→ ∃≥ml
x. (CR(x) ∧ P2(x, y2)) ∧ ∃≤mu

x. (CR(x) ∧ P2(x, y2))) .

Generalizations (called also ISA constraints) between two classes C1 and C
specify that each instance of C1 is also an instance of C. Several generaliza-
tions can be grouped together to form a class hierarchy, as shown in Fig. 3.
Disjointness and completeness constraints can also be enforced on a class hi-
erarchy, by adding suitable labels to the diagram. The class hierarchy shown
in Fig. 3 is formally captured by means of the assertion ∀x.Ci(x) → C(x)
for i = 1, . . . , n. Disjointness among the classes C1, . . . , Cn is expressed by
∀x.Ci(x) →

∧n
j=i+1 ¬Cj(x) for i = 1, . . . , n − 1. Finally, the completeness

constraint expressing that each instance of C is an instance of at least one of
C1, . . . , Cn is given by ∀x.C(x)→

∨n
i=1 Ci(x).

We can also have generalization between associations and between association
classes with the obvious subset semantics as for generalization between classes.
Finally, we do also allow for attributes associated to classes. Since the addition
of attributes does not change the complexity of the satisfiability problem we do
not present here attributes and their semantics.

Full Satisfiability of UML Class Diagrams (Extended Abstract) 7

{complete, disjoint}

. . .

C

C1 C2 Cn

Fig. 3. A class hierarchy in UML

4 Full Satisfiability of UML Class Diagrams

Formally, three notions of UCD satisfiability have been proposed in the litera-
ture [16,4,15,14] First, diagram satisfiability of an UML diagram refers to the
existence of a model of the diagram. Such model does not need to satisfy (popu-
late) any class or association per se. The only condition is that all constraints are
satisfied by the given model. Second, class satisfiability refers to the existence
of a model of the diagram that satisfies (populates) a given class. Third, we can
check whether there is a model of an UML diagram that satisfies all classes and
all associations in a diagram. This last notion of satisfiability, referred here as
full satisfiability and introduced in [15] is thus stronger than diagram satisfia-
bility as a model of a diagram that satisfies all classes is, by definition, also a
model of that diagram.

Definition 5 (UML Full Satisfiability). A UCD D is fully satisfiable if there
is an FOL interpretation I that satisfies all the constraints expressed in D and
such that CI 6= ∅ for every class C in D, and RI 6= ∅ for every association R
in D. We say that I is a full model of D.

We now address the complexity of full satisfiability for UCDs. We use the
results presented in Section 2 and reduce full satisfiability of primitive ALC−
TBoxes to full satisfiability of UCDs. This reduction is based on the ones used
in [4,1] for determining the lower complexity bound of schema satisfiability in
the extended Entity-Relationship model.

Given a primitive ALC− TBox T , construct an UCD Σ(T) as follows: for
each atomic concept A in T , introduce a class A in Σ(T). Additionally, introduce
a class O that generalizes (possibly indirectly) all the classes in Σ(T) that encode
an atomic concept in T . For each atomic role P , introduce a class CP , which
reifies the binary relation P . Further, introduce two functional associations P1,
and P2 that represent the first and second components of P . The assertions in
T are encoded as follows:

1. For each assertion of the form A v B, introduce a generalization between
the classes A and B.

2. For each assertion of the form A v ¬B, construct the hierarchy shown in
Fig. 4.

3. For each assertion of the form A v B1 tB2, introduce an auxiliary class B,
and construct the diagram in Fig. 5.

8 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

{disjoint}

O

A B

Fig. 4. Encoding of A v ¬B

{complete}

A B

B1 B2

Fig. 5. Encoding of A v B1 tB2

{disjoint}

{complete}

1..1

P1

1..1

P2

1..1

PA+1

PĀ

1..1

PA+2

1..1

O

B

A A+ Ā

CPA+ CPĀ

CP

Fig. 6. Encoding of A v ∀P.B

1..1

PAB2

1..1

1..*

PAB1 P1P2

1..1 1..1O

B A

CP

CPAB

Fig. 7. Encoding of A v ∃P.B

4. For each assertion of the form A v ∀P.B, add the auxiliary classes CPA+ and
CPĀ, and the associations PĀ, PA+1 and PA+2 , and construct the diagram
shown in Fig. 6.

5. For each assertion of the form A v ∃P.B, add the auxiliary class CPAB
, and

construct the diagram shown in Fig. 7.

Lemma 6. A primitive ALC− TBox T is fully satisfiable iff the UCD Σ(T),
constructed as above, is fully satisfiable.

