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Abstract. UML class diagrams (UCDs) are the de-facto standard for-
malism for the analysis and design of information systems. By adopting
formal language techniques to capture constraints expressed by UCDs
one can exploit automated reasoning tools to detect relevant properties,
such as schema and class satisfiability and subsumption between classes.
Among the reasoning tasks of interest, the basic one is detecting full sat-
isfiability of a diagram, i.e., whether there exists an instantiation of the
diagram where all classes and associations of the diagram are non-empty
and all the constraints of the diagram are respected. In this paper we es-
tablish tight complexity results for full satisfiability for various fragments
of UML class diagrams. This investigation shows that the full satisfiabil-
ity problem is ExpTime-complete in the full scenario, NP-complete if we
drop isa between relationships, and NLogSpace-complete if we further
drop covering over classes.

1 Introduction

UML (Unified Modeling Language)1 is the de-facto standard formalism for the
analysis and design of information systems. One of the most important compo-
nents of UML are class diagrams (UCDs), which model the domain of interest in
terms of objects organized in classes and associations between them (represent-
ing relations between class instances). The semantics of UCDs is by now well
established, and several works propose to represent it using various kinds of for-
mal languages, e.g., [5,8,7,9,10,4,1,2]. Thus, one can in principle reason on UCDs.
The reasoning tasks that one is interested in are, e.g., subsumption between two
classes, and satisfiability of a specific class or association in the diagram. Here,
we consider full satisfiability of a diagram [12], i.e., the fact that there is at
least one model of the diagram where each class and association is non-empty.
This property is of importance since the presence of some unsatisfiable class or
association actually means either that the diagram contains unnecessary infor-
mation that should be removed, or that there is some modelling error that lead
to the loss of satisfiability. In fact, it can be considered as the most fundamental
property that should be satisfied by UCDs.

⋆ This work has been partially supported by the EU project Ontorule (ICT-231875).
1 http://www.omg.org/spec/UML/
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The only work that addressed explicitly the complexity of full satisfiability
of UCDs is [12], which includes a classification of UCDs based on inconsistency

triggers. Each inconsistency trigger is a pattern for recognizing possible incon-
sistencies of the diagram, based on the interaction between different modelling
constraints. [12] introduces various algorithms for checking full satisfiability of
UCDs with diverse expressive power, together with an analysis of their compu-
tational complexity. Full satisfiability of UCDs is computed in ExpTime in the
most general case; in NP if association generalization and multiple and over-
writing inheritance of attributes is dropped; and in P if the diagrams are further
restricted by forbidding covering constraints. According to the results reported
in [12], the complexity of checking full satisfiability of UCDs can be reduced if
the value types of the attributes associated to sub-classes are sub-types of the
value types for the respective attributes associated to the super-classes. The algo-
rithms handling these restricted UCDs are claimed to compute full satisfiability
respectively in PSpace (instead of ExpTime) and P (instead of NP).

However, our results show that even when attributes are not considered at
all in the UCDs, the complexity of the problem does not change. Indeed this
paper shows that the full satisfiability problem is ExpTime-complete in the full
scenario, NP-complete if we drop isa between relationships, and NLogSpace-
complete if we further drop covering over classes. Thus, the complexity of full
satisfiability coincides in all cases with that of class satisfiability [1]. Our results
build on the formalization of UCDs in terms of DLs given in [4,1]. In fact,
our upper bounds are an almost direct consequence of the corresponding upper
bounds of the corresponding DL formalization. On the other hand, the obtained
lower bounds are more involved, and in some cases require a careful analysis of
the corresponding proof for class satisfiability. The results presented here hold
also for the Entity-Relationship model and other conceptual models.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTime-complete. In Sections 3 and 4, we provide our results on full
satisfiability of various variants of UCDs.

2 Full Satisfiability in the Description Logic ALC

We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [3]. We first define the notion of full satisfiability of a TBox and then we
show that it has the same complexity as classical satisfiability for ALC.

Definition 1 (TBox Full Satisfiability). An ALC TBox T is said to be fully

satisfiable if there exists a model I of T such that AI 6= ∅, for every atomic
concept A in T . We say that I is a full model of T .

