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Abstract
Knowledge base exchange is an important problem
in the area of data exchange and knowledge rep-
resentation, where one is interested in exchanging
information between a source and a target knowl-
edge base connected through a mapping. In this pa-
per, we study this fundamental problem for knowl-
edge bases and mappings expressed in OWL 2 QL,
the profile of OWL 2 based on the description logic
DL-LiteR. More specifically, we consider the prob-
lem of computing universal solutions, identified as
one of the most desirable translations to be ma-
terialized, and the problem of computing UCQ-
representations, which optimally capture in a target
TBox the information that can be extracted from a
source TBox and a mapping by means of unions of
conjunctive queries. For the former we provide a
novel automata-theoretic technique, and complex-
ity results that range from NP to EXPTIME, while
for the latter we show NLOGSPACE-completeness.

1 Introduction
Complex forms of information, maintained in different for-
mats and organized according to different structures, often
need to be shared between agents. In recent years, both in
the data management and in the knowledge representation
communities, several settings have been investigated that ad-
dress this problem from various perspectives: in informa-
tion integration, uniform access is provided to a collection of
data sources by means of an ontology (or global schema) to
which the sources are mapped [Lenzerini, 2002]; in peer-to-
peer systems, a set of peers declaratively linked to each other
collectively provide access to the information assets they
maintain [Kementsietsidis et al., 2003; Adjiman et al., 2006;
Fuxman et al., 2006]; in ontology matching, the aim is to un-
derstand and derive the correspondences between elements in
two ontologies [Euzenat and Shvaiko, 2007; Shvaiko and Eu-
zenat, 2013]; finally, in data exchange, the information stored
according to a source schema needs to be restructured and
translated so as to conform to a target schema [Fagin et al.,
2005; Barceló, 2009].

The work we present in this paper is inspired by the lat-
ter setting, investigated in databases. We study it, how-

ever, under the assumption of incomplete information typical
of knowledge representation [Arenas et al., 2011]. Specif-
ically, we investigate the problem of knowledge base ex-
change, where a source knowledge base (KB) is connected
to a target KB by means of a declarative mapping speci-
fication, and the aim is to exchange knowledge from the
source to the target by exploiting the mapping. We rely
on a framework for KB exchange based on lightweight De-
scription Logics (DLs) of the DL-Lite family [Calvanese
et al., 2007], recently proposed in [Arenas et al., 2012a;
Arenas et al., 2012b]: both source and target are KBs consti-
tuted by a DL TBox, representing implicit information, and
an ABox, representing explicit information, and mappings are
sets of DL concept and role inclusions. Note that in data and
knowledge base exchange, differently from ontology match-
ing, mappings are first-class citizens. In fact, it has been rec-
ognized that building schema mappings is an important and
complex activity, which requires the designer to have a thor-
ough understanding of the source and how the information
therein should be related to the target. Thus, several tech-
niques and tools have been developed to support mapping de-
sign, e.g., exploiting lexical information [Fagin et al., 2009].
Here, similar to data exchange, we assume that for building
mappings the target signature is given, but no further axioms
constraining the target knowledge are available. In fact, such
axioms are derived from the source KB and the mapping.

We consider two key problems: (i) computing universal
solutions, which have been identified as one of the most desir-
able translations to be materialized; (ii) UCQ-representability
of a source TBox by means of a target TBox that captures at
best the intensional information that can be extracted from
the source according to a mapping using union of conjunc-
tive queries. Determining UCQ-representability is a crucial
task, since it allows one to use the obtained target TBox to
infer new knowledge in the target, thus reducing the amount
of extensional information to be transferred from the source.
Moreover, it has been noticed that in many data exchange ap-
plications users only extract information from the translated
data by using specific queries (usually conjunctive queries),
so query-based notions of translation specifically tailored
to store enough information to answer such queries have
been widely studied in the data exchange area [Madhavan
and Halevy, 2003; Fagin et al., 2008; Arenas et al., 2009;
Fagin and Kolaitis, 2012; Pichler et al., 2013]. For these



two problems, we investigate both the task of checking mem-
bership, where a candidate universal solution (resp., UCQ-
representation) is given and one needs to check its correct-
ness, and non-emptiness, where the aim is to determine the
existence of a universal solution (resp., UCQ-representation).

We significantly extend previous results in several direc-
tions. First of all, we establish results for OWL 2 QL [Motik
et al., 2012], one of the profiles of the standard Web Ontology
Language OWL 2 [Bao et al., 2012], which is based on the
DL DL-LiteR. To do so, we have to overcome the difficulty
of dealing with null values in the ABox, since these become
necessary in the target to represent universal solutions. Also,
for the first time, we address disjointness assertions in the
TBox, a construct that is part of OWL 2 QL. The main contri-
bution of our work is then a detailed analysis of the computa-
tional complexity of both membership and non-emptiness for
universal solutions and UCQ-representability. For the non-
emptiness problem of universal solutions, previous known re-
sults covered only the simple case of DL-LiteRDFS , the RDFS
fragment of OWL 2 QL, in which no new facts can be in-
ferred, and universal solutions always exist and can be com-
puted in polynomial time via a chase procedure (see [Cal-
vanese et al., 2007]). We show that in our case, instead, the
problem is PSPACE-hard, hence significantly more complex,
and provide an EXPTIME upper bound based on a novel ap-
proach exploiting two-way alternating automata. We provide
also NP upper bounds for the simpler case of ABoxes with-
out null values, and for the case of the membership prob-
lem. As for UCQ-representability, we adopt the notion of
UCQ-representability introduced in [Arenas et al., 2012a;
Arenas et al., 2012b] and extend it to take into account dis-
jointness of OWL 2 QL. For that case we show NLOGSPACE-
completeness of both non-emptiness and membership, im-
proving on the previously known PTIME upper bounds.

The paper is organized as follows. In Section 2, we give
preliminary notions on DLs and queries. In Section 3, we
define our framework of KB exchange and discuss the prob-
lem of computing solutions. In Section 4, we overview our
contributions, and then we provide our results on computing
universal solutions in Section 5, and on UCQ-representability
in Section 6. Finally, in Section 7, we draw some conclusions
and outline issues for future work.

2 Preliminaries
The DLs of the DL-Lite family [Calvanese et al., 2007] of
light-weight DLs are characterized by the fact that standard
reasoning can be done in polynomial time. We adapt here
DL-LiteR, the DL underlying OWL 2 QL, and present now
its syntax and semantics. Let NC , NR, Na, N` be pairwise
disjoint sets of concept names, role names, constants, and
labeled nulls, respectively. Assume in the following that A ∈
NC and P ∈ NR; in DL-LiteR, B and C are used to denote
basic and arbitrary (or complex) concepts, respectively, and
R and Q are used to denote basic and arbitrary (or complex)
roles, respectively, defined as follows:

R ::= P | P−
Q ::= R | ¬R

B ::= A | ∃R
C ::= B | ¬B

From now on, for a basic role R, we use R− to denote P−
when R = P , and P when R = P−.

A TBox is a finite set of concept inclusions B v C and
role inclusions R v Q. We call an inclusion of the form
B1 v ¬B2 or R1 v ¬R2 a disjointness assertion. An ABox
is a finite set of membership assertions B(a), R(a, b), where
a, b ∈ Na. In this paper, we also consider extended ABoxes,
which are obtained by allowing labeled nulls in membership
assertions. Formally, an extended ABox is a finite set of mem-
bership assertionsB(u) andR(u, v), where u, v ∈ (Na∪N`).
Moreover, a(n extended) KB K is a pair 〈T ,A〉, where T is a
TBox and A is an (extended) ABox.

A signature Σ is a finite set of concept and role names. A
KB K is said to be defined over (or simply, over) Σ if all the
concept and role names occurring in K belong to Σ (and like-
wise for TBoxes, ABoxes, concept inclusions, role inclusions
and membership assertions). Moreover, an interpretation I
of Σ is a pair 〈∆I , ·I〉, where ∆I is a non-empty domain and
·I is an interpretation function such that: (1) AI ⊆ ∆I , for
every concept name A ∈ Σ; (2) P I ⊆ ∆I × ∆I , for ev-
ery role name P ∈ Σ; and (3) aI ∈ ∆I , for every constant
a ∈ Na. Function ·I is extended to also interpret concept and
role constructs:

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I such that (x, y) ∈ RI};
(P−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I};
(¬B)I = ∆I \BI ; (¬R)I = (∆I ×∆I) \RI .

Note that, consistently with the semantics of OWL 2 QL, we
do not make the unique name assumption (UNA), i.e., we
allow distinct constants a, b ∈ Na to be interpreted as the
same object, i.e., aI = bI . Note also that labeled nulls are
not interpreted by I.

Let I = 〈∆I , ·I〉 be an interpretation over a signature Σ.
Then I is said to satisfy a concept inclusion B v C over Σ,
denoted by I |= B v C, if BI ⊆ CI ; I is said to satisfy
a role inclusion R v Q over Σ, denoted by I |= R v Q, if
RI ⊆ QI ; and I is said to satisfy a TBox T over Σ, denoted
by I |= T , if I |= α for every α ∈ T . Moreover, satisfaction
of membership assertions over Σ is defined as follows. A
substitution over I is a function h : (Na ∪ N`) → ∆I such
that h(a) = aI for every a ∈ Na. Then I is said to satisfy
an (extended) ABox A, denoted by I |= A, if there exists a
substitution h over I such that:

– for every B(u) ∈ A, it holds that h(u) ∈ BI ; and
– for every R(u, v) ∈ A, it holds that (h(u), h(v)) ∈ RI .

Finally, I is said to satisfy a(n extended) KB K = 〈T ,A〉,
denoted by I |= K, if I |= T and I |= A. Such I is called
a model of K, and we use MOD(K) to denote the set of all
models of K. We say that K is consistent if MOD(K) 6= ∅.

As is customary, given an (extended) KB K over a signa-
ture Σ and a membership assertion or an inclusion α over Σ,
we use notation K |= α to indicate that for every interpreta-
tion I of Σ, if I |= K, then I |= α.

2.1 Queries and certain answers
A k-ary query q over a signature Σ, with k ≥ 0, is a func-
tion that maps every interpretation 〈∆I , ·I〉 of Σ into a k-ary
relation qI ⊆ (∆I)k. In particular, if k = 0, then q is said



to be a Boolean query, and qI is either a relation containing
the empty tuple () (representing the value true) or the empty
relation (representing the value false). Given a KB K over Σ,
the set of certain answers to q overK, denoted by cert(q,K),
is defined as:⋂
I∈MOD(K){(a1, . . . , ak) |

{a1, . . . , ak} ⊆ Na and (aI1 , . . . , a
I
k ) ∈ qI},

Notice that the certain answer to a query does not contain
labeled nulls. Besides, notice that if q is a Boolean query,
then cert(q,K) evaluates to true if qI evaluates to true for
every I ∈ MOD(K), and it evaluates to false otherwise.

A conjunctive query (CQ) over a signature Σ is a formula
of the form q(~x) = ∃~y. ϕ(~x, ~y), where ~x, ~y are tuples of vari-
ables and ϕ(~x, ~y) is a conjunction of atoms of the form A(t),
with A a concept name in Σ, and P (t, t′), with P a role name
in Σ, where each of t, t′ is either a constant from Na or a
variable from ~x or ~y. Given an interpretation I = 〈∆I , ·I〉
of Σ, the answer of q over I, denoted by qI , is the set of tu-
ples ~a of elements from ∆I for which there exist a tuple ~b
of elements from ∆I such that I satisfies every conjunct in
ϕ(~a,~b). A union of conjunctive queries (UCQ) over a signa-
ture Σ is a formula of the form q(~x) =

∨n
i=1 qi(~x), where

each qi (1 ≤ i ≤ n) is a CQ over Σ, whose semantics is
defined as qI =

⋃n
i=1 q

I
i .

3 Exchanging OWL 2 QL Knowledge Bases
We generalize now, in Section 3.1, the setting proposed in
[Arenas et al., 2011] to OWL 2 QL, and we formalize in Sec-
tion 3.2 the main problems studied in the rest of the paper.

3.1 A knowledge base exchange framework for
OWL 2 QL

Assume that Σ1, Σ2 are signatures with no concepts or roles
in common. An inclusion E1 v E2 is said to be from Σ1 to
Σ2, if E1 is a concept or a role over Σ1 and E2 is a concept
or a role over Σ2. A mapping is a tupleM = (Σ1,Σ2, T12),
where T12 is a TBox consisting of inclusions from Σ1 to
Σ2 [Arenas et al., 2012a]. Recall that in this paper, we deal
with DL-LiteR TBoxes only, so T12 is assumed to be a set of
DL-LiteR concept and role inclusions. The semantics of such
a mapping is defined in [Arenas et al., 2012a] in terms of a
notion of satisfaction for interpretations, which has to be ex-
tended in our case to deal with interpretations not satisfying
the UNA (and, more generally, the standard name assump-
tion). More specifically, given interpretations I, J of Σ1 and
Σ2, respectively, pair (I,J ) satisfies TBox T12, denoted by
(I,J ) |= T12, if (i) for every a ∈ Na, it holds that aI = aJ ,
(ii) for every concept inclusion B v C ∈ T12, it holds that
BI ⊆ CJ , and (iii) for every role inclusion R v Q ∈ T12, it
holds that RI ⊆ QJ . Notice that the connection between the
information in I and J is established through the constants
that move from source to target according to the mapping. For
this reason, we require constants to be interpreted in the same
way in I and J , i.e., they preserve their meaning when they
are transferred. Besides, notice that this is the only restric-
tion imposed on the domains of I and J (in particular, we
require neither that ∆I = ∆J nor that ∆I ⊆ ∆J ). Finally,

SATM(I) is defined as the set of interpretations J of Σ2 such
that (I,J ) |= T12, and given a set X of interpretations of Σ1,
SATM(X ) is defined as

⋃
I∈X SATM(I).

The main problem studied in the knowledge exchange area
is the problem of translating a KB according to a mapping,
which is formalized through several different notions of trans-
lation (for a thorough comparison of different notions of so-
lutions see [Arenas et al., 2012a]). The first such notion
is the concept of solution, which is formalized as follows.
Given a mappingM = (Σ1,Σ2, T12) and KBs K1, K2 over
Σ1 and Σ2, respectively, K2 is a solution for K1 under M
if MOD(K2) ⊆ SATM(MOD(K1)). Thus, K2 is a solu-
tion for K1 underM if every interpretation of K2 is a valid
translation of an interpretation of K1 according to M. Al-
though natural, this is a mild restriction, which gives rise to
the stronger notion of universal solution. GivenM, K1 and
K2 as before, K2 is a universal solution for K1 under M
if MOD(K2) = SATM(MOD(K1)). Thus, K2 is designed
to exactly represent the space of interpretations obtained by
translating the interpretations of K1 underM [Arenas et al.,
2012a]. Below is a simple example demonstrating the notion
of universal solutions. This example also illustrates some is-
sues regarding the absence of the UNA, which has to be given
up to comply with the OWL 2 QL standard, and regarding the
use of disjointness assertions.

Example 3.1 Assume M = ({F (·), G(·)}, {F ′(·), G′(·)},
T12), where T12 = {F v F ′, G v G′}, and let K1 =
〈T1,A1〉, where T1 = {} and A1 = {F (a), G(b)}. Then
the ABoxA2 = {F ′(a), G′(b)} is a universal solution for K1

underM.
Now, if we add a seemingly harmless disjointness assertion

{F v ¬G} to T1, we obtain that A2 is no longer a universal
solution (not even a solution) for K1 under M. The reason
for that is the lack of the UNA on the one hand, and the pres-
ence of the disjointness assertion in T1 on the other hand. In
fact, the latter forces a and b to be interpreted differently in
the source. Thus, for a model J of A2 such that aJ = bJ

and F ′J = G′J = {aJ }, there exists no model I of K1

such that (I,J ) |= T12 (which would require aI = aJ and
bI = bJ ). In general, there exists no universal solution for
K1 under M, even though K1 and T12 are consistent with
each other.

A second class of translations is obtained in [Arenas et al.,
2012a] by observing that solutions and universal solutions are
too restrictive for some applications, in particular when one
only needs a translation storing enough information to prop-
erly answer some queries. For the particular case of UCQ,
this gives rise to the notions of UCQ-solution and universal
UCQ-solution. Given a mappingM = (Σ1,Σ2, T12), a KB
K1 = 〈T1,A1〉 over Σ1 and a KB K2 over Σ2, K2 is a UCQ-
solution for K1 under M if for every query q ∈ UCQ over
Σ2: cert(q, 〈T1 ∪ T12,A1〉) ⊆ cert(q,K2), while K2 is a
universal UCQ-solution for K1 under M if for every query
q ∈ UCQ over Σ2: cert(q, 〈T1 ∪ T12,A1〉) = cert(q,K2).