Proof. (⇐) Let J = (∆J , ·J) be a full model of Σ(T). We construct a full
model I = (∆I , ·I) of T by taking ∆I = ∆J . Further, we define AI = AJ and
P I = (P−1 ◦ P2)J for every concept name A and for every atomic role P in T ,
respectively. Let us show that I satisfies every assertion in T .

1. For assertions of the form A v B, A v ¬B, and A v B1 tB2, the statement
easily follows from the construction of I.

2. For each assertion of the form A v ∀P.B, let o ∈ AI = AJ and o′ ∈
∆I = ∆J , such that (o, o′) ∈ P I . Since P I = (P−1 ◦ P2)J , there is o′′ ∈ ∆J
such that (o, o′′) ∈ (P−1)J , and (o′′, o′) ∈ P2

J . Then, o′′ ∈ CJP , and by the
completeness constraint, o′′ ∈ CJPA+

∪ CJ
PĀ

. We claim that o′′ ∈ CJPA+
. Sup-

pose otherwise, then there is a unique a ∈ ∆J , such that (o′′, a) ∈ PJ
Ā

and
a ∈ ĀJ . It follows from PJ

Ā
⊆ PJ1 and by the multiplicity constraint over

CP , that a = o. This rises a contradiction, because o ∈ AJ ⊆ AJ+ and, AJ+
and ĀJ are disjoint. Then o′′ ∈ CJPA+

. Further, there is a unique b ∈ ∆J

Full Satisfiability of UML Class Diagrams (Extended Abstract) 9

with (o′′, b) ∈ PJA+2
and b ∈ BJ . From PJA+2

⊆ PJ2 and the multiplicity
constraint on CP , it follows that b = o′. Thus, we have that o′ ∈ BJ = BI ,
and therefore, o ∈ (∀P.B)I .

3. For each assertion of the form A v ∃P.B in T , let o ∈ AI = AJ . Then, there
is o′ ∈ ∆J such that (o′, o) ∈ PJAB1 and o′ ∈ CJPAB

. Since o′ ∈ CJPAB
, there

is o′′ ∈ ∆J with (o′, o′′) ∈ PJAB2 and o′′ ∈ BJ = BI . Then, as PJAB2 ⊆ PJ2 ,
PJAB1 ⊆ PJ1 and P I = (P−1 ◦ P2)J , we can conclude that (o, o′′) ∈ P I and
therefore, that o ∈ (∃P.B)I .

(⇒) Let I = (∆I , ·I) be a full model of T , and role(T) be the set of role names
in T . Extend I to a legal instantiation J = (∆J , ·J) of Σ(T), by assigning
suitable extensions for the auxiliary classes and associations in Σ(T). Let ∆J =
∆I ∪ Γ ∪ Λ, where: Λ =

⊎
Av∀P.B∈T {aA+ , aĀ}, such that ∆I ∩ Λ = ∅, and

Γ =
⊎

P∈role(T)∆P , with:

∆P = {(o, o′) ∈ ∆I ×∆I | (o, o′) ∈ P I} ∪
⋃

Av∀P.B∈T

{(aA+ , b), (aĀ, ō)}

with b an arbitrary instance of B, and ō an arbitrary element of ∆I . We set
OJ = ∆I ∪ Λ, AJ = AI for each class A corresponding to an atomic concept
in T , and CJP = ∆P for each P ∈ role(T). Additionally, the extensions of the
associations P1 and P2 are defined as follows:

PJ1 = {((o, o′), o) | (o, o′) ∈ CJP }, PJ2 = {((o, o′), o′) | (o, o′) ∈ CJP }.

We now show that J is a full model for Σ(T).

1. For the portions of Σ(T) due to TBox axioms of the form A v B, A v ¬B,
and A v B1 tB2, the statement follows from the construction of J .

2. For each TBox axiom in T of the form A v ∀P.B, let us define

AJ+ = AI ∪ {aA+}, ĀJ = OJ \AJ+ ,
CJPA+

= {(o, o′) ∈ CJP | o ∈ A
J
+}, CJ

PĀ
= {(o, o′) ∈ CJP | o ∈ ĀJ },

PJA+1
= {((o, o′), o) ∈ PJ1 | o ∈ AJ+}, PJ

Ā
= {((o, o′), o) ∈ PJ1 | o ∈ ĀJ },

PJA+2
= {((o, o′), o′) ∈ PJ2 | o ∈ AJ+} .

It is not difficult to see that J satisfies the fragment of Σ(T) as the one
in Fig. 6. It remains to show that each class and each association have a
non empty extension. This is clearly the case for classes that encode atomic
concepts in T . For the classes A+, Ā, CPA+ , and CPĀ we have that

aA+ ∈ AJ+ , aĀ ∈ ĀJ , (aA+ , b) ∈ CJPA+
, (aĀ, ō) ∈ CJPĀ

.