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to

full satisfiability of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [6],
C is satisfiable w.r.t. T if and only if C ⊓ AT is satisfiable w.r.t. the TBox T1
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consisting of the single assertion AT ⊑
d

C1⊑C2∈T (¬C1 ⊔C2)⊓
d

1≤i≤n ∀Pi. AT ,
where AT is a fresh atomic concept and P1, . . . , Pn are all the atomic roles in
T and C. In order to reduce the problem to full satisfiability, we extend T1 to
T2 = T1 ∪ {AC ⊑ C ⊓ AT }, with AC a fresh atomic concept, and prove that

C ⊓ AT is satisfiable w.r.t. T1 iff T2 is fully satisfiable.

(⇒) Let I be a model of T1 such that (C ⊓AT )I 6= ∅. We construct an interpre-
tation of T2, J = (∆I ∪ {dtop}, ·J ), with dtop 6∈ ∆I , such that:

AJ
T = AI

T , AJ
C = (C ⊓ AT )I ,

AJ = AI ∪ {dtop} for each atomic concept A in T and C,

PJ = P I for each atomic role P in T and C.

Obviously, the extension of every atomic concept is non-empty in J . Next,
we show that J is a model of T2, by relying on the fact (easily proved by
structural induction) that DI ⊆ DJ , for each subconcept D of concepts in
T1. Then, it is easy to show that J satisfies the two assertion in T2:

AJ
T = AI

T ⊆ (
l

C1⊑C2∈T

(¬C1 ⊔ C2) ⊓
l

1≤i≤n

∀Pi.AT )I

⊆ (
l

C1⊑C2∈T

(¬C1 ⊔ C2) ⊓
l

1≤i≤n

∀Pi. AT )J

AJ
C = (C ⊓ AT )I ⊆ (C ⊓ AT )J

(⇐) Conversely, every full model J of T2 is also a model of T1 with (C⊓AT )J 6= ∅,
as AJ

C ⊆ (C ⊓ AT )J . ⊓⊔

Theorem 3. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward, as deciding full satisfia-
bility of an ALC TBox T can be reduced to deciding satisfiability of the TBox
T ∪

⋃

1≤i≤n{⊤ ⊑ ∃P ′.Ai}, where A1, . . . , An are all the atomic concepts in T ,
and P ′ is a fresh atomic role. The ExpTime-hardness follows from Lemma 2. ⊓⊔

We now modify the reduction of Lemma 2 so that it applies also to prim-

itive ALC− TBoxes, i.e., TBoxes that contain only assertions of the form:
A ⊑ B, A ⊑ ¬B, A ⊑ B ⊔ B′, A ⊑ ∀P.B, A ⊑ ∃P.B, where A, B,
B′ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC− TBoxes is ExpTime-

complete.

Proof. The ExpTime membership follows from Theorem 3. For proving the
ExpTime-hardness, we use a result in [4] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC−

TBoxes. Let T − = {Aj ⊑ Dj | 1 ≤ j ≤ m} be a primitive ALC− TBox, and A0
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an atomic concept. By Lemma 2, we have that A0 is satisfiable w.r.t. T − if and
only if the TBox T ′

2 containing the assertions

AT − ⊑
l

Aj⊑Dj∈T −

(¬Aj ⊔ Dj) ⊓
l

1≤i≤n

∀Pi. AT − , A′
0 ⊑ A0 ⊓ AT − ,

is fully satisfiable, with AT − , A′
0 fresh atomic concepts. T ′

2 is not a primitive
ALC− TBox, but it is equivalent to the TBox containing the assertions:

A′
0 ⊑ AT −

A′
0 ⊑ A0

AT − ⊑ ¬A1 ⊔ D1

...
AT − ⊑ ¬Am ⊔ Dm

AT − ⊑ ∀P1. AT −

...
AT − ⊑ ∀Pn. AT − ,

Finally, to get a primitive ALC− TBox, T −
2 , we replace each assertion of the

form AT − ⊑ ¬Aj ⊔ Dj by AT − ⊑ B1
j ⊔ B2

j , B1
j ⊑ ¬Aj , and B2

j ⊑ Dj , with B1
j

and B2
j fresh atomic concepts, for j ∈ {1, . . . ,m}.