Finally, a last class of solutions is obtained in [Arenas et
al., 2012a] by considering that users want to translate as much
of the knowledge in a TBox as possible, as a lot of effort
is put in practice when constructing a TBox. This observa-



tion gives rise to the notion of UCQ-representation [Arenas et
al., 2012a], which formalizes the idea of translating a source
TBox according to a mapping. Next, we present an alternative
formalization of this notion, which is appropriate for our set-
ting where disjointness assertions are considered.1 Assume
thatM = (Σ1,Σ2, T12) and T1, T2 are TBoxes over Σ1 and
Σ2, respectively. Then T2 is a UCQ-representation of T1 un-
derM if for every query q ∈ UCQ over Σ2 and every ABox
A1 over Σ1 that is consistent with T1:

cert(q, 〈T1 ∪ T12,A1〉) =⋂
A2 :A2 is an ABox over Σ2 that

is a UCQ-solution forA1 underM

cert(q, 〈T2,A2〉). (†)

Notice that in the previous definition,A2 is said to be a UCQ-
solution forA1 underM if the KB 〈∅,A2〉 is a UCQ-solution
for the KB 〈∅,A1〉 under M. Let us explain the intuition
behind the definition of the notion of UCQ-representation.
Assume that T1, T2, M satisfy (†). First, T2 captures the
information in T1 that is translated by M and that can be
extracted by using a UCQ, as for every ABox A1 over Σ1

that is consistent with T1 and every UCQ q over Σ2, if we
choose an arbitrary UCQ-solution A2 for A1 underM, then
it holds that cert(q, 〈T1∪T12,A1〉) ⊆ cert(q, 〈T2,A2〉). No-
tice that A1 is required to be consistent with T1 in the pre-
vious condition, as we are interested in translating data that
make sense according to T1. Second, T2 does not include any
piece of information that can be extracted by using a UCQ
and it is not the result of translating the information in T1

according to M. In fact, if A1 is an ABox over Σ1 that is
consistent with T1 and q is a UCQ over Σ2, then it could be
the case that cert(q, 〈T1 ∪ T12,A1〉) ( cert(q, 〈T2,A?2〉) for
some UCQ-solution A?2 for A1 underM. However, the ex-
tra tuples extracted by query q are obtained from the extra
information in A?2, as if we consider a tuple ~a that belong to
cert(q, 〈T2,A2〉) for every UCQ-solution A2 for A1 under
M, then it holds that ~a ∈ cert(q, 〈T1 ∪ T12,A1〉).

Example 3.2 Assume that M = ({F (·), G(·), H(·), D(·)},
{F ′(·), G′(·), H ′(·)}, T12), where T12 = {F v F ′, G v
G′, H v H ′}, and let T1 = {F v G}. As expected, TBox
T2 = {F ′ v G′} is a UCQ-representation of T1 under M.
Moreover, we can add the inclusion D v ¬H ′ to T12, and
T2 will still remain a UCQ-representation of T1 under M.
Notice that in this latter setting, our definition has to deal
with some ABoxesA1 that are consistent with T1 but not with
T1 ∪ T12, for instance A1 = {H(a), D(a)} for some con-
stant a. In those cases, Equation (†) is trivially satisfied, since
MOD(〈T1 ∪ T12,A1〉) = ∅ and the set of UCQ-solutions for
A1 underM is empty.

3.2 On the problem of computing solutions
Arguably, the most important problem in knowledge ex-
change [Arenas et al., 2011; Arenas et al., 2012a], as well
as in data exchange [Fagin et al., 2005; Kolaitis, 2005], is

1If disjointness assertions are not allowed, then this new notion
can be shown to be equivalent to the original formalization of UCQ-
representation proposed in [Arenas et al., 2012a].

the task of computing a translation of a KB according to a
mapping. To study the computational complexity of this task
for the different notions of solutions presented in the previous
section, we introduce the following decision problems. The
membership problem for universal solutions (resp. universal
UCQ-solutions) has as input a mappingM = (Σ1,Σ2, T12)
and KBsK1,K2 over Σ1 and Σ2, respectively. Then the ques-
tion to answer is whetherK2 is a universal solution (resp. uni-
versal UCQ-solution) for K1 underM. Moreover, the mem-
bership problem for UCQ-representations has as input a map-
pingM = (Σ1,Σ2, T12) and TBoxes T1, T2 over Σ1 and Σ2,
respectively, and the question to answer is whether T2 is a
UCQ-representation of T1 underM.

In our study, we cannot leave aside the existential versions
of the previous problems, which are directly related with the
problem of computing translations of a KB according to a
mapping. Formally, the non-emptiness problem for univer-
sal solutions (resp. universal UCQ-solutions) has as input a
mappingM = (Σ1,Σ2, T12) and a KBK1 over Σ1. Then the
question to answer is whether there exists a universal solution
(resp. universal UCQ-solution) for K1 underM. Moreover,
the non-emptiness problem for UCQ-representations has as
input a mappingM = (Σ1,Σ2, T12) and a TBox T1 over Σ1,
and the question to answer is whether there exists a UCQ-
representation of T1 underM.

4 Our contributions
In Section 3.2, we have introduced the problems that are stud-
ied in this paper. It is important to notice that these problems
are defined by considering only KBs (as opposed to extended
KBs), as they are the formal counterpart of OWL 2 QL. Nev-
ertheless, as shown in Section 5, there are natural examples
of OWL 2 QL specifications and mappings where null values
are needed when constructing solutions. Thus, we also study
the problems defined in Section 3.2 in the case where transla-
tions can be extended KBs. It should be noticed that the no-
tions of solution, universal solution, UCQ-solution, universal
UCQ-solution, and UCQ-representation have to be enlarged
to consider extended KBs, which is straightforward to do. In
particular, given a mappingM = (Σ1,Σ2, T12) and TBoxes
T1, T2 over Σ1 and Σ2, respectively, T2 is said to be a UCQ-
representation of T1 under M in this extended setting if in
Equation (†),A2 is an extended ABox over Σ2 that is a UCQ-
solution for A1 underM.

The main contribution of this paper is to provide a de-
tailed analysis of the complexity of the membership and
non-emptiness problems for the notions of universal solu-
tion and UCQ-representation. In Figure 1, we provide a
summary of the main results in the paper, which are ex-
plained in more detail in Sections 5 and 6. It is important
to notice that these results considerably extend the previous
known results about these problems [Arenas et al., 2012a;
Arenas et al., 2012b]. In the first place, the problem of
computing universal solutions was studied in [Arenas et al.,
2012a] for the case of DL-LiteRDFS , a fragment of DL-LiteR
that allows neither for inclusions of the form B v ∃R nor
for disjointness assertions. In that case, it is straightfor-
ward to show that every source KB has a universal solution



Membership ABoxes extended ABoxes
Universal solutions in NP NP-complete
UCQ-representations NLOGSPACE-complete

Non-emptiness ABoxes extended ABoxes
Universal solutions in NP PSPACE-hard, in EXPTIME
UCQ-representations NLOGSPACE-complete

Figure 1: Complexity results obtained in the paper about the membership and non-emptiness problems.

that can be computed by using the chase procedure [Cal-
vanese et al., 2007]. Unfortunately, this result does not pro-
vide any information about how to solve the much larger
case considered in this paper, where, in particular, the non-
emptiness problem is not trivial. In fact, for the case of the
notion of universal solution, all the lower and upper bounds
provided in Figure 1 are new results, which are not conse-
quences of the results obtained in [Arenas et al., 2012a]. In
the second place, a notion of UCQ-representation that is ap-
propriate for the fragment of DL-LiteR not including dis-
jointness assertions was studied in [Arenas et al., 2012a;
Arenas et al., 2012b]. In particular, it was shown that the
membership and non-emptiness problems for this notion are
solvable in polynomial time. In this paper, we consider-
ably strengthen these results: (i) by generalizing the defini-
tion of the notion of UCQ-representation to be able to deal
with OWL 2 QL, that is, with the entire language DL-LiteR
(which includes disjointness assertions); and (ii) by showing
that the membership and non-emptiness problems are both
NLOGSPACE-complete in this larger scenario.

It turns out that reasoning about universal UCQ-solutions
is much more intricate. In fact, as a second contribution of
our paper, we provide a PSPACE lower bound for the com-
plexity of the membership problem for the notion of univer-
sal UCQ-solution, which is in sharp contrast with the NP
and NLOGSPACE upper bounds for this problem for the case
of universal solutions and UCQ-representations, respectively
(see Figure 1). Although many questions about universal
UCQ-solutions remain open, we think that this is an interest-
ing first result, as universal UCQ-solutions have only been in-
vestigated before for the very restricted fragment DL-LiteRDFS

of DL-LiteR [Arenas et al., 2012a], which is described in the
previous paragraph.

5 Computing universal solutions
In this section, we study the membership and non-emptiness
problems for universal solutions, in the cases where nulls are
not allowed (Section 5.1) and are allowed (Section 5.2) in
such solutions. But before going into this, we give an exam-
ple that shows the shape of universal solutions in DL-LiteR.

Example 5.1 Assume that M = ({F (·), S(·, ·)}, {G′(·)},
{∃S− v G′}), and let K1 = 〈T1,A1〉, where T1 = {F v
∃S} and A1 = {F (a)}. Then a natural way to construct a
universal solution for K1 underM is to ‘populate’ the target
with all implied facts (as it is usually done in data exchange).
Thus, the ABoxA2 = {G′(n)}, where n is a labeled null, is a
universal solution for K1 underM if nulls are allowed. No-
tice that here, a universal solution with non-extended ABoxes
does not exist: substituting n by any constant is too restric-
tive, ruining universality.

Example 5.2 Now, assume M = ({F (·), S(·, ·), T (·, ·)},
{S′(·, ·)}, {S v S′, T v S′}), and K1 = 〈T1,A1〉, where
T1 = {F v ∃S, ∃S− v ∃S} and A1 = {F (a), T (a, a)}.
In this case, we cannot use the same approach as in Exam-
ple 5.1 to construct a universal solution, as now we would
need of an infinite number of labeled nulls to construct such
a solution. However, as S and T are transferred to the same
role S′, it is possible to use constant a to represent all im-
plied facts. In particular, in this case A2 = {S′(a, a)} is a
universal solution for K1 underM.

5.1 Universal solutions without null values
We explain here how the NP upper bound for the non-
emptiness problem for universal solutions is obtained, when
ABoxes are not allowed to contain null values.

Assume given a mapping M = (Σ1, Σ2, T12) and a KB
K1 = 〈T1,A1〉 over Σ1. To check whether K1 has a univer-
sal solution underM, we use the following non-deterministic
polynomial-time algorithm. First, we construct an ABox A2

over Σ2 containing every membership assertion α such that
〈T1 ∪ T12,A1〉 |= α, where α is of the form either B(a)
or R(a, b), and a, b are constants mentioned in A1. Second,
we guess an interpretation I of Σ1 such that I |= K1 and
(I,UA2

) |= T12, where UA2
is the interpretation of Σ2 natu-

rally corresponding2 to A2. The correctness of the algorithm
is a consequence of the facts that:

a) there exists a universal solution for A1 underM if and
only if A2 is a solution for A1 underM; and

b) A2 is a solution for A1 under M if and only if there
exists a model I of K1 such that (I,UA2) |= T12.

Moreover, the algorithm can be implemented in a non-
deterministic polynomial-time Turing machine given that:
(i) A2 can be constructed in polynomial time; (ii) if there
exists a model I of K1 such that (I,UA2

) |= T12, then there
exists a model of K1 of polynomial-size satisfying this con-
dition; and (iii) it can be checked in polynomial time whether
I |= K1 and (I,UA2) |= T12.

In addition, in this case, the membership problem can be
reduced to the non-emptiness problem, thus, we have that:

Theorem 5.3 The non-emptiness and membership problems
for universal solutions are in NP.

The exact complexity of these problems remains open. In
fact, we conjecture that these problems are in PTIME.

We conclude by showing that reasoning about universal
UCQ-solutions is harder than reasoning about universal solu-
tions, which can be explained by the fact that TBoxes have

2Interpretation UA2 can be defined as the Herbrand model of
A2 extended with fresh domain elements to satisfy assertions of the
form ∃R(a) in A2.



bigger impact on the structure of universal UCQ-solutions
rather than of universal solutions. In fact, by using a reduc-
tion from the validity problem for quantified Boolean formu-
las, similar to a reduction in [Konev et al., 2011], we are able
to prove the following:

Theorem 5.4 The membership problem for universal UCQ-
solutions is PSPACE-hard.

5.2 Universal solutions with null values
We start by considering the non-emptiness problem for uni-
versal solutions with null values, that is, when extended
ABoxes are allowed in universal solutions. As our first result,
similar to the reduction above, we show that this problem is
PSPACE-hard, and identify the inclusion of inverse roles as
one of the main sources of complexity.

To obtain an upper bound for this problem, we use two-
way alternating automata on infinite trees (2ATA), which
are a generalization of nondeterministic automata on infinite
trees [Vardi, 1998] well suited for handling inverse roles in
DL-LiteR. More precisely, given a KB K, we first show that
it is possible to construct the following automata:

– Acan
K is a 2ATA that accepts trees corresponding to the

canonical model ofK 3 with nodes arbitrary labeled with
a special symbol G;

– Amod
K is a 2ATA that accepts a tree if its subtree labeled

with G corresponds to a tree model I of K (that is, a
model forming a tree on the labeled nulls); and

– Afin is a (one-way) non-deterministic automaton that ac-
cepts a tree if it has a finite prefix where each node is
marked with G, and no other node in the tree is marked
with G.

Then to verify whether a KB K1 = 〈T1,A1〉 has a univer-
sal solution under a mappingM = (Σ1,Σ2, T12), we solve
the non-emptiness problem for an automaton B defined as
the product automaton of πΓK(Acan

K ), πΓK(Amod
K ) and Afin ,

where K = 〈T1 ∪ T12,A1〉, πΓK(Acan
K ) is the projection of

Acan
K on a vocabulary ΓK not mentioning symbols from Σ1,

and likewise for πΓK(Amod
K ). If the language accepted by B

is empty, then there is no universal solution for K1 underM,
otherwise a universal solution (possibly of exponential size)
exists, and we can compute it by extracting the ABox encoded
in some tree accepted by B . Summing up, we get:

Theorem 5.5 If extended ABoxes are allowed in universal
solutions, then the non-emptiness problem for universal so-
lutions is PSPACE-hard and in EXPTIME.

Interestingly, the membership problem can be solved more
efficiently in this scenario, as now the candidate universal so-
lutions are part of the input. In the following theorem, we
pinpoint the exact complexity of this problem.

Theorem 5.6 If extended ABoxes are allowed in universal
solutions, then the membership problem for universal solu-
tions is NP-complete.

3If K = 〈T ,A〉, then this model essentially corresponds to the
chase of A with T (see [Konev et al., 2011] for a formal definition).

6 Computing UCQ-representations
In Section 5, we show that the complexity of the member-
ship and non-emptiness problems for universal solutions dif-
fer depending on whether ABoxes or extended ABoxes are
considered. On the other hand, we show in the following
proposition that the use of null values in ABoxes does not
make any difference in the case of UCQ-representations. In
this proposition, given a mappingM and TBoxes T1, T2, we
say that T2 is a UCQ-representation of T1 under M consid-
ering extended ABoxes if T1, T2, M satisfy Equation (†) in
Section 3.1, but assuming that A2 is an extended ABox over
Σ2 that is a UCQ-solution for A1 underM.

Proposition 6.1 A TBox T2 is a UCQ-representation of a
TBox T1 under a mapping M if and only if T2 is a UCQ-
representation of T1 underM considering extended ABoxes.

Thus, from now on we study the membership and non-
emptiness problems for UCQ-representations assuming that
ABoxes can contain null values.

We start by considering the membership problem for UCQ-
representations. In this case, one can immediately notice
some similarities between this task and the membership prob-
lem for universal UCQ-solutions, which was shown to be
PSPACE-hard in Theorem 5.4. However, the universal quan-
tification over ABoxes in the definition of the notion of UCQ-
representation makes the latter problem computationally sim-
pler, which is illustrated by the following example.

Example 6.2 Assume that M = (Σ1,Σ2, T12), where
Σ1 = {F (·), S1(·, ·), S2(·, ·), T1(·, ·), T2(·, ·)}, Σ2 =
{F ′(·), S′(·, ·), T ′(·, ·), G′(·)} and T12 = {F v F ′, S1 v
S′, S2 v S′, T1 v T ′, T2 v T ′,∃T−1 v G′}. Moreover,
assume that T1 = {F v ∃S1, F v ∃S2,∃S−1 v ∃T1,∃S−2 v
∃T2} and T2 = {F ′ v ∃S′,∃S′− v ∃T ′,∃T ′− v G′}.
If we were to verify whether 〈T2, {F ′(a)}〉 is a universal
UCQ-solution for 〈T1, {F (a)}〉 underM (which it is in this
case), then we would first need to construct the path π =
〈F ′(a), S′(a, n), T ′(n,m), G′(m)〉 formed by the inclusions
in T2, where n,m are fresh null values, and then we would
need to explore the translations according toM of all paths
formed by the inclusions in T1 to find one that matches π.

On the other hand, to verify whether T2 is a UCQ-
representation of T1 under M, one does not need to exe-
cute any “backtracking”, as it is sufficient to consider inde-
pendently a polynomial number of pieces C taken from the
paths formed by the inclusions in T1, each of them of poly-
nomial size, and then checking whether the translation C′ of
C according toM matches with the paths formed from C′ by
the inclusions in T2. If any of these pieces does not satisfy
this condition, then it can be transformed into a witness that
Equation (†) is not satisfied, showing that T2 is not a UCQ-
representation of T1 underM (as we have a universal quan-
tification over the ABoxes over Σ1 in the definition of UCQ-
representations). In fact, one of the pieces considered in this
case is C = 〈T2(n,m)〉, where n, m are null values, which
does not satisfy the previous condition as the translation C′
of C according toM is 〈T ′(n,m)〉, and this does not match
with the path 〈T ′(n,m), G′(m)〉 formed from C′ by the inclu-
sions in T2. This particular case is transformed into an ABox



A1 = {T2(b, c)} and a query q = T ′(b, c) ∧ G′(c), where b,
c are fresh constants, for which we have that Equation (†) is
not satisfied.