For the associations P1, P2, PA+1 , PA+2 and PĀ we have that

((aA+ , b), aA+) ∈ PJA+1
⊆ PJ1 , ((aĀ, ō), aĀ) ∈ PJ

Ā
,

((aA+ , b), b) ∈ PJA+2
⊆ PJ2 .

10 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

. . .C2 Cn

Ctop

C1 Ctop Ci1..*Ri

 Ci

CP
i

CjCtop

1..*

1..*

P

P ′RP

Fig. 8. Reducing UML full satisfiability to class satisfiability

3. For each TBox axiom in T of the form A v ∃P.B, let us define the extensions
for the auxiliary classes and associations as follows:

CJPAB
= {(o, o′) ∈ ∆P | o ∈ AI and o′ ∈ BI},

PJAB1 = {((o, o′), o) ∈ PJ1 | (o, o′) ∈ CJPAB
},

PJAB2 = {((o, o′), o′) ∈ PJ2 | (o, o′) ∈ CJPAB
} .

We have that CJPAB
6= ∅ as there exists a pair (a, b) ∈ ∆P with a ∈ AI , and

b ∈ BI . Since CJPAB
6= ∅, we have that PJAB1 6= ∅ and PJAB2 6= ∅. ut

Theorem 7. Full satisfiability of UCDs is ExpTime-complete.

Proof. The upper complexity bound can be established by reducing full consis-
tency of UCDs to class consistency on UCDs, which is known to be ExpTime-
complete [4]. Given a UCD D, with classes C1, . . . , Cn, we construct the UCD
D′ by adding to D a new class Ctop and a new association Ri for i ∈ {1, . . . , n}.
Besides, in order to ensure that every association is also populated, we consider
each association P between the classes Ci and Cj such that neither Ci nor Cj

is constrained to participate at least once in P . We add two new associations,
RP and P ′ and a new class CP

i . Finally, we add the constraints shown in Fig. 8.
Clearly, we have that D is fully satisfiable if and only if the class Ctop is satisfi-
able.

The ExpTime-hardness follows from Lemma 6 and Theorem 4. ut

5 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether all classes and associations of the diagram can be
simultaneously populated without violating any constraints of the diagram. We
show that the complexity of checking full satisfiability is ExpTime-complete,

Full Satisfiability of UML Class Diagrams (Extended Abstract) 11

thus matching the complexity of the classical schema satisfiability check. We
show a similar result also for the problem of checking the full satisfiability of a
TBox expressed in the description logic ALC.

As a future work, we plan to extend the above results to UML class diagrams
containing ad hoc subsets of the full sets of constructors. Furthermore, we intend
to investigate the problem under the finite model assumption.

References

1. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER 2007, volume 4801 of LNCS,
pages 277–292. Springer, 2007.

2. A. Artale, F. Cesarini, and G. Soda. Describing database objects in a concept lan-
guage environment. IEEE Trans. on Knowledge and Data Engineering, 8(2):345–
351, 1996.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

4. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1–2):70–118, 2005.

5. S. Bergamaschi and C. Sartori. On taxonomic reasoning in conceptual design.
ACM Trans. on Database Systems, 17(3):385–422, 1992.

6. A. Borgida. Description logics in data management. IEEE Trans. on Knowledge
and Data Engineering, 7(5):671–682, 1995.

7. A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In
Baader et al. [3], chapter 10, pages 349–372.

8. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. J. of Artificial Intelligence Research, 1:109–138,
1993.

9. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Infor-
mation Systems, pages 229–264. Kluwer Academic Publishers, 1998.

10. D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

11. T. Clark and A. S. Evans. Foundations of the Unified Modeling Language. In
D. Duke and A. Evans, editors, Proc. of the 2nd Northern Formal Methods Work-
shop. Springer, 1997.

12. A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling semantics of UML.
In H. Kilov, editor, Behavioural Specifications for Businesses and Systems, chap-
ter 2. Kluwer Academic Publishers, 1999.

13. D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff.
Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel,
2000.

14. M. Jarrar and S. Heymans. Towards pattern-based reasoning for friendly ontology
debugging. Int. J. on Artificial Intelligence Tools, 17(4):607–634, 2008.

15. K. Kaneiwa and K. Satoh. Consistency checking algorithms for restricted UML
class diagrams. In Proc. of FoIKS 2006, pages 219–239, 2006.

16. M. Lenzerini and P. Nobili. On the satisfiability of dependency constraints in
entity-relationship schemata. Information Systems, 15(4):453–461, 1990.

12 Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

17. R. Möller and V. Haarslev. Description logic systems. In Baader et al. [3], chapter 8,
pages 282–305.

	Full Satisfiability of UML Class Diagrams (Extended Abstract)
	Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-García