We show now that T ′
2 is fully satisfiable iff T −

2 is fully satisfiable:

(⇒) Let I = (∆I , ·I) be a full model of T ′
2 . We extend I to an interpretation J

of T −
2 . Let ∆J = ∆I ∪ {d+, d−}, with {d+, d−} ∩ ∆I = ∅, and define ·J as

follows:

AJ
T −

= AI
T −

, A′
0
J

= A′
0
I
,

AJ = AI ∪ {d+}, for every other atomic concept A in T ′
2 ,

B1
j

J
= (¬Aj)

J and B2
j

J
= DJ

j , for each AT − ⊑ B1
j ⊔ B2

j ∈ T −
2 ,

PJ = P I ∪ {(d+, d+)}, for each atomic role P in T −
2 .

It is easy to see that J is a full model of T −
2 .

(⇐) Trivial, since every model of T −
2 is a model of T ′

2 . ⊓⊔

3 Full Satisfiability of UML Class Diagrams

Three notions of UCD satisfiability have been proposed in the litera-
ture [13,4,12,11]. First, diagram satisfiability refers to the existence of a model,
i.e., an interpretation that satisfies all constraints expressed by the diagram and
where at least one class has a nonempty extension. Second, class satisfiability

refers to the existence of a model of the diagram where the given class has a
nonempty extension. Third, we can check whether there is a model of an UML
diagram that satisfies all classes and all relationships in a diagram. This last
notion of satisfiability, referred here as full satisfiability and introduced in [12] is
thus stronger than diagram satisfiability, since a model of a diagram that satisfies
all classes is, by definition, also a model of that diagram.

We adopt the formalization of UCDs in terms of DLs as given in [4,1]. For
lack of space we give here only a brief overview of such formalization. Classes are
formalized by atomic concepts; and relations by roles. Generalization between
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Fig. 4. Encoding of A ⊑ ∃P.B

classes (e.g., C1ISAC2) are formalized by concept inclusions (C1 ⊑ C2); disjoint-
ness constrains between two classes C1 and C2 by means of axioms of the form
C1 ⊑ ¬C2; and covering constraints by axioms of the form C ⊑ C1⊔C2. Finally,
multiplicity constraints are formalized using qualified number restrictions.

Definition 5 (UML Full Satisfiability). A UCD, D, is fully satisfiable if
there is an interpretation, I, that satisfies all the constraints expressed in D and
such that CI 6= ∅ for every class C in D, and RI 6= ∅ for every association R in
D. We say that I is a full model of D.

We now address the complexity of full satisfiability for UCDs. For the lower
bounds, we use the results presented in Section 2 and reduce full satisfiability of
primitive ALC− TBoxes to full satisfiability of UCDs. This reduction is based
on the ones used in [4,1] for determining the lower complexity bound of schema
satisfiability in the extended Entity-Relationship model.

Given a primitive ALC− TBox T , construct an UCD Σ(T ) as follows: for
each atomic concept A in T , introduce a class A in Σ(T ). Additionally, introduce
a class O that generalizes (possibly indirectly) all the classes in Σ(T ) that encode
an atomic concept in T . For each atomic role P , introduce a class CP , which
reifies the binary relation P . Further, introduce two functional associations P1,
and P2 that represent, respectively, the first and second component of P . The
assertions in T are encoded as follows:

– The correspondence of UCDs and DLs gives a straightforward encoding for
assertions of the form A ⊑ B, A ⊑ ¬B, and A ⊑ B1 ⊔ B2 (see Fig. 1 and
Fig. 2).
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– For each assertion of the form A ⊑ ∀P.B, add the auxiliary classes CPAB

and CPAB
, and the associations PAB1, PĀB1, and PAB2, and construct the

diagram shown in Fig. 3.
– For each assertion of the form A ⊑ ∃P.B, add the auxiliary class CPAB

and
the associations PAB1 and PAB2, and construct the diagram shown in Fig. 4.

Lemma 6. A primitive ALC− TBox T is fully satisfiable iff the UCD Σ(T ),
constructed as above, is fully satisfiable.

Proof. (⇐) Let J = (∆J , ·J ) be a full model of Σ(T ). We construct a full
model I = (∆I , ·I) of T by taking ∆I = ∆J . Further, for every concept name
A and for every atomic role P in T , we define respectively AI = AJ and2

P I = (P−
1 )J ◦ PJ

2 . Let us show that I satisfies every assertion in T .