Notice that disjointness assertions in the mapping may
cause 〈T1 ∪ T12,A1〉 to become inconsistent for some source
ABoxes A1 (which will make all possible tuples to be in the
answer to every query), therefore additional conditions have
to be imposed on T2. To give more intuition about how the
membership problem for UCQ-representations is solved, we
give an example showing how one can deal with some of
these inconsistency issues.

Example 6.3 Assume thatM = (Σ1,Σ2, T12), where Σ1 =
{F (·), G(·), H(·)}, Σ2 = {F ′(·), G′(·), H ′(·)} and T12 =
{F v F ′, G v G′, H v H ′}. Moreover, assume that T1 =
{F v G} and T2 = {F ′ v G′}. In this case, it is clear that
T2 is a UCQ-representation of T1 underM. However, if we
add inclusion H v ¬G′ to T12, then T2 is no longer a UCQ-
representation of T1 under M. To see why this is the case,
consider an ABox A1 = {F (a), H(a)}, which is consistent
with T1, and a query q = F ′(b), where b is a fresh constant.
Then we have that cert(q, 〈T1 ∪ T12,A1〉) = {()} as KB
〈T1 ∪ T12,A1〉 is inconsistent, while cert(q, 〈T2,A2〉) = ∅
for UCQ-solution A2 = {F ′(a), H ′(a)} for A1 under M.
Thus, we conclude that Equation (†) is violated in this case.

One can deal with the issue raised in the previous example
by checking that on every pair (B,B′) of T1-consistent ba-
sic concepts over Σ1,4 it holds that: (B,B′) is (T1 ∪ T12)-
consistent if and only if (B,B′) is (T12 ∪ T2)-consistent, and
likewise for every pair of basic roles over Σ1. This condition
guarantees that for every ABox A1 over Σ1 that is consistent
with T1, it holds that: 〈T1 ∪ T12,A1〉 is consistent if and only
if there exists an extended ABox A2 over Σ2 such that A2 is
a UCQ-solution for A1 underM and 〈T2,A2〉 is consistent.
Thus, the previous condition ensures that the sets on the left-
and right-hand side of Equation (†) coincide whenever the in-
tersection on either of these sides is taken over an empty set.

The following theorem, which requires of a lengthy and
non-trivial proof, shows that there exists an efficient algo-
rithm for the membership problem for UCQ-representations
that can deal with all the aforementioned issues.

Theorem 6.4 The membership problem for UCQ-
representations is NLOGSPACE-complete.

We conclude by pointing out that the non-emptiness prob-
lem for UCQ-representations can also be solved efficiently.
We give an intuition of how this can be done in the following
example, where we say that T1 is UCQ-representable under
M if there exists a UCQ-representation T2 of T1 underM.

Example 6.5 Assume thatM = (Σ1,Σ2, T12), where Σ1 =
{F (·), G(·), H(·)}, Σ2 = {F ′(·), G′(·)} and T12 = {F v
F ′, G v G′, H v F ′}. Moreover, assume that T1 = {F v
G}. Then it follows that T1 ∪ T12 |= F v G′, and in or-
der for T1 to be UCQ-representable underM, the following
condition must be satisfied:

4A pair (B,B)′ is T -consistent for a TBox T , if the KB
〈T , {B(a), B′(a)}〉 is consistent, where a is an arbitrary constant.

(?) there exists a concept B′ over Σ2 s.t. T12 |= F v B′,
and for each conceptB over Σ1 with T1∪T12 |= B v B′
it follows that T1 ∪ T12 |= B v G′.

The idea is then to add the inclusion B′ v G′ to a UCQ-
representation T2 so that T12 ∪ T2 |= F v G′ as well. In our
case, concept F ′ satisfies the condition T12 |= F v F ′, but it
does not satisfy the second requirement as T1 ∪ T12 |= H v
F ′ and T1 ∪ T12 6|= H v G′. In fact, F ′ v G′ cannot be
added to T2 as it would result in T12 ∪ T2 |= H v G′, hence
in Equation (†), the inclusion from right to left would be vio-
lated. There is no way to reflect the inclusion F v G′ in the
target, so in this case T1 is not UCQ-representable underM.

The proof of the following result requires of some involved
extensions of the techniques used to prove Theorem 6.4.
Theorem 6.6 The non-emptiness problem for UCQ-
representations is NLOGSPACE-complete.

The techniques used to prove Theorem 6.6, which is sketched
in the example below.
Example 6.7 ConsiderM and T1 from Example 6.5, but as-
suming that T12 does not contain the inclusion H v F ′.
Again, T1 ∪ T12 |= F v G′, but now condition (?) is sat-
isfied. Then, an algorithm for computing a representation es-
sentially needs to take any B′ given by condition (?) and add
the inclusion B′ v F ′ to T2. In this case, T2 = {F ′ v G′} is
a UCQ-representation of T1 underM.

7 Conclusions
In this paper, we have studied the problem of KB exchange
for OWL 2 QL, improving on previously known results with
respect to both the expressiveness of the ontology language
and the understanding of the computational properties of the
problem. Our investigation leaves open several issues, which
we intend to address in the future. First, it would be good
to have characterizations of classes of source KBs and map-
pings for which universal (UCQ-)solutions are guaranteed to
exist. As for the computation of universal solutions, while
we have pinned-down the complexity of membership for ex-
tended ABoxes as NP-complete, an exact bound for the other
case is still missing. Moreover, it is easy to see that allowing
for inequalities between terms (e.g., a 6= b in Example 3.1)
and for negated atoms in the (target) ABox would allow one
to obtain more universal solutions, but a full understanding of
this case is still missing. Finally, we intend to investigate the
challenging problem of computing universal UCQ-solutions,
adopting also here an automata-based approach.
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A Definitions and Preliminary Results
Let Σ be a DL-LiteR signature; a concept name A (role name P ) is said to be over Σ, if A ∈ Σ (P ∈ Σ).
A basic role R is said to be over Σ, if, either it is a role name over Σ, or R = P− for a role P over Σ; a
basic concept B is said to be over Σ, if either it is a concept name, which is over Σ, or B = ∃R and R is a
basic role over Σ. We naturally extend these definitions to TBoxes, ABoxes, KBs, and queries; so we can
refer to Σ-TBoxes or TBoxes over Σ, and analogiously for ABoxes, KBs, and queries.

Define relation vRT to be the reflexive and transitive closure of the following relation on the set of all
basic roles over NR:

{(R1, R2) | R1 v R2 ∈ T or R−1 v R
−
2 ∈ T },

and let vCT be the reflexive and transitive closure of the following relation on the set of all basic concepts
over NC :

{(B1, B2) | B1 v B2 ∈ T } ∪ {(∃R1,∃R2) | R1 vRT R2}.

Then define the relation ` between K and the DL-LiteR membership assertions over Σ as:

{(K, B(a)) | there exists a basic concept B′ s.t. A |= B′(a) and B′ vCT B} ∪
{(K, R(a, b)) | there exists a basic role R′ s.t. A |= R′(a, b) and R′ vRT R}.

Notice that for consistent K, for every membership assertion α it holds that K ` α if and only if K |= α
. Moreover, for every basic role R over NR, define [R] as {S | R vRT S and S vRT R}, and then let ≤T
be a partial order on the set {[R] | R is a basic role over NR} defined as [R] ≤T [S] if R vRT S. For
each set [R], where R is a basic role, consider an element w[R], witness for [R]. Now, define a generating
relationship K between the set Na ∪ {w[R] | R is a basic role} and the set {w[R] | R is a basic role}, as
follows:

• a K w[R], if (1) K ` ∃R(a); (2) K 6` R(a, b) for every b ∈ Na; (3) [R′] = [R] for every [R′] such
that [R′] ≤T [R] and K ` ∃R′(a).

• w[S]  K w[R], if (1) T ` ∃S− v ∃R; (2) [S−] 6= [R]; (3) [R′] = [R] for every [R′] such that
[R′] ≤T [R] and T ` ∃S− v ∃R′.

Denote by path(K) the set of allK-paths, where aK-path is a sequence a ·w[R1] · . . . ·w[Rn] (sometimes
we simply write aw[R1] . . . w[Rn]) such that a ∈ Na, a  K w[R1] and w[Ri]  K w[Ri+1] for every
i ∈ {1, . . . , n− 1}. Moreover, for every σ ∈ path(K), denote by tail(σ) the last element in σ.

With all the previous notation, we can finally define the canonical model UK. The domain ∆UK of UK
is defined as path(K), and aUK = a for every a ∈ Na. Moreover, for every concept A:

AUK = {σ ∈ path(K) | K ` A(tail(σ)) or tail(σ) = w[R] and T ` ∃R− v A},

and for every role P , we have that PUK is defined as follows:

{(σ1, σ2) ∈ path(K)× path(K) | K ` P (tail(σ1), tail(σ2)); or
σ2 = σ1 · w[R], tail(σ1) K w[R] and [R] ≤T [P ]; or

σ1 = σ2 · w[R], tail(σ2) K w[R] and [R] ≤T [P−]}.

Notice that UK defined above can be treated (by ignoring sets NUK for some concepts and role names N )
as a Σ-interpretation, for any Σ. Denote also by Ind(A) the set of constants occuring in A.

Let us point out the similarity of our definition of UK with the definition of the canonical modelMK
defined in [Konev et al., 2011]. When K is consistent, many results proved there forMK apply to UK. In
particular, from the proof of Theorem 5 in [Konev et al., 2011] we can immediately conclude:

Claim A.1 If K is consistent, UK is a model of K.

We are going to introduce the notions of Σ-types and Σ-homomorphisms, heavily employed in the
proofs. For an interpretation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y) for x, y ∈ ∆I are given
by

tIΣ(x) ={B - basic concept over Σ | x ∈ BI},
rIΣ(x, y) ={R - basic role over Σ | (x, y) ∈ RI}.



We also use tI(x) and rI(x, y) to refer to the types over the signature of all DL-Lite concepts and roles.
A Σ-homomorphism from an interpretation I to I ′ is a function h : ∆I 7→ ∆I

′
such that h(aI) = aI

′
,

for all individual names a interpreted in I, tIΣ(x) ⊆ tI
′

Σ (h(x)) and rIΣ(x, y) ⊆ rI
′

Σ (h(x), h(y)) for
all x, y ∈ ∆I . We say that I is (finitely) Σ-homomorphically embeddable into I ′ if, for every (finite)
subinterpretation I1 of I, there exists a Σ-homomorphism from I1 to I ′. If Σ is a set of all DL-Lite
concepts and roles, we call Σ-homomorphism simply homomorphism.

The claim below from the proof of Theorem 5 in [Konev et al., 2011] establishes the relation between
UK and the models of K.

Claim A.2 For every model I |= K, there exists a homomorphism from UK to I.

Another result follows from Theorem 5 in [Konev et al., 2011]:

Claim A.3 For each consistent KB K, every UCQ q(~x) and tuple ~a ⊆ Na, it holds K |= q[~a] iff UK |=
q[~a].

It is important to notice that the notion of certain answers can be characterized through the notion of
canonical model. Finally, for a signature Σ and two KBs K1 = 〈T1,A1〉 and K2 = 〈T2,A2〉, we say that
K1 Σ-query entails K2 if, for all Σ-queries q(~x) and all ~a ⊆ Na, K2 |= q[~a] implies K1 |= q[~a]. The KBs
K1 and K2 are said to be Σ-query equivalent if K1 Σ-query entails K2 and vice versa. The following is a
consequence of Theorem 7 in [Konev et al., 2011]:

Claim A.4 Let K1 and K2 be consistent KBs. Then K1 Σ-query entails K2 iff UK2
is finitely Σ-

homomorphically embeddable into UK1
.

B Proofs in Section 5
B.1 Definitions and Preliminary Results: Characterization of Universal Solutions
First, we define the notion of canonical model for extended ABoxes. LetA be an extended ABox. Without
loss of generality, assume thatA does not contain assertions of the form ∃R(x). Then the canonical model
of A, denoted VA is defined as follows: ∆VA = Null(A) ∪Na, where Null(A) is the set of labeled nulls
mentioned in A, aVA = a for each a ∈ Na, AVA = {x ∈ ∆VA | A(x) ∈ A} for each atomic concept
A, and PVA = {(x, y) ∈ ∆VA ×∆VA | P (x, y) ∈ A} for each atomic role P . Let h be a function from
Na ∪Nl → ∆VA2 such that h(a) = a for every a ∈ Na and h(x) = x for every x ∈ Nl. Then

Lemma B.1 VA2
is a model of A2 with substitution h.

Lemma B.2 For every model I |= A2, there exists a homomorphism from VA2
to I.

Proof. Let I be a model of A2 with a substitution h′. Then h′ is the desired homomorphism from VA2
to

I. �

Given an extended ABox A, we denote by ∆A the set of all constants and nulls mentioned in A,
∆A = Ind(A) ∪ Null(A). Moreover, given an interpretation I, the size of I, denoted |I|, is the sum of
cardinalities of interpretations of all predicates (the domain is not included as it is always infinite).

Let us denote by DL-Lite pos
R the positive fragment of DL-LiteR. More precisely, a DL-Lite pos

R TBox is a
finite set of concept inclusions B1 v B2, where B1, B2 are basic concepts, and role inclusions R1 v R2,
where R1, R2 are basic roles, and a DL-Lite pos

R KB K is a pair 〈T ,A〉, where T is a DL-Lite pos
R TBox and

A is an (extended) DL-LiteR ABox (without inequalities).

Lemma B.3 Let M = (Σ1,Σ2, T12) be a DL-Lite pos
R mapping, K1 = 〈T1,A1〉 a DL-Lite pos

R KBs over
Σ1, and A2 an (extended, without inequalities, without negation) ABox over Σ2. Then, A2 is a uni-
versal solution (with extended ABoxes) for K1 under M iff VA2 is Σ2-homomorphically equivalent to
U〈T1∪T12,A1〉.

Proof. (⇒) LetA2 be a universal solution forK1 underM. Then VA2 is Σ2-homomorphically equivalent
to U〈T1∪T12,A1〉: since A2 is a solution, there exists I a model of K1 such that (I,VA2) |= T12. Then
I ∪VA2

is a model of 〈T1∪T12,A1〉, therefore there is a homomorphism h from U〈T1∪T12,A1〉 to I ∪VA2
.

As Σ1 and Σ2 are disjoint signatures it follows that h is a Σ2-homomorphism from U〈T1∪T12,A1〉 to VA2
.

On the other hand, as A2 is a universal solution, J , the interpretation of Σ2 obtained from U〈T1∪T12,A1〉
is a model of A2 with a substitution h′. This h′ is exactly a homomorphism from VA2

to U〈T1∪T12,A1〉.
(⇐) Assume VA2

is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. We show that A2 is a universal
solution for K1 underM.



First, A2 is a solution for K1 under M. Let J be a model of A2, and h1 a homomorphism from
V〈∅,A2〉 to J . Furthermore, let h be a Σ2-homomorphism from U〈T1∪T12,A1〉 to VA2 . Then h′ = h1 ◦ h is
a Σ2-homomorphism from U〈T1∪T12,A1〉 to J . Let I be the interpretation of Σ1 defined as the image of
h′ applied to UK1 , I = h′(UK1). The it is easy to see that I is a model of K1 and (I,J ) |=M as K1 and
M contain only positive information. Indeed, A2 is a solution for K1 underM.

Second, A2 is a universal solution. Let I be a model of K1 and J an interpretation of Σ2 such that
(I,J ) |=M. Then, since U〈T1∪T12,A1〉 is the canonical model ofK1∪T12, there exists a homomorphism
h from U〈T1∪T12,A1〉 to I ∪ J (I ∪ J is a model of K1 ∪ T12). In turn, there is a homomorphism h1

from VA2 to U〈T1∪T12,A1〉, therefore h′ = h ◦ h1 is a homomorphism from VA2
to I ∪ J , and a Σ2-

homomorphism from VA2
to J . Hence, J is a model of A2: take h′ as the substitution for the labeled

nulls. By definition of universal solution, A2 is a universal solution for K1 underM. �

Definition B.4 LetM = (Σ1,Σ2, T12) be a DL-LiteR mapping, andK1 = 〈T1,A1〉 a DL-LiteR KB over
Σ1. Then, we say that K1 andM are Σ2-positive if

(a) for each b ∈ BU〈T1∪T12,A1〉 and c ∈ CU〈T1∪T12,A1〉 with T1 |= B u C v ⊥, it is not the case that

b ∈ InTarget and c ∈ InTarget,

(b) for each (b1, b2) ∈ RU〈T1∪T12,A1〉 and (c1, c2) ∈ QU〈T1∪T12,A1〉 with T1 |= RuQ v ⊥ for basic roles
R,Q, it is not the case that

bi ∈ InTarget and ci ∈ InTarget for i = 1, 2,

(c) for each (a, b) ∈ RU〈T1∪T12,A1〉 and (a, c) ∈ QU〈T1∪T12,A1〉 with T1 |= R u Q v ⊥ for basic roles
R,Q, it is not the case that

b ∈ InTarget and c ∈ InTarget,

where
InTarget = {x ∈ ∆U〈T1∪T12,A1〉 | tU〈T1∪T12,A1〉

Σ2
(x) 6= ∅} ∪Na

(d) for each B v ¬B′ ∈ T12, BU〈T1∪T12,A1〉 = ∅ and
for each R v ¬R′ ∈ T12, RU〈T1∪T12,A1〉 = ∅.

In the following, given a TBox T , we denote by T pos the subset of T without disjointness assertions,
and given a KB K = 〈T ,A〉, we denote by Kpos the KB 〈T pos ,A〉 . Moreover, ifM = (Σ1,Σ2, T12) is
a DL-LiteR mapping, thenMpos denotes the mapping (Σ1,Σ2, T pos

12 ).
Lemma B.5 LetM = (Σ1,Σ2, T12) be a DL-LiteR mapping, K1 = 〈T1,A1〉 a DL-LiteR KBs over Σ1,
and A2 an (extended, without inequalities, without negation) ABox over Σ2. Then, A2 is a universal
solution (with extended ABoxes) for K1 underM iff

1. K1 andM are Σ2-positive,

2. A2 is a universal solution for Kpos
1 underMpos .

Proof. (⇒) Let A2 be a universal solution for K1 under M. Then A2 is a universal solution for Kpos1
underMpos .

For the sake of contradiction, assume that K1 andM are not Σ2-positive, and e.g., (a) does not hold,
i.e., there is a disjointness constraint in T1 of the form B u C v ⊥, such that b ∈ BU〈T1∪T12,A1〉 and
c ∈ CU〈T1∪T12,A1〉 , and

t
U〈T1∪T12,A1〉
Σ2

(b) 6= ∅ or b ∈ Na,
t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅ or c ∈ Na.
Let h be a Σ2-homomorphism from U〈T1∪T12,A1〉 to VA2

(it exists by Lemma B.3). Then it follows that

t
VA2

Σ2
(h(b)) 6= ∅ or b ∈ Na

t
VA2

Σ2
(h(c)) 6= ∅ or c ∈ Na

Take a minimal model J of A2 with a substitution h′ such that h′(h(b)) = h′(h(c)). Assume that both
b and c are constants (i.e., bJ = cJ ). Then, obviously there exists no model I of Σ1 such that I |= K1

and (I,J ) |= T12: in every such I, bI must be equal to cI which contradicts B u C v ⊥, and bI ∈ BI
and cI ∈ CI . Now, assume that at least b is not a constant and tail(b) = w[R] for some role R over Σ1

(hence, b ∈ (∃R−)U〈T1∪T12,A1〉 and T1 |= ∃R− v B). Let B′ ∈ t
U〈T1∪T12,A1〉
Σ2

(b), then by construction of



the canonical model, T1 ∪ T12 |= ∃R− v B′, by homomorphism, B′(h(b)) ∈ A2, h′(h(b)) ∈ B′J , and
since J is a minimal model, B′J is minimal. As A2 is a universal solution, let I be a model of K1 such
that (I,J ) satisfy T12. Then (∃R−)I is not empty, and by minimality of B′J , it must be the case that
h′(h(b)) ∈ (∃R−)I , hence h′(h(b)) ∈ BI . By a similar argument, it can be shown that h′(h(c)) must
be in CI . As we took J such that h′(h(b)) = h′(h(c)), it contradicts that I is a model of B u C v ⊥.
Contradiction with A2 being a universal solution. Similar to (a) we can derive a contradiction if assume
that (b) or (c) does not hold.

Finally, assume (d) does not hold, i.e., B v ¬B′ ∈ T12 and BU〈T1∪T12,A1〉 6= ∅. Note that A2 is an
extended ABox, i.e., it contains only assertions of the form A(u), P (u, v) for u, v ∈ Na ∪ Nl. Take a
model J of A2 such that B′J = ∆J . Such J exists as A2 contains only positive facts. Since A2 is a
universal solution, there exist a model I of K1 such that (I,J ) |= T12. Then, BI 6= ∅, and it is easy to
see that (I,J ) 6|= B v ¬B′ because BI 6⊆ ∆J \ B′J = ∅. In every case we derive a contradiction,
hence K1 andM are Σ2-positive.

(⇐) Assume conditions 1-2 are satisfied. We show that A2 is a universal solution for K1 underM.
First, A2 is a solution for K1 underM. Let J be a model of A2, then there exists I a model of Kpos1

such that (I,J ) |= T pos
12 . Let h be a homomorphism from UK1

to I, and w.l.o.g., I = h(UK1
). Define a

new function h′ : ∆UK1 → ∆ ∪∆I , where ∆ is an infinite set of domain elements disjoint from ∆I , as
follows:

• h′(x) = h(x) if t
U〈T1∪T12,A1〉
Σ2

(x) 6= ∅ or x ∈ Na.

• h′(x) = dx, a fresh domain element from ∆, otherwise.
We show that interpretation I ′ defined as the image of h′ applied to UK, is a model of K1 and (I ′,J ) |=
M. Clearly, I ′ is a model of the positive inclusions in T1 and (I ′,J ) satisfy the positive inclusions from
T12. Let T1 |= B u C v ⊥ for basic concepts B,C. By contradiction, assume I ′ 6|= B u C v ⊥, i.e.,
for some d ∈ ∆I

′
, d ∈ BI

′ ∩ CI′ . We defined I ′ as the image of h′ on UK1
, hence there must exist

b, c ∈ ∆UK1 such that b ∈ BUK1 , c ∈ CUK1 , and h′(b) = h′(c) = d. Then it cannot be the case that[
t
U〈T1∪T12,A1〉
Σ2

(b) 6= ∅ or b is a constant
]
, and

[
t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅ or c is a constant
]

as it contradicts

(a) in the definition of K1 andM are Σ2-positive. Assume b is a null and t
U〈T1∪T12,A1〉
Σ2

(b) = ∅. Then by

definition of h′, h′(b) = db ∈ ∆ (and d = db). In either case c is a constant, or t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅,
or t

U〈T1∪T12,A1〉
Σ2

(c) = ∅, we obtain contradiction with h′(b) = db = h′(c) (remember, ∆ and ∆I are
disjoint). Contradiction rises from the assumption I 6|= B u C v ⊥. Next, assume T1 |= R uQ v ⊥ for
roles R,Q, and I ′ 6|= R u Q v ⊥, i.e., for some d1, d2 ∈ ∆I

′
, (d1, d2) ∈ RI′ ∩ QI′ . We defined I ′ as

the image of h′ on UK1
, hence there must exist b1, b2, c1, c2 ∈ ∆UK1 such that (b1, b2) ∈ RUK1 , (c1, c2) ∈

QUK1 , and h′(bi) = h′(ci) = di for i = 1, 2. Then it cannot be the case that
[
t
U〈T1∪T12,A1〉
Σ2

(bi) 6= ∅ or bi
is a constant

]
, and

[
t
U〈T1∪T12,A1〉
Σ2

(ci) 6= ∅ or ci is a constant
]

as it contradicts (a) in the definition of K1

andM are Σ2-positive. Consider the following cases:

• b1 is a null and t
U〈T1∪T12,A1〉
Σ2

(b1) = ∅. Then by definition of h′, h′(b1) = db1 ∈ ∆ (and d1 = db1 ).

– c1 is a null and t
U〈T1∪T12,A1〉
Σ2

(c1) = ∅, then h′(c1) = dc1 = d1, hence c1 = b1 and (b1, b2) ∈
RUK1 , (b1, c2) ∈ QUK1 . By (c) in the definition of K1 and M are Σ2-positive, it cannot be
the case that

[
t
U〈T1∪T12,A1〉
Σ2

(b2) 6= ∅ or b2 is a constant
]
, and

[
t
U〈T1∪T12,A1〉
Σ2

(c2) 6= ∅ or c2
is a constant

]
. Assume b2 is a null and t

U〈T1∪T12,A1〉
Σ2

(b2) = ∅. Then h′(b2) = db2 ∈ ∆ and

in either case c2 is a constant, or t
U〈T1∪T12,A1〉
Σ2

(c2) 6= ∅, or t
U〈T1∪T12,A1〉
Σ2

(c2) = ∅, we obtain
contradiction with h′(b2) = db2 = h′(c2)

– otherwise we obtain contradiction with h′(b1) = db1 = h′(c1)

The cases b2 or ci are nulls with the empty Σ2-type are covered by swapping R and Q or by taking their
inverses. Finally, assumeB v ¬C ∈ T12 and (I ′,J ) 6|= T12, i.e., for some d ∈ BI′ , d /∈ ∆J \CJ . Then
there must exist b ∈ BUK1 such that h′(b) = d. Contradiction with (d). Therefore, indeed, I is a model
of K1 and (I,J ) |= T12. This concludes the proof A2 is a solution for K1 underM.

Second, A2 is a universal solution. Let I be a model of K1 and J an interpretation of Σ2 such that
(I,J ) |= T12. Then, I is a model of Kpos

1 and (I,J ) |= T pos
12 , and asA2 is a universal solution for Kpos

1
underMpos , it follows that J is a model A2. �

The following lemma establishes shows that Σ2-positiveness can be checked in polynomial time.



Lemma B.6 LetM = (Σ1,Σ2, T12) be a mapping, and K1 = 〈T1,A1〉 a KB over Σ1. Then it can be
decided in polynomial time whether K1 andM are Σ2-positive.
Proof. We check (a) as follows:
• for each concept disjointness axiom B1 uB2 v ⊥ ∈ T1, check for i = 1, 2 if K1 |= Bi(bi) for some
bi ∈ Ind(A1) or there exists a K1-path x = a · w[S1] . . . w[Sn] such that Bi ∈ tU〈T1∪T12,A1〉(x) and

t
U〈T1∪T12,A1〉
Σ2

(x) 6= ∅. If yes, then (a) does not hold, otherwise it holds.
We check (b) as follows:
• for each role disjointness axiom R uQ v ⊥ ∈ T1, check for i = 1, 2, 3, 4 if K1 |= Bi(bi) for some
bi ∈ Ind(A1) or there exists a K1-path x = a · w[S1] . . . w[Sn] such that Bi ∈ tU〈T1∪T12,A1〉(x) and

t
U〈T1∪T12,A1〉
Σ2

(x) 6= ∅, where B1 = ∃R, B2 = ∃R−, B3 = ∃S, B4 = ∃S−. If yes, then (b) does not
hold, otherwise it holds.

We check (c) as follows:
• for each role disjointness axiom R1 u R2 v ⊥ ∈ T1, check if there exists a K1-path x =
a · w[S1] . . . w[Sn] such that ∃R1,∃R2 ∈ tU〈T1∪T12,A1〉(x), then check for i = 1, 2 if K1 |=
Ri(x, bi) for some bi ∈ Ind(A1) or there exists a K1-path yi = a′ · w[Q1] . . . w[Q′n] such that

Ri ∈ rU〈T1∪T12,A1〉(x, yi) and t
U〈T1∪T12,A1〉
Σ2

(yi) 6= ∅. If yes, then (c) does not hold, otherwise it
holds.

Note that in the previous three checks, it is sufficient to look for paths where n is bounded by the number
of roles in K1, moreover in the last check |n− n′| = 1.

We check (d) as follows:
• for each concept disjointness axiom B v ¬B′ ∈ T12, check if K1 implies that B is necessarily

non-empty. If yes, then (d) does not hold, otherwise
• for each role disjointness axiom R v ¬R′ ∈ T12, check if K1 implies that R is necessarily non-

empty. If yes, then (d) does not hold, otherwise it holds.
It is straightforward to see that each of the checks can be done in polynomial time as the standard

reasoning in DL-LiteR is in NLOGSPACE. �

Lemma B.7 Let M = (Σ1,Σ2, T12) be a mapping, and K1 = 〈T1,A1〉 a KB over Σ1 such that K1

and M are Σ2-positive. Then, a universal solution (with extended ABoxes) for K1 under M exists iff
U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into a finite subset of itself.

Proof. (⇐) Let ABox A2 be an ABox over Σ2 such that VA2 is a finite subset of U〈T1∪T12,A1〉 and there
exists a Σ2-homomorphism h from U〈T1∪T12,A1〉 to VA2 . Then, U〈∅,A2〉 is trivially homomorphically
embeddable into U〈T1∪T12,A1〉. Hence by Lemma B.5, A2 is a universal solution for K1 underM.

(⇒) Let A2 be a universal solution for K1 under M. Then VA2
is Σ2-homomorphically equivalent

to U〈T1∪T12,A1〉 by Lemma B.5. Let h be a homomorphism from VA2
to U〈T1∪T12,A1〉, and h(VA2

) the
image of h. Then, h(VA2) is a finite subset of U〈T1∪T12,A1〉, moreover it is homomorphically equivalent
to VA2 and to U〈T1∪T12,A1〉. Therefore, it follows that U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable
to a finite subset of itself. �

B.2 Definitions and Preliminary Results: The Automata Construction for Theorem 5.5
Definition of alternating two-way automatas
Infinite trees are represented as prefix closed (infinite) sets of words over N (the set of positive natural
numbers). Formally, an infinite tree is a set of words T ⊆ N∗, such that if x · c ∈ T , where x ∈ N∗ and
c ∈ N, then also x ∈ T . The elements of T are called nodes, the empty word ε is the root of T , and for
every x ∈ T , the nodes x · c, with c ∈ N, are the successors of x. By convention we take x · 0 = x,
and x · i · −1 = x. The branching degree d(x) of a node x denotes the number of successors of x. If
the branching degree of all nodes of a tree is bounded by k, we say that the tree has branching degree k.
An infinite path P of T is a prefix closed set P ⊆ T such that for every i ≥ 0 there exists a unique node
x ∈ P with |x| = i. A labeled tree over an alphabet Σ is a pair (T, V ), where T is a tree and V : T → Σ
maps each node of T to an element of Σ.

Alternating automata on infinite trees are a generalization of nondeterministic automata on infinite trees,
introduced in [9]. They allow for an elegant reduction of decision problems for temporal and program
logics [3, 1]. Let B(I) be the set of positive boolean formulae over I , built inductively by applying ∧ and



∨ starting from true, false, and elements of I . For a set J ⊆ I and a formula φ ∈ B(I), we say that J
satisfies φ if and only if, assigning true to the elements in J and false to those in I \ J , makes φ true. For
a positive integer k, let [k] = {−1, 0, 1, . . . , k}. A two-way alternating tree automaton (2ATA) running
over infinite trees with branching degree k, is a tuple A = 〈Σ, Q, δ, q0, F 〉, where Σ is the input alphabet,
Q is a finite set of states, δ : Q × Σ → B([k] × Q) is the transition function, q0 ∈ Q is the initial state,
and F specifies the acceptance condition.

The transition function maps a state q ∈ Q and an input letter σ ∈ Σ to a positive boolean formula
over [k] × Q. Intuitively, if δ(q, σ) = φ, then each pair (c, q′) appearing in φ corresponds to a new copy
of the automaton going to the direction suggested by c and starting in state q′. For example, if k = 2
and δ(q1, σ) = ((1, q2) ∧ (1, q3)) ∨ ((−1, q1) ∧ (0, q3)), when the automaton is in the state q1 and is
reading the node x labeled by the letter σ, it proceeds either by sending off two copies, in the states q2

and q3 respectively, to the first successor of x (i.e., x · 1), or by sending off one copy in the state q1 to the
predecessor of x (i.e., x · −1) and one copy in the state q3 to x itself (i.e., x · 0).

A run of a 2ATA A over a labeled tree (T, V ) is a labeled tree (Tr, r) in which every node is labeled by
an element of T ×Q. A node in Tr labeled by (x, q) describes a copy of A that is in the state q and reads
the node x of T . The labels of adjacent nodes have to satisfy the transition function of A. Formally, a run
(Tr, r) is a T ×Q-labeled tree satisfying:
• ε ∈ Tr and r(ε) = (ε, q0).
• Let y ∈ Tr, with r(y) = (x, q) and δ(q, V (x)) = φ. Then there is a (possibly empty) set S =
{(c1, q1), . . . , (cn, qn)} ⊆ [k]×Q such that:

– S satisfies φ and
– for all 1 ≤ i ≤ n, we have that y · i ∈ Tr, x · ci is defined (x · ci ∈ T ), and r(y · i) = (x · ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy the acceptance condition. Given an infinite path
P ∈ Tr, let inf (P ) ⊆ Q be the set of states that appear infinitely often in P (as second components of
node labels). We consider here Büchi acceptance conditions. A Büchi condition over a state set Q is a
subset F of Q, and an infinite path P satisfies F if inf (P ) ∩ F 6= ∅.

The non-emptiness problem for 2ATAs consists in determining, for a given 2ATA, whether the set of
trees it accepts is nonempty. It is known that this problem can be solved in exponential time in the number
of states of the input automaton A, but in linear time in the size of the alphabet as well as in the size of the
transition function of A.

The automata construction
Now, we are going to construct two 2ATA automatas and a one-way non-deterministic automata to use
them as a mechanism to decide the non-emptiness problem for universal solutions. More specifically,
let Σ1, Σ2 be signatures with no concepts or roles in common, and K = 〈T ,A〉 a KB over Σ1 ∪ Σ2,
N = {a1, . . . , an} be the set of individuals inA1, B be the set of basic concepts and R be the set of basic
roles over the signature of K (that is, over Σ1 ∪ Σ2). Finally, assume that r, G are special characters not
mentioned in N ∪B ∪R, and let P = {Pij | P is an atomic role over the signature of K and 1 ≤ i, j ≤
n}. Then assuming that ΣK = 2N∪B∪R∪P∪{r,G} and ΓK = {σ ∈ ΣK | r ∈ σ, σ ∩N 6= ∅, or every basic
concept and every basic role in σ is over Σ2}, we construct the following automata:
• Acan

K : The alphabet of this automaton is ΣK, and it accepts trees that are essentially the tree corre-
sponding to the canonical model of K, but with nodes arbitrary labeled with the special character
G.
• Amod

K : The alphabet of this automaton is ΣK, and it accepts a tree if its subtree labeled with G
corresponds to a tree model I of K (tree models are models which from trees on the labeled nulls).
• Afin : The alphabet of this automaton is ΓK, and it accepts a tree if it has a finite prefix where each

node is marked with the special symbol G, and no other node in the tree is marked with G.