(A ⊑ B, A ⊑ ¬B, and A ⊑ B1 ⊔ B2): The statement easily follows from the
construction of I.

(A ⊑ ∀P.B): Let o ∈ AI = AJ and o′ ∈ ∆I = ∆J , such that (o, o′) ∈ P I .
Since P I = (P−

1 )J ◦ PJ
2 , there is o′′ ∈ ∆J such that (o, o′′) ∈ (P−

1 )J , and
(o′′, o′) ∈ PJ

2 . Then, o′′ ∈ CJ
P = CJ

PAB
∪ C

J

PAB
. We claim that o′′ ∈ CJ

PAB
.

Suppose otherwise, then there is a unique o1 ∈ ∆J , such that (o′′, o1) ∈ PJ
ĀB1

and o1 ∈ ĀJ
PB

. It follows from PJ
ĀB1

⊆ PJ
1 and by the multiplicity constraint

over CP , that o1 = o. This rises a contradiction, because o ∈ AJ ⊆ AJ
PB

and, AJ
PB

and ĀJ
PB

are disjoint. Then o′′ ∈ CJ
PAB

. Further, there is a unique
o2 ∈ ∆J with (o′′, o2) ∈ PJ

AB2 and o2 ∈ BJ . From PJ
AB2 ⊆ PJ

2 and the mul-
tiplicity constraint on CP , it follows that o2 = o′. Thus, we have that
o′ ∈ BJ = BI , and therefore, o ∈ (∀P.B)I .

(A ⊑ ∃P.B): Let o ∈ AI = AJ . Then, there is o′ ∈ ∆J such
that (o′, o) ∈ PJ

AB1 and o′ ∈ CJ
PAB

. Then, there is o′′ ∈ ∆J with
(o′, o′′) ∈ PJ

AB2 and o′′ ∈ BJ = BI . Then, since PJ
AB2 ⊆ PJ

2 , PJ
AB1 ⊆ PJ

1

and P I = (P−
1 )J ◦ PJ

2 , we can conclude that (o, o′′) ∈ P I .

(⇒) Let I = (∆I , ·I) be a full model of T , and let role(T ) be the set of role names
in T . Extend I to a legal instantiation J = (∆J , ·J ) of Σ(T ), by assigning
suitable extensions to the auxiliary classes and associations in Σ(T ). Let ∆J =
∆I ∪ Γ ∪ Λ, where: Λ =

⊎

A⊑∀P.B∈T {aAPB
, aĀPB

}, such that ∆I ∩ Λ = ∅, and
Γ =

⊎

P∈role(T ) ∆P , with:

∆P = P I ∪
⋃

A⊑∀P.B∈T

{(aAPB
, b), (aĀPB

, ō)}

with b an arbitrary instance of B, and ō an arbitrary element of ∆I . We set
OJ = ∆I ∪ Λ, AJ = AI for each class A corresponding to an atomic concept
in T , and CJ

P = ∆P for each P ∈ role(T ). Additionally, the extensions of the
associations P1 and P2 are defined as follows:

PJ
1 = {((o, o′), o) | (o, o′) ∈ CJ

P }, PJ
2 = {((o, o′), o′) | (o, o′) ∈ CJ

P }.

We now show that J is a full model of Σ(T ).

2 We use r1 ◦ r2 to denote the composition of two binary relations r1 and r2.

60 Checking Full Satisfiability of Conceptual Models



1. For the portions of Σ(T ) due to TBox assertions of the form A ⊑ B, A ⊑ ¬B,
and A ⊑ B1 ⊔ B2, the statement follows from the construction of J .

2. For each TBox assertion in T of the form A ⊑ ∀P.B, let us define

AJ
PB

= AI ∪ {aAPB
}, ĀJ

PB
= OJ \ AJ

PB
,

CJ
PAB

= {(o, o′) ∈ CJ
P | o ∈ AJ

PB
}, C

J

PAB
= {(o, o′) ∈ CJ

P | o ∈ ĀJ
PB

},

PJ
AB1 = {((o, o′), o) ∈ PJ

1 | o ∈ AJ
PB

}, PJ
ĀB1

= {((o, o′), o) ∈ PJ
1 | o ∈ ĀJ

PB
},

PJ
AB2 = {((o, o′), o′) ∈ PJ

2 | o ∈ AJ
PB

} .