Automaton Acan
K for the canonical model of K = 〈T ,A〉

Acan
K is a two way alternating tree automaton (2ATA) that accepts the tree corresponding to the canon-

ical model of the DL-LiteR KB K = 〈T ,A〉, with nodes arbitrarily labeled with a special character G.
Formally, Acan

K = 〈ΣK, Qcan , δcan , q0, Fcan〉, where

Qcan = {q0, qs, q
∗
¬r, qd} ∪ {q∗X , q∗¬X | X ∈ N ∪B ∪R ∪P} ∪ {q∃R, qR | R ∈ R},

and the transition function δcan is defined as follows. Assume without loss of generality that the number
of basic roles over the signature of K is equal to n (this can always be done by adding the required
assertions to the ABox), and let f : R→ {1, . . . , n} be a one-to-one function. Then δcan : Qcan×ΣK →
B([n]×Qcan) is defined as:



1. For each σ ∈ ΣK such that r ∈ σ, δcan(q0, σ) is defined as:
n∧
i=1

[
(i, qs) ∧ (i, q∗¬r) ∧ (i, q∗ai) ∧

( ∧
j∈{1,...,n} : j 6=i

(i, q∗¬aj )

)
∧

n∧
j=1

( ∧
P∈P :K|=P (ai,aj)

(0, q∗Pij
) ∧

∧
P∈P :K6|=P (ai,aj)

(0, q∗¬Pij
)

)
∧

( ∧
B∈B :K|=B(ai)

(i, q∗B)

)
∧
( ∧
B∈B :K6|=B(ai)

(i, q∗¬B)

)
∧

( ∧
R∈R :

R is≤T -minimal s.t.
K|=∃R(ai) and∧n
j=1 K6|=R(ai,aj)

(i, q∃R)

)
∧
( ∧
R∈R :

K6|=∃R(ai), or∨n
j=1 K|=R(ai,aj), or
R is not≤T -minimal

(i, qng
∃R)

)]

2. For each σ ∈ ΣK:

δcan(qs, σ) =

n∧
i=1

[
(i, qs) ∧ (i, q∗¬r) ∧

n∧
j=1

(i, q∗¬aj ) ∧
(

(i, qd) ∨
∨
R∈R

(i, q∗R)

)]
3. For each σ ∈ ΣK:

δcan(qd, σ) =
∧
R∈R

(0, q∗¬R) ∧
n∧
i=1

(i, qd)

4. For each σ ∈ ΣK and each basic role [R] from R:

δcan(qng
∃R, σ) =

∧
R′∈R

(f(R), q∗¬R′)

5. For each σ ∈ ΣK and each basic role [R] from R:

δcan(q∃R, σ) = (f(R), qR)

6. For each σ ∈ ΣK such that σ ∩N = ∅ and each basic role [R] from R, δcan(qR, σ) is defined as( ∧
R′∈R :K|=RvR′

(0, q∗R′)

)
∧
( ∧
R′∈R :K6|=RvR′

(0, q∗¬R′)

)
∧

( ∧
B∈B :K|=∃R−vB

(0, q∗B)

)
∧
( ∧
B∈B :K6|=∃R−vB

(0, q∗¬B)

)
∧

( ∧
S∈R :

S is≤T -minimal s.t.
K|=∃R−v∃S, [R−]6=[S]

(0, q∃S)

)
∧
( ∧
S∈R :K6|=∃R

−v∃S, or [R−]=[S],
or S is not≤T -minimal

(0, qng
∃S)

)

7. For each σ ∈ ΣK:

δcan(q∗¬r, σ) =

{
true if r 6∈ σ
false otherwise

8. For each σ ∈ ΣK and each X ∈ B ∪R ∪N ∪P:

δ(q∗X , σ) =

{
true if X ∈ σ
false otherwise

δcan(q∗¬X , σ) =

{
true if X /∈ σ
false otherwise

Finally, the acceptance condition is Fcan = Qcan .

To represent the canonical model UK of K as a labeled tree, we label each individual x with the set of
concepts B such that x ∈ BUK . We also add a basic role R to the label of x whenever (x′, x) ∈ RUK



and x is not an individual. Moreover, we make sure this tree is an infinite full n-ary tree, where n is the
number of individuals in Ind(A) and basic roles in R. Thus, let n∗ be the set of sequences of numbers
from 1 to n of the form n∗ = {i1 · i2 · · · · · im | 1 ≤ ij ≤ n,m ≥ j ≥ 0}, the sequence of length 0 is
denoted by ε.

Recall that we have a numbering of individuals {a1, . . . , an} = Ind(A), and each role R ∈ R can
be identified through the number f(R) ∈ {1, . . . , n}. Therefore, the elements of ∆U can be seen as
sequences of natural numbers, namely a sequence ai·w[R1]·· · ··w[Rm] corresponds to the numeric sequence
i ·f(R1) · · · · ·f(Rm). However, for better readability we use the original notation as ai ·w[R1] · · · · ·w[Rm].
Note, that ∆U ⊆ n∗.

In the following, we assume K is fixed and for simplicity we use U instead of UK.
The tree encoding of the canonical model U of K = 〈T ,A〉 is the ΣK-labeled tree TU = (n∗, V U ),

such that
• V U (ε) = {r} ∪ {Pij | (ai, aj) ∈ PU , P is an atomic role},
• for each x ∈ ∆U :

V U (x) = {B | x ∈ BU} ∪
{S | (x′, x) ∈ SU and x = x′ · w[R] for some role R s.t. [R] ≤T [S]} ∪
{a | a ∈ Ind(A) and x = a}.

Conversely, we can see any ΣK-labeled tree as a representation of an interpretation of K, provided that
each individual name occurs in the label of only one node, a child of the root. Informally, the domain of
this interpretation are the nodes of the tree reachable from the root through a sequence of roles, except the
root itself. The extensions of individuals, concepts and roles are determined by the node labels.

Given a ΣK-labeled tree (T, V ), we call a node c an individual node if a ∈ V (c) for some a ∈ Ind(A),
and we call c an a-node if we want to make the precise a explicit. We say that T is individual unique if
for each a ∈ Ind(A) there is exactly one a-node, a child of the root of T .

An individual unique ΣK-labeled tree (T, V ), represents the interpretation IT defined as follows. For
each role name P , let:

Rp = {(x, x · i) | P ∈ V (x · i)} ∪ {(x · i, x) | P− ∈ V (x · i)} ∪
{(c, c′) | ai ∈ V (c), aj ∈ V (c′) and Pij ∈ V (ε)}

and
∆IT = {x | (i, x) ∈

⋃
P∈R

(RP ∪R−P )∗, i ∈ {1, . . . , n}},

where R−P denotes the inverse of relation RP . Then the interpretation IT = (∆IT , ·IT ) is defined as:

aITi = c such that ai ∈ V (c), for each ai ∈ Ind(A)
AIT = ∆IT ∩ {x | A ∈ V (x)}, for each atomic concept A ∈ B and
P IT = (∆IT ×∆IT ) ∩RP , for each atomic role P ∈ R

Proposition B.8 The following hold for Acan
K :

• TU ∈ L(Acan
K ).

• for each (T, V ) ∈ L(Acan
K ), (T, V ) is individual unique and IT is isomorphic to U , the canonical

model of K.

Proof. For the first item, assume TU = (n∗, V U ) is the tree encoding of the universal model U of K. We
show that a full run of Acan

K over TU exists.
The run (Tr, r) is built starting from the root ε, and setting r(ε) = (ε, q0). Then, to correctly execute the

initial transition, the root has children as follows:

• for each ak ∈ Ind(A)

– a child ks with r(ks) = (ak, qs),
– a child k∗¬r with r(k∗¬r) = (ak, q

∗
¬r),

– a child k∗ak with r(k∗ak) = (ak, q
∗
ak

),
– a child k∗¬aj for each j 6= k with r(k∗¬aj ) = (ak, q

∗
¬aj ),

– a child k∗B for each B ∈ B such that ak ∈ BU , with r(k∗B) = (ak, q
∗
B),

– a child k∗¬B for each B ∈ B such that ak 6∈ BU , with r(k∗¬B) = (ak, q
∗
¬B),



– a child k∃R for each ≤T -minimal role R s.t. U |= ∃R(ai) and U 6|= R(ai, aj) for each j ∈
{1, . . . , n}, with r(k∃R) = (ak, q∃R),

– a child kng
∃R for each role R s.t. U 6|= ∃R(ai), or U |= R(ai, aj) for some j ∈ {1, . . . , n}, or R

is not ≤T -minimal, with r(kng
∃R) = (ak, q

ng
∃R),

• a child k∗P,ak,aj for each ak, aj ∈ Ind(A) and each atomic role P such that (ak, aj) ∈ PU , with
r(k∗P,ak,aj ) = (ε, q∗Pkj

),

• a child k∗¬P,ak,aj for each ak, aj ∈ Ind(A) and each atomic role P such that (ak, aj) 6∈ PU , with
r(k∗¬P,ak,aj ) = (ε, q∗¬Pkj

),

Note that nodes y ∈ Tr with r(y) = (x, q∗...) are leafs of the tree Tr, as by the transition function δcan , all
the states of the form q∗... in Qcan can be satisfied with the empty assignment.

Other nodes, however, can have children. They are defined inductively as follows.

2. Let y be a node in Tr such that r(y) = (x, qs) for some x ∈ n∗. Moreover, let i ∈ {1, . . . , n}. Then
y has

• a child y · is with r(y · is) = (x · i, qs),
• a child y · i∗¬r with r(y · i∗¬r) = (x · i, q∗¬r),
• a child y · i∗¬aj for each j ∈ {1, . . . , n} with r(y · i∗¬aj ) = (x · i, q∗¬aj ),

• if x ∈ ∆U and for R ∈ R s.t. f(R) = i, x · w[R] ∈ ∆U ,
– a child y · i∗R with r(y · i∗R) = (x · w[R], q

∗
R),

• otherwise
– a child y · id with r(y · id) = (x · i, qd),

3. Let y be a node in Tr such that r(y) = (x, qd) for some x ∈ n∗. Then y has

• a child y · id for each i ∈ {1, . . . , n}, with r(y · id) = (x · i, qd),
• a child y · 0∗¬R for each R ∈ R, with r(y · 0∗¬R) = (x, q∗¬R),

4. Let y be a node in Tr such that r(y) = (x, qng
∃R) for some x ∈ ∆U and R ∈ R. Then y has

• a child y · f(R)∗¬R′ for each R′ ∈ R, with r(y · f(R)∗¬R′) = (x · f(R), q∗¬R′),

5. Let y be a node in Tr such that r(y) = (x, q∃R) for some x ∈ ∆U and R ∈ R. Then x · w[R] ∈ ∆U

and y has

• a child y · f(R)R with r(y · f(R)R) = (x · w[R], qR),

6. Let y be a node in Tr such that r(y) = (x, qR) for some x ∈ ∆U and R ∈ R. Then y has

• a child y · 0∗R′ for each R′ ∈ R s.t. K |= R v R′, with r(y · 0∗R′) = (x, q∗R′),
• a child y · 0∗¬R′ for each R′ ∈ R s.t. K 6|= R v R′, with r(y · 0∗¬R′) = (x, q∗¬R′),
• a child y · 0∗B for each B ∈ B s.t. K |= ∃R− v B, with r(y · 0∗B) = (x, q∗B),
• a child y · 0∗¬B for each B ∈ B s.t. K 6|= ∃R− v B, with r(y · 0∗¬B) = (x, q∗¬B),
• a child y · 0∃S for each ≤T -minimal role S s.t. K |= ∃R− v ∃S and [R−] 6= [S], with
r(y · 0∃S) = (x, q∃S),
• a child y · 0ng

∃S for each role S s.t. K 6|= ∃R− v ∃S, or [R−] = [S], or S is not ≤T -minimal,
with r(y · 0ng

∃S) = (x, qng
∃S).

Each node of Tr defined as described above satisfies the transition function δcan .
It is easy to see that this run is accepting, as for each infinite path P of Tr, either qs ∈ inf (P ), or

qs ∈ inf (P ), or qR ∈ inf (P ) for some R. Hence, TU ∈ L(Acan
K ).

To show the second item, let (T, V ) ∈ L(Acan
K ) and (Tr, r) an accepting run of (T, V ). First, assume

T is not individual unique, that is,

• there exists an a-node x in T , such that x is not a child of the root, or

• there exist two nodes i and j in T such that a ∈ V (i) and a ∈ V (j).

In the former case, let x′ be the parent of x, x′ 6= ε, then there exists a node y′ ∈ Tr with r(y′) = (x′, qs)
and a node y ∈ Tr with r(y) = (x, q?¬a), which contradicts that (Tr, r) is an accepting run of (T, V ) as
a ∈ V (x). In the latter case, assume a is equal to ai. Then we get contradiction with δcan(q0, σ).



Hence, T is individual unique. Let IT be the interpretation represented by T . We show that IT is
isomorphic to U , by constructing a function h from ∆IT to ∆U and showing that it is a one-to-one and
onto homomorphism. We construct h by induction on the length of the sequence x ∈ ∆IT .

Initially, as T is individual unique, we set for each i ∈ {1, . . . , n}, h(i) = ai, where ai ∈ V (i).
Note that by definition of U , ai ∈ ∆U and by definition of IT , i ∈ ∆IT . Then the following holds for
i, j ∈ {1, . . . , n}.

1. for an atomic role P , (i, j) ∈ P IT iff (ai, aj) ∈ PU : let (i, j) ∈ P IT , by definition of IT it follows
that Pij ∈ V (ε). Assume K 6|= P (ai, aj), then (0, q∗¬Pij

) ∈ δcan(q0, V (ε)) and in Tr there exists a
node y, s.t. r(y) = (ε, q∗¬Pij

), hence y does not satisfy the condition on a run. Contradiction with
(Tr, r) being accepting. Therefore, indeedK |= P (ai, aj) and (ai, aj) ∈ PU . Similarly for the other
direction.

2. for a basic concept B, i ∈ BIT iff ai ∈ BU : let i ∈ BIT , by definition of IT it follows that
B ∈ V (i). Assume K 6|= B(ai), then (i, q∗¬B) ∈ δcan(q0, V (ε)) and there exists y ∈ Tr with
r(y) = (i, q∗¬B). We get contradiction as y does not satisfy the condition on a run. Therefore, indeed
K |= B(ai) and ai ∈ BU . Similarly for the other direction.

For the inductive step we prove two auxiliary claims.
Claim B.9 (1) Let i · f(R) ∈ ∆IT for some i ∈ {1, . . . , n}. Then K |= ∃R(ai), K 6|= R(ai, aj) for each
j ∈ {1, . . . , n} and R is a ≤T -minimal such role.
Proof. Assume K 6|= ∃R(ai), or K |= R(ai, aj) for some j ∈ {1, . . . , n}, or R is not a ≤T -minimal such
role. Then by definition of δcan(q0, V (ε)) and of a run, there exists a node y = ε · ing

∃R in Tr such that
r(y) = (i, qng

∃R) and by δcan(qng∃R, V (i)) it is required that R′ /∈ V (x · f(R)) for each R′ ∈ R. It means
that i · f(R) is not connected to i through any role. Contradiction with i · f(R) being in ∆IT . � �

Claim B.10 (2) Let x · f(R) ∈ ∆IT , len(x) ≥ 2 and there exists y ∈ Tr with r(y) = (x, qS). Then
K |= ∃S− v ∃R, [S−] 6= [R] and R is a ≤T -minimal such role.
Proof. For the sake of contradiction assume K 6|= ∃S− v ∃R. Then by definition of δcan(qS , V (x)) and
of a run, there exists a node y′′ = y · 0ng

∃R in Tr such that r(y′′) = (x, qng
∃R) and by δcan(qng∃R, V (x)) it is

required that R′ /∈ V (x · f(R)) for each R′ ∈ R. It means that x · f(R) is not connected to x through any
role. Contradiction with x · f(R) being in ∆IT .

By the same argument it can be shown that [S−] 6= [R] and R is ≤T -minimal. � �

Let x ∈ ∆IT , h(x) is defined and h(x) ∈ ∆U . Moreover, if len(x) ≥ 2, let tail(x) = f(S) and
tail(h(x)) = w[S] for some role S, and there exist a node y ∈ Tr such that r(y) = (x, qS). Then

1. for each h(x) · w[R] ∈ ∆U , x · f(R) is in ∆IT .

2. for each x · f(R) ∈ ∆IT , h(x) · w[R] is in ∆U .

Let h(x) · w[R] ∈ ∆U . Then R is ≤T -minimal such that K |= ∃S− v ∃R if tail(h(x)) = w[S], or
K |= ∃R(ai) and K 6|= R(ai, aj) for j ∈ {1, . . . , n} if h(x) = ai. By definition of δcan , there exist a
node y′ in Tr with r(y′) = (x, q∃R). Since Tr is a run, it follows that there exist a node y′′ = y′ · f(R)R
in Tr with r(y′′) = (x · f(R), qR), and x · f(R) ∈ T . Therefore, R ∈ V (x · f(R)) and by definition of
IT , x · f(R) ∈ ∆IT .

Let x · f(R) ∈ ∆IT . Then by Claim (1) and (2), tail(h(x))  K w[R], hence h(x) · w[R] ∈ ∆U .
Moreover, we also obtain that there exists y′′ in Tr such that r(y′′) = (x · f(R), qR).

Thus, we can set h(x · f(R)) to h(x) · w[R]. Obviously, h is one-to-one and onto. To verify that h is a
homomorphism it remains to show
• for each role R′, (x, x · f(R)) ∈ R′IT iff (h(x), h(x) · w[R]) ∈ R′U , and

• for each basic concept B, x · f(R) ∈ BIT iff h(x) · w[R] ∈ BU .

Let (x, x · f(R)) ∈ R′IT for some role R′. By contradiction assume (h(x), h(x) · w[R]) /∈ R′U ,
this implies that K 6|= R v R′. Hence, (0, q∗¬R′) ∈ δcan(qR, V (x · f(R))), and in Tr there is a node
y′′′ = y′′ · 0∗¬R′ with r(y′′′) = (x · f(R), q∗¬R′). We get a contradiction with Tr being a run as by
definition of IT , R′ ∈ V (i · f(R)). Similarly for the other direction.

Finally, let x · f(R) ∈ AIT for some concept A, and assume h(x) · w[R] /∈ AU . The latter implies that
K 6|= ∃R− v A. Hence, (0, q∗¬A) ∈ δcan(qR, V (x · f(R))), and in Tr there is a node y′′′ = y′′ · 0∗¬A
with r(y′′′) = (x · f(R), q∗¬A). We get a contradiction with Tr being a run as by definition of IT ,
A ∈ V (x · f(R)). Similarly for the other direction. �



Automaton Amod
K for a model of K = 〈T ,A〉

Amod
K is a 2ATA on infinite trees that accepts a tree if its subtree labeled with G corresponds to a tree

model I of K. Formally, Amod
K is defined as the tuple 〈ΣK, Qmod , δmod , q0, Fmod〉, where

Qmod = {q0} ∪ {qX | X ∈ N ∪B ∪R ∪P},

Fmod = Qmod and transition function δmod : Qmod × ΣK → B([n]×Qmod) is defined as follows:

1. For each σ ∈ ΣK such that {r,G} ⊆ σ, δmod(q0, σ) is defined as:
n∧
i=1

[
(i, qai) ∧

( ∧
A∈B :K|=A(ai)

(i, qA)

)
∧

n∧
j=1

( ∧
P∈R :K|=P (ai,aj)

(0, qPij
)

)]

2. For each σ ∈ ΣK such that {r,G} ⊆ σ and each Pij ∈ P:

δmod(qPij
, σ) = (i, q∃P ) ∧ (j, q∃P−)

3. For each σ ∈ ΣK such that σ ∩N = {ai} and each atomic role P in the signature of K:

δmod(q∃P , σ) =

( n∨
j=1

(j, qP )

)
∨
( n∨
j=1

(−1, qPij
)

)

δmod(q∃P− , σ) =

( n∨
j=1

(j, qP−)

)
∨
( n∨
j=1

(−1, qPji
)

)
4. For each σ ∈ ΣK such that σ ∩N = ∅ and each basic role R ∈ R,

δmod(q∃R, σ) = (0, qR−) ∨
( n∨
i=1

(i, qR)

)
5. For each σ ∈ ΣK such that σ ∩N = ∅ and each basic role R ∈ R:

δmod(qR, σ) =

( ∧
R′∈R :K|=RvR′

(0, qR′)

)
∧ (0, q∃R−)

6. For each σ ∈ ΣK and each B ∈ B:

δmod(qB , σ) =
∧

B′∈B :K|=BvB′
(0, qB′)

7. For each σ ∈ ΣK and each X ∈ B ∪R ∪N ∪P:

δmod(qX , σ) =

{
true if G ∈ σ and X ∈ σ
false otherwise

If there are several entries of δmod for the same q ∈ Qmod and σ ∈ Σmod , δmod(q, σ) = φ1, . . . ,
δmod(q, σ) = φm, then we assume that δmod(q, σ) =

∧m
i=1 φi.

Given a model I, a path π from x to x′, x, x′ ∈ ∆I , is a sequence of the form (x =
x1, x2, . . . , xm, xm+1 = x′), m ≥ 0, such that xi ∈ ∆I and (xi, xi+1) ∈ RIi for some Ri, and m
is the length of π. A model I of K = 〈T ,A〉 is said to be a tree model if for each x ∈ ∆I \ Ind(A) there
exists a unique shortest path from x to Ind(A). The depth of an object x in a tree model I, denoted dep(x),
is the length of the shortest path from x to Ind(A). It is said that x′ is a successor of x, x′ ∈ succ(x) if x
belongs to the path from x′ to Ind(A) and dep(x′) = dep(x) + 1.

Note that given a tree-model I of K with branching degree n, each domain element of I can be seen as
an element of n∗. For x′ ∈ ∆I with dep(x′) = m ≥ 0, we assume a one-to-one numbering gm,x′(x) of
each x ∈ succ(x′), such that 1 ≤ gm,x′(x) ≤ n. Then x ∈ ∆I corresponds to

• i if x = ai,

• x′ · i, where dep(x′) = m ≥ 0, x ∈ succ(x′) and gm,x′(x) = i.



Then, i · −1 denotes the empty sequence ε. Conversely, each sequence of natural numbers x ∈ n∗ can be
seen as an element of ∆I .

The G-tree encoding of a tree-model I of K with branching degree n is the ΣK-labeled tree TI,G =
(n∗, V I,G), such that
• V I,G(ε) = {r,G} ∪ {Pij | (ai, aj) ∈ P I , P is an atomic role},
• for each x ∈ ∆I :

V I,G(x) = {G} ∪ {B | x ∈ BU} ∪
{S | (x′, x) ∈ SU and dep(x) > dep(x′)} ∪
{a | a ∈ Ind(A) and x = a}.

Given a labeled tree (T, V ), the restriction of T on G is a set TG such that TG ⊆ T and for each x ∈ T :
x ∈ TG iff G ∈ V (x).

Given a labeled tree (T, V ) and a run (Tr, r), the interpretation represented by T and Tr, denoted,
IT,Tr , is defined similarly to IT :

∆IT,Tr = ∆IT ,

a
IT,Tr
i = aITi ,
AIT,Tr = ∆IT ∩ {x | A ∈ V (x) and there exists y ∈ Tr with r(y) = (x, qA)},

for each atomic concept A ∈ B and
P IT,Tr = (∆IT ×∆IT ) ∩

{(x, x′) ∈ RP | there exists y ∈ Tr s.t. r(y) = (x′, qP ) or r(y) = (x, qP−)},
for each atomic role P ∈ R.

Proposition B.11 The following hold for Amod
K :

• Let I be a tree model of K with branching degree n. Then TI,G ∈ L(Amod
K ).

• for each (T, V ) ∈ L(Amod
K ), if TG is an individual unique tree and (Tr, r) is a corresponding run,

then ITG,Tr is a model of K.

Proof. For the first item, assume TI,G = (n∗, V I,G) is the tree encoding of a model I of K. We show
that a full run of Amod

K over TI,G exists.
The run (Tr, r) is built starting from the root ε, and setting r(ε) = (ε, q0). Then, to correctly execute the

initial transition, the root has children as follows:

• for each ak ∈ Ind(A)

– a child k∗ak with r(k∗ak) = (ak, q
∗
ak

),
– a child k∗B for each B ∈ B such that ak ∈ BI , with r(k∗B) = (ak, q

∗
B),

• a child k∗P,ak,aj for each ak, aj ∈ Ind(A) and each atomic role P such that (ak, aj) ∈ P I , with
r(k∗P,ak,aj ) = (ε, q∗Pkj

),

Then the successor relationship in Tr is defined inductively as follows.
2. Let y be a node in Tr such that r(y) = (x, qPij ) for x = ε and P ∈ R. Then y has

• a child y · i∃P with r(y · i∃P ) = (x · i, q∃P ),
• a child y · j∃P− with r(y · j∃P−) = (x · j, q∃P−),

3. Let y be a node in Tr such that r(y) = (x, q∃R) for some x ∈ ∆I , V I,G(x) ∩N = {ai}, R ∈ R,
and Rij denotes Pij if R = P and Pji if R = P−. Then y has

• if R ∈ V I,G(x · j)
– a child y · jR with r(y · jR) = (x · j, qR),
• if Rij ∈ V I,G(x · −1)

– a child y · −1Rij
with r(y · −1Rij

) = (x · −1, qRij
),

4. Let y be a node in Tr such that r(y) = (x, q∃R) for some x ∈ ∆I , V I,G(x) ∩N = ∅ and R ∈ R.
Then y has
• if R ∈ V I,G(x · i)

– a child y · iR with r(y · iR) = (x · i, qR),



• if R− ∈ V I,G(x)

– a child y · 0R− with r(y · 0R) = (x, qR),

5. Let y be a node in Tr such that r(y) = (x, qR) for some x ∈ ∆I and R ∈ R. Then y has

• a child y · 0∗R′ for each R′ ∈ R s.t. K |= R v R′, with r(y · 0∗R′) = (x, q∗R′),
• a child y · 0∃R− , with r(y · 0∃R−) = (x, q∃R−),

6. Let y be a node in Tr such that r(y) = (x, qB) for some x ∈ ∆I and B ∈ B. Then y has

• a child y · 0∗B′ for each B′ ∈ B s.t. K |= B v B′, with r(y · 0∗B′) = (x, q∗B′),

Since I is a model of K, Tr satisfies the transition function δmod . In particular, in the rules 3 and 4 in the
inductive definition of Tr, there will exists a node x′ ∈ ∆I such that (x, x′) ∈ RI , hence at least one of
conditions will be satisfied.

It is easy to see that this run is accepting, as for each infinite path P of Tr, qR ∈ inf (P ) for some R.
Hence, TI,G ∈ L(Amod

K ).

To show the second item, let (T, V ) ∈ L(Acan
K ) and (Tr, r) an accepting run of (T, V ). Moreover, let

TG be a tree (i.e., prefix closed) and individual unique. Then ITG,Tr is defined and it can be shown that
ITG,Tr a model of K:

1. for each i ∈ {1, . . . , n}, K |= B(ai) implies ai ∈ BITG,Tr ,

2. for each i, j ∈ {1, . . . , n}, K |= P (ai, aj) implies (ai, aj) ∈ P ITG,Tr ,

3. if x ∈ BITG,Tr , then x ∈ B′ITG,Tr for each B′ s.t. K |= B v B′,
4. if (x, x′) ∈ RITG,Tr , then (x, x′) ∈ R′ITG,Tr for each R′ s.t. K |= R v R′,
5. if x ∈ BITG,Tr and K |= B v ∃R, then there exists x′ ∈ TG such that (x, x′) ∈ RITG,Tr .

We show item 5 holds, the rest can be shown by analogy. Assume x ∈ BITG,Tr and K |= B v ∃R
for some concept B and role R. Then by definition of ITG,Tr we have that B,G ∈ V (x) and there
exist a node y ∈ Tr with r(y) = (x, qB). Since Tr is a run and by definition of δmod , there exist nodes
y′ = y ·0∃R and y′′ = y′ ·z in Tr such that r(y′) = (x, q∃R) and r(y′′) = (x · i, qR), or r(y′′) = (x, qR−),
or r(y′′) = (ε, qRij ). In any case, it is easy to see that there is x′ ∈ T with G ∈ V (x′) (i.e., x′ ∈ TG) such
that (x, x′) ∈ RITG,Tr .

Thus, ITG,Tr is a model of K. �

Automaton Afin

Afin is a one-way non-deterministic automaton on infinite trees that accepts a tree if it has a finite prefix
where each node is marked with the special symbol G, and no other node in the tree is marked with G.
Formally, Afin = 〈ΓK, Qfin , δfin , q0, Ffin〉, where Qfin = {q0, q1}, Ffin = {q1} and transition function
δfin : Qfin × ΓK → B([n]×Qfin) is defined as follows:

1. For each σ ∈ ΓK:

δ(q0, σ) =


n∧
i=1

(i, q0), if G ∈ σ
n∧
i=1

(i, q1), if G /∈ σ

2. For each σ ∈ ΓK:

δ(q1, σ) =


n∧
i=1

(i, q1), if G /∈ σ

false if G ∈ σ

B.3 Proof of Theorem 5.3
Proof. We prove that the non-emptiness problem for universal solutions is in NP. Assume we are given
a mapping M = (Σ1,Σ2, T12) and a source KB K1 = 〈T1,A1〉, and we want to decide whether there
exists a universal solution for K1 underM (all ABoxes are considered to be OWL 2 QL ABoxes without
inequalities).



First, we check whether K1 andM are Σ2-positive. This check can be done in polynomial time, and
if it was successful, then by Lemma B.5 it remains to verify whether there exists a universal solution for
Kpos

1 underMpos .
Second, we construct the maximal target OWL 2 QL ABox, a candidate for universal solution. Let A2

be the ABox over Σ2 containing every membership assertion α of the form B(a) or R(a, b) such that
〈T pos

1 ∪ T pos
12 ,A1〉 |= α, a, b ∈ Ind(A1), B is a basic concept and R is a basic role. Then A2 is of

polynomial size, and
Lemma B.12 A universal solution for Kpos

1 underMpos exists iffA2 is a solution for Kpos
1 underMpos .

Proof. (⇒) Assume a universal solution for Kpos
1 under Mpos exists. As it follows from Lemma B.7,

there exists a universal solution A3 such that UA3
⊆ U〈T1∪T12,A1〉, hence A3 ⊆ A2. As A3 is a solution,

there exists I such that I |= Kpos
1 and (I,UA3

) |= T pos
12 . It follows that for each model J of A2,

J ⊇ UA2
⊇ UA3

, and therefore (I,J ) |= T pos
12 . By definition of solution, A2 is a solution.

(⇐) Assume A2 is a solution for Kpos
1 underMpos . Then A2 is a universal solution follows from the

proof of Lemma B.3. Since A2 is an OWL 2 QL ABox, we conclude that a universal solution for Kpos
1

underMpos exists. �

Thus, it remains only to check whether A2 is a solution. We need the following result to perform this
check in NP.
Lemma B.13 LetA2 be an (extended) ABox over Σ2 such that it is a solution forKpos

1 underMpos . Then
there exists an interpretation I such that I is of polynomial size, I is a model of Kpos

1 and (I,VA2
) |=

T pos
12 .

Proof. Assume A2 is a solution for Kpos
1 under Mpos , then for each model of A2, in particular for

VA2
, there exists I ′ such that I ′ is a model of Kpos

1 and (I ′,VA2
) |= T pos

12 . Suppose |I ′| is more than
polynomial, then since (I ′,VA2

) |= T pos
12 it follows BI

′ ⊆ ∆A2 and RI
′ ⊆ ∆A2 ×∆A2 for each basic

concept B and role R that appear on the left hand side of some inclusion in T pos
12 . Therefore, we construct

an interpretation I of polynomial size as follows:
• ∆I = ∆A2 ∪Na ∪ {d}, for a fresh domain element d,
• aI = a for a ∈ Na,
• AI = (AI

′ ∩∆A2) ∪ {d | if AI
′ \∆A2 6= ∅} for each atomic concept A,

• RI = (RI
′ ∩ (∆A2 ×∆A2)) ∪

{(a, d) | (a, b) ∈ RI′ \ (∆A2 ×∆A2), a ∈ (∃R)I
′ ∩∆A2} ∪

{(d, a) | (b, a) ∈ RI′ \ (∆A2 ×∆A2), a ∈ (∃R−)I
′ ∩∆A2} ∪

{(d, d) | (a, b) ∈ RI′ \ (∆A2 ×∆A2), a /∈ (∃R)I
′ ∩∆A2 , b /∈ (∃R−)I

′ ∩∆A2}
for each atomic role R.

Note that VA2
interprets all constants as themselves, and I ′ agrees on interpretation of constants with

VA2
, for this reason ∆I ⊇ Na.

It is straightforward to verify that I is a model ofKpos
1 : clearly, I is a model ofA1, we show I |= T pos

1 .
Assume, T pos

1 |= B v C for basic concepts B,C, and b ∈ BI . If b ∈ ∆I
′ ∩ ∆A2 , then since I ′ |=

B v C, we have that b ∈ CI′ , which implies b ∈ CI . Otherwise, b = d and for some c ∈ ∆I
′ \∆A2 ,

c ∈ BI′ , therefore c ∈ CI′ , and thus by definition of I, d ∈ CI . Role inclusions are handled similarly.
Moreover, as I and I ′ agree on all concepts and roles that appear on the left hand side of T pos

12 , it follows
that (I,VA2) |= T pos

12 . Hence, I is the interpretation of polynomial size we were looking for. �

Finally, the NP algorithm for deciding the non-emptiness problem for universal solutions is as follows:
1. verify whether K1 andM are Σ2-positive, if yes,
2. compute A2, the Σ2-closure of A1 with respect to T pos

1 ∪ T pos
12 .

3. guess a source interpretation I of polynomial size.
4. If I |= Kpos

1 and (I,UA2
) |= T pos

12 , then a universal solution for K1 underM exists, and A2 is a
universal solution, otherwise a universal solution does not exist.