It is not difficult to see that J satisfies the fragment of Σ(T ) as shown in
Fig. 3. Further, it is clear that the extension of the classes that encode atomic
concepts in T are non-empty. For the classes APB

, ĀPB
, CPAB

, and CPAB
we

have that

aAPB
∈ AJ

PB
, aĀPB

∈ ĀJ
PB

, (aAPB
, b) ∈ CJ

PAB
, (aĀPB

, ō) ∈ C
J

PAB
.

For the associations P1, P2, PAB1, PAB2 and PĀB1 we have that

((aAPB
, b), aAPB

) ∈ PJ
AB1 ⊆ PJ

1 , ((aĀPB
, ō), aĀPB

) ∈ PJ
ĀB1

,

((aAPB
, b), b) ∈ PJ

AB2 ⊆ PJ
2 .

3. For each TBox assertion in T of the form A ⊑ ∃P.B, let us define the
extensions for the auxiliary classes and associations as follows:

CJ
PAB

= {(o, o′) ∈ CJ
P | o ∈ AI and o′ ∈ BI},

PJ
AB1 = {((o, o′), o) ∈ PJ

1 | (o, o′) ∈ CJ
PAB

},

PJ
AB2 = {((o, o′), o′) ∈ PJ

2 | (o, o′) ∈ CJ
PAB

} .

We have that CJ
PAB

6= ∅ as there exists a pair (a, b) ∈ ∆P with a ∈ AI , and

b ∈ BI . Since CJ
PAB

6= ∅, we have that PJ
AB1 6= ∅ and PJ

AB2 6= ∅. ⊓⊔

Theorem 7. Full satisfiability of UCDs is ExpTime-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in
UCDs, which is known to be ExpTime-complete [4]. Given a UCD D, with
classes C1, . . . , Cn, we construct the UCD D′ by adding to D a new class C⊤

and new associations Ri, for i ∈ {1, . . . , n}. Furthermore, to check that every
association is populated we use reification, i.e., we replace each association P in
the diagram D between the classes Ci and Cj (such that neither Ci nor Cj is
constrained to participate at least once to P ) with a class CP and two functional
associations P1 and P2 to represent each component of P . Finally, we add the
constraints shown in Fig. 5. Intuitively, we have that if there is a model I of the
extended diagram D′ in which CI

⊤ 6= ∅, then the multiplicity constraint 1..∗ on
the association RP forces the existence of at least one instance o of CP . By the
functionality of P1 and P2 there are at least to elements oi and oj , such that
oi ∈ CI

i , oj ∈ CI
j , (o, oi) ∈ P I

1 and (o, oj) ∈ P I
2 . Then, one instance of P can be

the pair (oi, oj). Conversely, if there is a full model J of D, it is easy to extend
it to a model I of D′ that satisfies C⊤.

The ExpTime-hardness follows from Lemma 6 and Theorem 4. ⊓⊔
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      C⊤ Ci1..*Ri

    

           Ci CP Cj

C⊤

1..1 1..1

1..*

P1 P2

Rp

Fig. 5. Reducing UML full satisfiability to class satisfiability

4 Full Satisfiability of Restricted UML Class Diagrams

In this section, we investigate the complexity of the full satisfiability problem
for two sub-languages: UMLbool, which disallows isa between associations and
UMLref, where also completeness between classes is forbidden. By building on
the techniques used for the satisfiability proofs in [1], we show that also in this
case checking for full satisfiability does not change the complexity of the problem.

We first show that deciding full satisfiability for UMLbool diagrams is NP-
complete. For the lower bound, we provide a polynomial reduction of the 3sat

problem (which is known to be NP-complete) to full satisfiability of UMLbool

CDs.
Let an instance of 3sat be given by a set φ = {c1, . . . , cm} of 3-clauses over

a finite set Π of propositional variables. Each clause is such that ci = ℓ1i ∨ℓ2i ∨ℓ3i ,
for i ∈ {1, . . . ,m}, where each ℓk

j is a literal, i.e., a variable or its negation. We
construct an UMLbool diagram Dφ as follows: Dφ contains the classes Cφ, C⊤,
one class Ci for each clause ci ∈ φ, and two classes Cp and C¬p for each variable
p ∈ Π. To describe the constraints imposed by Dφ, we provide the corresponding
DL inclusion assertions, since they are more compact to write than an UCD. For
every i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}, and p ∈ Π, we have the assertions

Cφ ⊑ C⊤,
Cp ⊑ C⊤,

C¬p ⊑ C⊤,

Ci ⊑ C⊤,
Cφ ⊑ Ci,
C⊤ ⊑ Cp ⊔ C¬p,

C
l
j
i
⊑ Ci,

Ci ⊑ Cℓ1i
⊔ Cℓ2i

⊔ Cℓ3i
,

C¬p ⊑ ¬Cp.