Note that steps 1,2 and 4 can be done in polynomial time, hence this algorithm is in fact an NP algorithm.
Below we prove the correctness of the algorithm.

Assume I |= Kpos
1 and (I,UA2

) |= T pos
12 . Then A2 is a solution: for each model J of A2, it holds

UA2
⊆ J , therefore (I,J ) |= T12. By Lemma B.12 we obtain that a universal solution for K1 underM

exists, and from its proof it follows that A2 is a universal solution. Thus, the algorithm is sound.



We show the algorithm is complete. Assume I 6|= Kpos
1 or (I,UA2) 6|= T pos

12 , and to the contrary,
A2 is a solution. The by Lemma B.13, there exists a model I ′ of Kpos

1 of polynomial size such that
(I ′,UA2

) |= T pos
12 . Contradiction with the guessing step. Therefore, A2 is not a solution and there exists

no universal solution. Thus, the algorithm is complete.

As a corollary we obtain an upper bound for the membership problem.

Theorem B.14 The membership problem for universal solutions is in NP.

�

B.4 Proof of Theorem 5.5

Proof. First we provide the PSPACE lower bound, and then present the EXPTIME automata-based algo-
rithm for deciding the non-emptiness problem for universal solutions with extended ABoxes.

Lemma B.15 The non-emptiness problem for universal solutions with extended ABoxes in DL-LiteR is
PSPACE-hard.

Proof. The proof is by reduction of the satisfiability problem for quantified Boolean formulas, known to
be PSPACE-complete. Suppose we are given a QBF

φ = Q1X1 . . .QnXn

m∧
j=1

Cj

where Qi ∈ {∀,∃} and Cj , 1 ≤ j ≤ m, are clauses over the variables Xi, 1 ≤ i ≤ n.
Let Σ1 = {A, Y ki , Xk

i , Sl, Tl, Q
k
i , P

k
i , Rj , R

l
j | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 0 ≤ l ≤ n, k ∈ {0, 1}}

where A, Y ki , X
k
i are concept names and the rest are role names. Let T1 be the following TBox over Σ1

for 1 ≤ j ≤ m, 1 ≤ i ≤ n and k ∈ {0, 1}:

A v ∃S−0 ∃S−i−1 v ∃Qki if Qi = ∀
∃S−i−1 v ∃Si if Qi = ∃

∃(Qki )− v Y ki Qki v Si ∃S−n v ∃Rj
∃R−j v ∃Rj

A v ∃T−0 ∃T−i−1 v ∃P ki P ki v Ti
∃(P ki )− v Xk

i X0
i v ∃Rij if ¬Xi ∈ Cj

X1
i v ∃Rij if Xi ∈ Cj

∃(Rij)− v ∃R
i−1
j

and A1 = {A(a)}.
Let Σ2 = {A′, Z0

i , Z
1
i , S

′, R′j} where A′, Z0
i , Z

1
i are concept names and S′, R′j are role names,M =

(Σ1,Σ2, T12), and T12 the following set of inclusions:

A v A′ Si v S′

Ti v S′

Y ki v Zki
Xk
i v Zki

Rj v R′j
Ti v R′j

−

Rij v R′j
R0
j v R′j

−

We verify that |= φ if and only if U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into a finite subset of
itself. The latter, in turn, is equivalent to the existence of a universal solution for K1 = 〈T1,A1〉 under
M, which is shown in Lemma B.7.

For φ = ∃X1∀X2∃X3(X1 ∧ (X2 ∨ ¬X3)), Σ2-reduct of U〈T1∪T12,A1〉 can be depicted as follows:



aA′

Z0
2

Z1
2

R′1. . .

R′2. . .

R′1. . .

R′2. . .

Cinf

Z0
1

Z1
1

Z0
2

Z1
2

Z0
2

Z1
2

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

R′2

R′2

R′2

R′2

R′2

R′2

R′1

Cfin

where each edge is labeled with S′, each edge is labeled with S′, R′j
− for 1 ≤ j ≤ m, and the

labels of edges are shown to the left of each infinite and finite path. The labels of the nodes (if any)
are shown next to each node.

Let Cinf and Cfin be the parts of U〈T1∪T12,A1〉 generated using the first 9 axioms and the last 9 ax-
ioms of T1 respectively. Note that Cinf is infinite, while Cfin is finite. One can show that Cinf is Σ2-
homomorphically embeddable into Cfin (which is equivalent to U〈T1∪T12,A1〉 is Σ2-homomorphically em-
beddable into Cfin ) iff φ is satisfiable.

The rest of the proof follows the line of the proof of Theorem 11 in [Konev et al., 2011].
(⇒) Suppose |= φ. We show that the canonical model U〈T1∪T12,A1〉 is Σ2-homomorphically embed-

dable into a finite subset of itself. More precisely, let us denote with T inf
1 the subset of T1 consisting

of the first 9 axioms, and T fin
1 the subset of T1 consisting of the last 9 axioms. Then U〈T1∪T12,A1〉 =

U〈T inf
1 ∪T12,A1〉 ∪ U〈T fin

1 ∪T12,A1〉, and we construct a Σ2-homomorphism h : ∆
U
〈T inf

1 ∪T12,A1〉 →

∆
U
〈T fin

1 ∪T12,A1〉 . In the following we use Uinf to denote U〈T inf
1 ∪T12,A1〉, and Ufin to denote U〈T fin

1 ∪T12,A1〉.

We begin by setting h(aUinf ) = aUfin . Then we define h in such a way that, for each path π in Uinf of
length i + 1 ≤ n, h(π) is a path aUfinw1 . . . wi of length i + 1 in Ufin and it defines an assignment ah(π)

to the variables X1, . . . , Xi by taking, for all 1 ≤ i′ ≤ i,
ah(π)(Xi′) = > ⇔ aUfin · w1 · . . . · wi′ ∈ (X1

i′)
Ufin

ah(π)(Xi′) = ⊥ ⇔ aUfin · w1 · . . . · wi′ ∈ (X0
i′)
Ufin .

Such assignments ah(π) will satisfy the following:

(a) the QBF obtained from φ by removing Q1X1 . . .QiXi from its prefix is true under ah(π).

For the paths of length 0 the Σ2-homomorphism h has been defined and (a) trivially holds. Suppose that
we have defined h for all paths in Uinf of length i + 1 ≤ n. We extend h to all paths of length i + 2 in
Uinf such that (a) holds. Let π be a path of length i+ 1. In Ufin we have

tail(h(π)) 〈T fin
1 ∪T12,A2〉 w

Ufin

[Pk
i ]
, and h(π) · wUfin

[Pk
i ]
∈ (Xk

i )Ufin , for k = 0, 1.

If Qi = ∀ then in Uinf we have

tail(π) 〈T inf
1 ∪T12,A2〉 w

Uinf

[Qk
i ]
, and π · wUinf

[Qk
i ]
∈ (Xk

i )I , for k = 0, 1.

Thus, we set h(π ·wUinf

[Qk
i ]

) = h(π) ·wUfin

[Pk
i ]

, for k = 0, 1. Clearly, (a) holds. Otherwise, Qi = ∃ and in Uinf

we have
tail(π) 〈T inf

1 ∪T12,A2〉 w
Uinf

[Si]
.



We know that |= φ and so, by, (a), the QBF obtained from π by removing Q1X1 . . .QiXi is true under
either ah(π) ∪ {Xi = >} or ah(π) ∪ {Xi = ⊥}. We set h(π · wUinf

[Si]
) = h(π) · wUfin

[Pk
i ]

with k = 1 in the
former case, and k = 0 in the latter case. Either way, (a) holds.

Consider now in Uinf a path π of length n+ 1 from aUinf to wUinf
n . By construction, we have

h(π) = aUfin · wUfin

[P
k1
1 ]
· . . . · wUfin

[Pkn
n ]

.

Next, on the one hand, the path π in Uinf has m infinite extensions of the form π · wUinf

[Rj ] · w
Uinf

[Rj ] . . . , for
1 ≤ j ≤ m. On the other hand, as |= φ, by (a), for each clause Cj , there is some 1 ≤ i′ ≤ n such that
h(π) contains wUfin

[P 1
i′ ]

if Xi′ ∈ Cj , or wUfin

[P 0
i′ ]

if ¬Xi′ ∈ Cj . We set for each 1 ≤ l ≤ n− i′,

h(π · wUinf

[Rj ] · . . . · w
Uinf

[Rj ]︸ ︷︷ ︸
l times

) = aUfin · wUfin

[P
k1
1 ]
· . . . · wUfin

[P
kn−l
n−l ]

,

for each n+ 1 ≥ l > n− i′,

h(π · wUinf

[Rj ] · . . . · w
Uinf

[Rj ]︸ ︷︷ ︸
l times

) = aUfin · wUfin

[P
k1
1 ]
· . . . · wUfin

[P
k
i′

i′ ]
· wUfin

[Ri′
j ]
· . . . · wUfin

[Rn−l+1
j ]

,

and for each l > n+ 1

h(π · wUinf

[Rj ] · . . . · w
Uinf

[Rj ]︸ ︷︷ ︸
l times

) = aUfin · wUfin

[P
k1
1 ]
· . . . · wUfin

[P
k
i′

i′ ]
· wUfin

[Ri′
j ]
· wUfin

[Ri′−1
j ]
· . . . · wUfin

[Ri?
j ]
,

where i? = (n− l+1) mod 2. It is immediate to verify that h is a Σ2-homomorphism from Uinf to Ufin .
(⇐) Let h be a Σ2-homomorphism from Uinf to Ufin . We show that |= φ.
Let π be a path of length n+ 1, π = aUinf ·w1 · . . . ·wn, in Uinf . Then (aUinf , π1), (πi, πi+1) ∈ S′Uinf ,

where πi = aUinf · w1 · . . . · wi, for 1 ≤ i ≤ n − 1. Furthermore, let Zk1
1 , Zk2

2 , . . . , Zknn be the concepts
containing subpaths of h(πi). We show that for every 1 ≤ j ≤ m, the clause Cj contains at least one of
the literals

{Xi | ki = 1, 1 ≤ i ≤ n} ∪ {¬Xi | ki = 0, 1 ≤ i ≤ n}.
Validity of φ will follow.

Consider a path of the form π ·wUinf

[Rj ] · . . . · w
Uinf

[Rj ]︸ ︷︷ ︸
n+1 times

in Uinf . Then its h-image in Ufin must be of the form

aUfin · wUfin

[P
k1
1 ]
· . . . · wUfin

[P
ki
i ]
· wUfin

[Ri
j ]
· wUfin

[Ri−1
j ]
· . . . · wUfin

[Ri′
j ]

for some 1 ≤ i ≤ n, i′ = 0 or i′ = 1, and ki = 0 or ki = 1. If ki = 0, then Cj must contain ¬Xi,
otherwise Xi. �

Lemma B.16 The non-emptiness problem for universal solutions is in EXPTIME. For a given DL-LiteR
mappingM and a given DL-LiteR KB K1, if a universal solutionA2 (an extended ABox without inequal-
ities) exists, then it is at most exponentially large in the size of K1 ∪M.

Proof. First, we provide an algorithm for checking existence of a universal solution with extended ABoxes
in DL-Lite pos

R . Given a DL-Lite pos
R mapping M = (Σ1,Σ2, T12), to verify that a universal solution for

〈T1,A1〉 underM exists, we check for non-emptiness of the automaton B defining the intersection of the
automata πΓK(Acan

K ), πΓK(Amod
K ), and Afin , where K = 〈T1 ∪ T12,A1〉, πΓK(Acan

K ) is the projection of
Acan
K on the vocabulary ΓK, and likewise for πΓK(Amod

K ). If the language accepted by B is empty, then
there is no universal solution, otherwise a universal solution exists and it is exactly the tree accepted by B.

Proposition B.17 Let M = (Σ1,Σ2, T12) be a DL-Lite pos
R mapping, and K1 = 〈T1,A1〉 a DL-Lite pos

R
KB over Σ1. Then, a universal solution with extended ABoxes for K1 underM exists iff the language of
the automata B = πΓK(Acan

K ) ∩ Afin ∩ πΓK(Amod
K ), where K = 〈T1 ∪ T12,A1〉, is non-empty.

Proof. (⇐) Assume that L(B) 6= ∅ and T ∈ L(B). Let TG be the subtree of T defined by the G labels,
and IT,G the interpretation represented by TG. Then from the definition of B it follows that



1. IT,G is a finite interpretation of Σ2 and IT,G ⊆ U〈T1∪T12,A1〉,

2. there exists an interpretation I of Σ1 such that I ∪ IT,G is a model of 〈T1 ∪ T12,A1〉.
Since IT,G is finite, let AT,G be the ABox over Σ2 such that UAT,G

= IT,G. Then, AT,G is a solution
for K1 under M (by the second item). We show it is a universal solution. Let J be an interpretation
of Σ2 such that for some model I of K1, (I,J ) |= M. Then, since U〈T1∪T12,A1〉 is the canonical
model of 〈T1 ∪ T12,A1〉, there exists a homomorphism from U〈T1∪T12,A1〉 to I ∪ J (I ∪ J is a model
of 〈T1 ∪ T12,A1〉). In particular, there is a homomorphism from IT,G to I ∪ J , and as IT,G and I are
interpretations of disjoint signatures, there is a homomorphism h from IT,G to J . Hence, J is a model
of AT,G: take h as the substitution for the labeled nulls. By definition of universal solution, AT,G is a
universal solution for K1 underM.

(⇒) Assume a universal solution for K1 underM exists. Then by Lemma B.7 there exists a universal
solution A2 such that VA2 ⊆ U〈T1∪T12,A1〉. Therefore, the language of B is not empty. �

As a corollary of Lemma B.5, Lemma B.6, Lemma B.7, and Proposition B.17 we obtain the exponential
time upper bound of the non-emptiness problem for universal solutions with extended ABoxes in DL-
LiteR. Moreover, AT,G is at most exponentially large in the size of K1 andM. �

�

B.5 Proof of Theorem 5.6
Proof. We show that the membership problem for universal solutions with extended ABoxes is NP-
complete by first proving the lower bound, and then the upper bound.

Lemma B.18 The membership problem for universal solutions with extended ABoxes is NP-hard.

Proof. The proof is by reduction of 3-colorability of undirected graphs known to be NP-hard. Suppose
we are given an undirected graph G = (V,E). Let Σ1 = {Edge} and Σ2 = {Edge ′}. Let r, g, b ∈ Na,
V ⊆ Nl and

A1 = {Edge(r, g),Edge(g, r),Edge(r, b),Edge(b, r),Edge(g, b),Edge(b, g)},
T1 = {},
T12 = {Edge v Edge ′},
A2 = {Edge ′(r, g),Edge ′(g, r),Edge ′(r, b),Edge ′(b, r),Edge ′(g, b),Edge ′(b, g)} ∪

{Edge ′(x, y),Edge ′(y, x) | (x, y) ∈ E}.

Note that the nodes in G become labeled nulls in A2.
We show that G is 3-colorable if and only if A2 is a universal solution for K1 = 〈T1,A1〉 under
M = (Σ1,Σ2, T12).

(⇒) Suppose G is 3-colorable. Then it follows that there exists a function h that assigns to each vertex
from V one of the colors {r, g, b} such that if (x, y) ∈ E, then h(x) 6= h(y), hence h is a homomorphism
from G to the undirected graph ({r, g, b}, {(r, g), (g, b), (b, r)}).

We prove thatA2 is a universal solution forK1 underM. Obviously,K1 andM are Σ2-positive. Thus,
it remains to verify that VA2

is Σ2-homomorphically equivalent to U〈T1〈T 〉12,A1〉. First, it is easy to see
that U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into VA2

. Second, h is also a homomorphism from
VA2

to U〈T1∪T12,A1〉, thus VA2
is homomorphically embeddable into U〈T1∪T12,A1〉.

(⇐) Suppose now A2 is a universal solution for K1 underM. Then by Lemma B.3 it follows that VA2

is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. Let h be a homomorphism from VA2
to U〈T1∪T12,A1〉.

Then h assigns to each labeled null x ∈ ∆A2 some constant a ∈ ∆A1 , and it is easy to see that h is an
assignment for the vertices in V that is a 3-coloring of G. �

Lemma B.19 The membership problem for universal solutions with extended ABoxes is in NP.

Proof. Assume we are given a mappingM = (Σ1,Σ2, T12), a source KB K1 = 〈T1,A1〉, and a target
ABox A2. We want to decide whether A2 is a universal solution with extended ABoxes for K1 underM
(ABoxes without inequalities).

We need the following proposition that provides an upper bound for checking existence of homomor-
phism from VA2 to U〈T1∪T12,A1〉.

Proposition B.20 Deciding whether VA2
is homomorphically embeddable into U〈T1∪T12,A1〉 can be done

in NP in the size of K1,M and A2.



Proof. First, if there exists a homomorphism h from VA2 to U〈T1∪T12,A1〉, then there exists a polynomial
size witness A3 such that VA3 ⊆ U〈T1∪T12,A1〉 and h is a homomorphism from VA2 to VA3 (take VA3 =
h(VA2

), then |A3| ≤ |A2|). Therefore, to verify that such h exists, it is sufficient to compute A3 and then
to check whether VA2

can be homomorphically mapped into VA3
.