Clearly, the size of Dφ is polynomial in the size of φ.

Lemma 8. A set φ of 3-clauses is satisfiable if and only if the UMLbool class

diagram Dφ, constructed as above, is fully satisfiable.

Proof. (⇒) Let J |= φ. Define an interpretation I = ({0, 1}, ·I), with

CI
⊤ = {0, 1}

CI
ℓ =







{1}, if J |= ℓ

{0}, otherwise

CI
i = CI

ℓ1i
∪ CI

ℓ2i
∪ CI

ℓ3i
, for ci = ℓ1i ∨ ℓ2i ∨ ℓ3i

CI
φ = CI

1 ∩ · · · ∩ CI
m.

Clearly, CI 6= ∅ for every class C representing a clause or a literal, and for
C = C⊤. Moreover, as at least one literal ℓj

i in each clause is such that J |= ℓj
i ,

then 1 ∈ CI
i for every i ∈ {1, . . . ,m}, and therefore 1 ∈ CI

φ . It is straightforward
to check that I satisfies T .
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(⇐) Let I = (∆I , ·I) be a full model of Dφ. We construct a model J of φ by
taking an element o ∈ CI

φ , and setting, for every variable p ∈ Π, J |= p if and

only if o ∈ CI
p . Let us show that J |= φ. Indeed, for each i ∈ {1, . . . ,m}, since

o ∈ CI
φ and by the generalization Cφ ⊑ Ci, we have that o ∈ CI

i , and by the
completeness constraint Ci ⊑ Cℓ1i

⊔ Cℓ2i
⊔ Cℓ3i

, there is some ji ∈ {1, 2, 3} such

that o ∈ C
ℓ

ji
i

. If ℓji

i is a variable, then J |= ℓji

i by construction, and thus J |= ci.

Otherwise, if ℓji

i = ¬p for some variable p, then, by the disjointness constraint
C¬p ⊑ ¬Cp, we have that o /∈ CI

p . Thus, J |= ¬p, and therefore, J |= ci. ⊓⊔

Theorem 9. Full satisfiability of UMLbool is NP-complete

Proof. The NP-hardness follows from Lemma 8. To prove the NP upper bound,
we reduce full satisfiability to class satisfiability, which, for the case of UMLbool,
is known to be in NP [1]. We use a similar encoding as the one used in the proof
of Theorem 7 (see Fig. 5). ⊓⊔

We turn now to UMLref class diagrams and show that full satisfiability in
this case is NLogSpace-complete. We provide a reduction of the reachabil-

ity problem on (acyclic) directed graphs, which is known to be NLogSpace-
complete (see e.g., [14]) to the complement of full satisfiability of UMLref CDs.

Let G = (V,E, s, t) be an instance of reachability, where V is a set of
vertices, E ⊆ V × V is a set of directed edges, s is the start vertex, and t the
terminal vertex. We construct an UMLref diagram DG from G as follows:

– DG has two classes C1
v and C2

v , for each vertex v ∈ V \ {s}, and one class
Cs corresponding to the start vertex s.

– For each edge (u, v) ∈ E with u 6= s and v 6= s, DG contains the following
constraints (again expressed as DL inclusion assertions):

C1
u ⊑ C1

v , C2
u ⊑ C2

v .

– For each edge (s, v) ∈ E, DG contains the following constraints:

Cs ⊑ C1
v , Cs ⊑ C2

v .

– For each edge (u, s) ∈ E, DG contains the following constraints:

C1
u ⊑ Cs, C2

u ⊑ Cs.

– The classes C1
t and C2

t are constrained to be disjoint in D, expressed by:

C1
t ⊑ ¬C2

t .

The following lemma establishes the correctness of the reduction.

Lemma 10. t is reachable from s in G iff DG is not fully satisfiable.
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Proof. (⇒) Let π = v1, . . . , vn be a path in G with v1 = s and vn = t. We
claim that the class Cs in the constructed diagram DG is unsatisfiable. Suppose
otherwise, that there is a model I of DG with o ∈ CI

s , for some o ∈ ∆I . From π,
the construction yields a number of generalization constraints in DG such that
the following holds:

CI
s ⊆ · · · ⊆ C1

t

I
CI

s ⊆ · · · ⊆ C2
t

I

From this we obtain that o ∈ (C1
t )I and o ∈ (C2

t )I , which violates the disjoint-
ness between the classes C1

t and C2
t , in contradiction to I being a model of DG.

Hence, Cs is unsatisfiable, and therefore DG is not fully satisfiable.
(⇐) Assume that t is not reachable from s in G. We construct a full model

I of DG. Let ∆I = {ds} ∪
⋃

v∈V \{s}{d
1
v, d2

v}. Define inductively a sequence of
interpretations as follows:

I0 :=
(

∆I , ·I
0)

, such that:

CI0

s := {ds}, Ci
v

I0

:= {di
v}, ∀i ∈ {1, 2}, v ∈ V \ {s}.

In+1 :=
(

∆I , ·I
n+1

)

, such that:

CIn+1

s := CIn

s ∪
⋃

(u,s)∈E

(

C1
u

In

∪ C2
u

In)

Ci
v

In+1

:= Ci
v

In

∪
⋃

(u,v)∈E, u 6=s

Ci
u

In

∪
⋃

(s,v)∈E

CIn

s

The definition induces a monotone operator over a complete lattice, and hence
it has a fixed point. Let I be defined by such a fixed point. It is easy to check
that I is such that for all i ∈ {1, 2}, and u, v ∈ V \ {s} the following holds:

1. For each class Ci
v, we have that di

v ∈ Ci
v
I .

2. ds ∈ CI
s .

3. For all d ∈ ∆I , d ∈ Ci
u
I implies d ∈ Ci

v
I iff v is reachable from u in G.

4. For all di
u ∈ ∆I , di

u ∈ Cj
v
I for i 6= j iff s is reachable from u in G, and v is

reachable from s in G.
5. ds ∈ Ci

v
I iff v is reachable from s in G.

From (1) and (2) we have that all classes in DG are populated in I. It remains
to show that I satisfies DG. A generalization between the classes Ci

u and Ci
v

corresponds to the edge (u, v) ∈ E. This means that v is reachable from u in
G, and therefore, by (3) we have that Ci

u
I ⊆ Ci

v
I . A similar argument holds for

generalizations involving the class Cs. Furthermore, the classes C1
t and C2

t are
disjoint under I. To show this, suppose that there is an element d ∈ ∆I such
that d ∈ C1

t
I ∩C2

t
I . Then by (5), d 6= ds, as t is not reachable from s. Moreover,

d 6= di
v for all i ∈ {1, 2} and v ∈ V \ {s}. Indeed, suppose w.l.o.g. that i = 1.

Then, by (4), d1
v ∈ C2

t
I iff s is reachable from v, and t is reachable from s, which

leads to a contradiction. Hence, C1
t
I ∩ C2

t
I = ∅. ⊓⊔
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Language

Classes Associations Complexity
isa disjoint complete isa multiplicity refinement

UML X X X X X X ExpTime

UMLbool X X X 7 X X NP

UMLref X X 7 7 X X NLogSpace

Table 1. Complexity results for full satisfiability in UML

Theorem 11. Full-satisfiability of UMLref class diagrams is NLogSpace-

complete.

Proof. The NLogSpace membership follows from the NLogSpace membership
of class satisfiability [1], and a reduction similar to the one used in Theorem 9.
Since NLogSpace = coNLogSpace (by the Immerman-Szelepcsényi theorem;
see, e.g., [14]), and as the above reduction is logspace bounded, it follows that
full consistency of UMLref class diagrams is NLogSpace-hard. ⊓⊔

5 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether there is at least one model of the diagram where
each class and association is non-empty. Our results (reported in Table 1) show
that the complexity of full satisfiability matches the complexity of the classical
class diagram satisfiability check. We show a similar result also for the problem
of checking the full satisfiability of a TBox expressed in the description logic
ALC.
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