Second, there exists a witness A3 such that VA3
⊆ U〈T1∪T12,A1〉 and every x ∈ ∆A3 is a path of

polynomial length in the size of T1 ∪ T12 and A2 (more precisely, of length smaller or equal 2m, where
m is the size of T1 ∪ T12 ∪ A2). Proof: let h be a homomorphism from VA2 to U〈T1∪T12,A1〉 and A3 an
ABox such that VA3

= h(VA2
). Assume that x ∈ ∆A3 and the length of x is more than 2m. Then x

is not connected to Ind(A1) in A3, i.e., there exists no path R1(x1, x2), . . . , Rn(xn, xn+1) with x1 = x,
xn+1 = a ∈ Ind(A1),Ri(xi, xi+1) ∈ A3 (otherwise it contradicts VA3

= h(VA2
)). LetC be the maximal

connected subset of A3 with x ∈ ∆C , i.e., ∆C ∩∆A3\C = ∅ and for each C ′ ⊆ C, ∆C′ ∩∆C\C′ 6= ∅,
moreover ∆C ∩ Ind(A1) = ∅. Let y be the path (in the sense of path(〈T1 ∪ T12,A1〉)) of minimal
length in C, it exists and is unique since VA3

⊆ U〈T1∪T12,A1〉 and there are no constants in C, and for
each x ∈ C, x = y · w[R1] . . . w[Rn] for some n. Further assume tail(y) = w[R], then let y′ be a path
of the minimal length in ∆U〈T1∪T12,A1〉 with tail(y′) = w[R] (note that there is an infinite number of y′′

with tail(y′′) = w[R]). Then the length of y′ is bounded by the size of T1 ∪ T12 and the length of each
y′ ·w[R1] . . . w[Rn], where y ·w[R1] . . . w[Rn] ∈ C, is bounded by the size of T1 ∪T12 ∪A2. Now, define a
new function h′ : ∆VA2 → ∆U〈T1∪T12,A1〉 such that h′(x) = h(x) if h(x) /∈ C, h′(x) = y′·w[R1] . . . w[Rn]

if h(x) = y · w[R1] . . . w[Rn]. It is easy to see that h′ is a homomorphism from VA2
to U〈T1∪T12,A1〉. We

can continue this iteratively until we get that for every x ∈ ∆A3 , x is a path of length bounded by 2m,
where A3 is an ABox such that VA3

= h′(VA2
).

Finally, our algorithm for checking existence of a homomorphism from VA2
to U〈T1∪T12,A1〉 is as

follows:
1. compute (guess) A3 (in NP):

• for each x ∈ ∆A2 we guess y ∈ ∆U〈T1∪T12,A1〉 such that there exists a 〈T1∪T12,A1〉-path from
some a ∈ Ind(A1) to y and y is a path of polynomial length,

• Let W be the set of all y guessed above, then

A3 = {A(x) | x ∈W, tail(x) = w[R], T1 ∪ T12 |= ∃R− v A,A ∈ Σ2} ∪
{S(x′, x) | x, x′ ∈W,x = x′ · w[R], T1 ∪ T12 |= R v S, S ∈ Σ2},

VA3 ⊆ U〈T1∪T12,A1〉, ∆A3 = W and A3 is of polynomial size.
2. check whether there exists a homomorphism from VA2

to VA3
(in NP).

We prove that the above described procedure is correct.
Assume, we computed A3 and there exists a homomorphism h from VA2 to VA3 . Then since VA3 ⊆

U〈T1∪T12,A1〉, it follows that h is a homomorphism from VA2 to U〈T1∪T12,A1〉.
Now, assume that there exists no homomorphism from VA2 to VA3 , and by contradiction there exists a

homomorphism from VA2 to U〈T1∪T12,A1〉. Then, we showed that there exists a homomorphism h′ from
VA2

to U〈T1∪T12,A1〉 and an ABoxA3 such that VA3
= h′(VA2

) and the length of every x∆A3 is bounded
by 2m, where m is the size of T1 ∪ T12 ∪ A2. Contradiction with step 1.

�

Then the membership check for universal solutions with extended ABoxes can be done as follows:
1. verify whether K1 andM are Σ2-positive, if yes
2. check whether T2 is equivalent to the empty TBox, if yes
3. check whether A2 is a solution with extended ABoxes for Kpos

1 underMpos , if yes
4. check whether A2 is homomorphically embeddable into U〈T1∪T12,A1〉. If yes, then K2 is a universal

solution for K1 underM, otherwise it is not.
Steps 1 and 2 can be done in polynomial time. Step 3 can be done in NP similarly to Theorem 5.3: guess
an interpretation I of Σ1 of polynomial size, check whether I is a model of Kpos

1 and (I,VA2
) |= T pos

12 .
If yes, then A2 is a solution: let J be a model of A2 and h a homomorphism from VA2

to J . Then, let
IJ be the image of h applied to I, IJ = h(I). Then IJ is a model ofKpos

1 and (IJ ,J ) |= T pos
12 , hence

indeed, A2 is a solution. Step 4 is feasible in NP, therefore in overall the membership check can be done
in NP. �

�



B.6 Proof of Theorem 5.4
Proof. The proof is by reduction of the satisfiability problem for quantified Boolean formulas, known
to be PSPACE-complete. Suppose we are given a QBF

φ = Q1X1 . . .QnXn

m∧
j=1

Cj

where Qi ∈ {∀,∃} and Cj , 1 ≤ j ≤ m, are clauses over the variables Xi, 1 ≤ i ≤ n.
Let Σ1 = {A, Y ki , Xk

i , Sl, Tl, Q
k
i , P

k
i , Rj , R

l
j | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 0 ≤ l ≤ n, k ∈ {0, 1}}

where A, Y ki , X
k
i are concept names and the rest are role names. Let T1 be the following TBox over Σ1

for 1 ≤ j ≤ m, 1 ≤ i ≤ n and k ∈ {0, 1}:
A v ∃S−0 ∃S−i−1 v ∃Qki if Qi = ∀

∃S−i−1 v ∃Si if Qi = ∃
∃(Qki )− v Y ki Qki v Si ∃S−n v ∃Rj
∃R−j v ∃Rj

A v ∃T−0 ∃T−i−1 v ∃P ki P ki v Ti
∃(P ki )− v Xk

i X0
i v ∃Rij if ¬Xi ∈ Cj

X1
i v ∃Rij if Xi ∈ Cj

∃(Rij)− v ∃R
i−1
j

and A1 = {A(a)}.
Further, let Σ2 = {A′, Z0

i , Z
1
i , S

′, R′j , P
′
i
k
, T ′l , R

′
j
l} where A′, Z0

i , Z
1
i are concept names and

S′, R′j , P
′
i
k
, T ′l , R

′
j
l are role names,M = (Σ1,Σ2, T12), and T12 the following set of inclusions:

A v A′ Si v S′ Rj v R′j
Ti v S′ Ti v R′j

−

Y ki v Zki Rij v R′j
Xk
i v Zki R0

j v R′j
−

P ki v P ′i
k

Tl v T ′l Rlj v R′j
l

Finally, letA2 = {A′(a)}, and T2 the following target TBox for 1 ≤ j ≤ m, 1 ≤ i ≤ n and k ∈ {0, 1}:
A′ v ∃T ′0

− ∃T ′i−1
− v ∃P ′i

k
P ′i

k v T ′i
∃(P ′i

k
)− v Zki Z0

i v ∃R′j
i if ¬Xi ∈ Cj

Z1
i v ∃R′j

i if Xi ∈ Cj
∃(R′j

i
)− v ∃R′j

i−1

T ′i v S′ T ′i v R′j
−

R′j
i v R′j

R′j
0 v R′j

−

We verify that |= φ if and only if 〈T2,A2〉 is a universal UCQ-solution for K1 = 〈T1,A1〉 underM.
From Claim A.4 it follows that 〈T2,A2〉 is a universal UCQ-solution for K1 = 〈T1,A1〉 under M iff
U〈T1∪T12,A1〉 is finitely Σ2-homomorphically equivalent to U〈T2,A2〉. Therefore, we are going to show that
|= φ if and only if U〈T1∪T12,A1〉 is finitely Σ2-homomorphically equivalent to U〈T2,A2〉.

The rest of the proof is similar to Lemma B.15.
�

C Membership Problem for UCQ-representability
Note that for the ease of notation, in all proofs and statements concerning UCQ-representability we use Σ
instead of Σ1 and Ξ instead of Σ2. At the same time, alternative syntax for the disjointness assertions is
used: we write B uB′ v ⊥ instead of B v ¬B′, for basic concepts B and B′; analogiousy for roles.

We need several new definitions. For a TBox T , a pair of basic concepts B,B′ (resp., pair of roles
R,R′) is T -consistent if 〈T , {B(o), B′(o)}〉 (resp., 〈T , {R(o, o′), R′(o, o′)}〉) is a consistent KB. We say
a conceptB is T -consistent if the pairB,B is T -consistent, and we define in a similar way T -consistency
of a role R. Denote by consC(T ) (consR(T )) the set of all T -consistent concepts (roles).



C.1 Basic Preliminary Results
Lemma C.1 Let K = 〈T ,A〉 be a KB, a, b ∈ Na, σ ∈ ∆UK , and tail(σ) K w[R]. Then,

(i) B ∈ tUK(a) iff A |= B′(a) and T ` B′ v B;

(ii) R ∈ rUK(a, b) iff A |= R′(a, b) and T ` R′ v R;

(iii) B ∈ tUK(σw[R]) iff T ` ∃R− v B;

(iv) R ∈ rUK(σ, σw[R′]) iff T ` R′ v R.

Proof. For (i) assume, first, B is a concept name, then the proof straightforwardly follows from the
definition of UK. Let B = ∃R for a role R, we show the “only if” direction. By the definition of UK it
follows either a  K w[R′] for some role R′ such that T ` R′ v R or K ` R(a, b) for some b ∈ Na. In
the first case K ` ∃R′(a) and T ` ∃R′ v B by the definition of . It is then immediate that A |= B′(a)
and T ` B′ v B for some concept B′. In the second case, there is a role R′′ such that A |= R′′(a, b) and
T ` R′′ v R, so the result follows with B′ = ∃R′′. The “if” direction is similar using the definition of
UK and , which concludes the proof of (i). The proof of (ii) is analogious.

For (iii) assume, first, B is a concept name, then the proof straightforwardly follows from the definition
of UK. Let B = ∃S for a role S, we, first, show the “only if” direction. It follows there exists σ′ ∈
∆UK such that (σw[R], σ

′) ∈ SUK . From the definition of UK it should be clear that either δ′ = δ and
T ` R v S−, or σ′ = σw[R]w[R′] for a role R′ such that w[R]  K w[R′] and T ` R′ v S. Then,
from w[R]  K w[R′] we can also conclude T ` ∃R− v ∃R′. One can see that in the both cases above
it follows T ` ∃R− v ∃S, which concludes the proof of the “only if” direction. The “if” direction is
similar using the definition of UK and . �

Lemma C.2 Let 〈T ,A〉 and 〈T ′,A′〉 be the KBs, such that:

(i) T ⊆ T ′,
(ii) A |= B(a) implies A′ |= B(a) and A |= R(a, b) implies A′ |= R(a, b), for all a, b ∈ Na, concepts

B and roles R.

Then, for each σ ∈ ∆U〈T ,A〉 there exists δ ∈ ∆U〈T ′,A′〉 such that

(iii) tU〈T ,A〉(σ) ⊆ tU〈T ′,A〉(δ),

(iv) rU〈T ,A〉(a, σ) ⊆ rU〈T ′,A〉(a, δ) for all a ∈ Na.

Proof. Consider, first, the case σ = b ∈ Na, then set δ = b and we show (iii). Consider B ∈ tU〈T ,A〉(σ),
it follows by Lemma C.1 A |= B′(b) and T ` B′ v B, for some concept B′. Then, by (i) it follows
T ′ ` B′ v B and by (ii) it follows A′ |= B′(b), therefore, by Lemma C.1 we obtain B ∈ tU〈T ′,A〉(δ).
The proof for (iv) is analogious.

Now, assume the lemma holds for σ′ ∈ ∆U〈T ,A〉 ; we show it also holds for σ = σ′w[R] ∈ ∆U〈T ,A〉

for a role R. By the definition of U〈T ,A〉 it follows tail(σ′)  〈T ,A〉 w[R] and so ∃R ∈ tU〈T ,A〉(σ′). By
Lemma C.1 it follows

T ` ∃R− v B for each B ∈ tU〈T ,A〉(σ) (1)

T ` R v Q for each Q ∈ tU〈T ,A〉(a, σ) (2)

On the other hand, observe by our induction hypothesis that there exists δ′ ∈ ∆〈T
′,A′〉 such that

tU〈T ,A〉(σ′) ⊆ tU〈T ′,A′〉(δ′); therefore, ∃R ∈ tU〈T ′,A′〉(δ′). It follows there exists δ′′ ∈ ∆U〈T ∪T ′,A〉

such that (δ′, δ′′) ∈ RU〈T ′,A′〉 . We select δ (for σ) equal to δ′′; using (1), (i) and Lemma C.1 one can
easily show (iii), and using (2) and (i) one can show (iv). �

Lemma C.3 Let K = 〈T ,A〉 and assume a  K w[R] for some basic role R. Then there exists a basic
concept B, such that A |= B(a), and:

(i) o 〈T ,B(o)〉 w[R];

(ii) tUK(aw[R]) ⊆ tU〈T ,B(o)〉(ow[R]);

(iii) rUK(a, aw[R]) ⊆ rU〈T ,B(o)〉(o, ow[R]).

Proof. Consequence of Lemma C.1. �



Lemma C.4 Let A be an ABox, B a set of basic concepts, and T , T ′ TBoxes. Let B = 〈T , {B(o) | B ∈
B}〉, and assume y ∈ ∆UB . If σ ∈ ∆U〈T ∪T ′,A〉 and B ⊆ tU〈T ∪T ′,A〉(σ), then there exists δ ∈ ∆U〈T ∪T ′,A〉

such that

(i) tUB(y) ⊆ tU〈T ∪T ′,A〉(δ)

(ii) rUB(o, y) ⊆ rU〈T ∪T ′,A〉(σ, δ)

Proof. Straightforward consequence of Lemma C.2. �

Lemma C.5 For each σ ∈ ∆U〈T1∪T12,A〉 and B′ ∈ t
U〈T1∪T12,A〉
Ξ (σ) one of the following holds:

(i) there exists a concept B over Σ such that B ∈ tU〈T1∪T12,A〉(σ) and T12 ` B v B′;
(ii) tU〈T1∪T12,A〉(σ) = {B′}.

Proof. Using Lemma C.1, and considering the structure of T1 ∪T12 with Σ∩Ξ = ∅. The case (ii) occurs,
when tail(σ) = w[Q] for a role Q is over Ξ. �

Lemma C.6 A DL-LiteR KB 〈T ,A〉 is consistent iff

(i) B,B′ is T -consistent for each pair of basic concepts B,B′ and each a ∈ Ind(A) such that A |=
B(a) and A |= B′(a);

(ii) R,R′ is T -consistent for each pair of roles R,R′ and each a, b ∈ Ind(A) such that A |= R(a, b)
and A |= R′(a, b)

Proof. (⇒) Assume (i) is violated, so there exist B1, B2 and a ∈ Ind(A) such that A |= B1(a),
A |= B2(a), and 〈T , {B1(o), B2(o)}〉 is inconsistent. It follows that U〈T ,{B1(o),B2(o)}〉 is not a model of
〈T , {B1(o), B2(o)}〉, so there is δ ∈ ∆U〈T ,{B1(o),B2(o)}〉 and a disjointness assertionBuC v ⊥ ∈ T (note
that inclusion assertions B v C ∈ T cannot cause inconsistency) such that B,C ∈ tU〈T ,{B1(o),B2(o)}〉(δ).
Obviously, {B1, B2} ⊆ tU〈T ,A〉(a), then by Lemma C.4 we obtain δ ∈ ∆U〈T ,A〉 such that B,C ∈
tU〈T ,A〉(δ). Hence, U〈T ,A〉 is not a model of 〈T ,A〉, which contradicts Claim A.1 since 〈T ,A〉 is consis-
tent.

It can be also the case that U〈T ,{B1(o),B2(o)}〉 is inconsistent due to the disjointness assertion R uQ v
⊥ ∈ T . Then the proof is similar using Lemmas C.4 and Claim A.1.

Assume now (ii) is violated, the proof is a straightforward modification of the proof above.
(⇐) The proof is analogous to (⇒). �

Lemma C.7 If a KB 〈T ,A〉 is consistent, then for all δ, σ ∈ ∆U〈T ,A〉 ,

(i) B is T -consistent for each B ∈ tU〈T ,A〉(δ);

(ii) R is T -consistent for each R ∈ rU〈T ,A〉(δ, σ).

Proof. Similar to Lemma C.6. �

C.2 Homomorphism Lemmas
Here we present a series of important lemmas used in the proof the main results in the following sections.

Lemma C.8 Assume a mappingM = (Σ,Ξ, T12), ABoxes A and A′ over, respectively, Σ and Ξ, and a
Ξ-TBox over T2. If U〈T12,A〉 is Ξ homomorphically embeddable into UA′ , then U〈T2∪T12,A〉 is Ξ homo-
morphically embeddable into U〈T2,A′〉.

Proof. Consider the Ξ homomorphism h : ∆U〈T12,A〉 7→ ∆UA′ from U〈T12,A〉 to UA′ , we are going to
construct the Σ homomorphism h′ : U〈T2∪T12,A〉 7→ U〈T2,A′〉 from U〈T2∪T12,A〉 to U〈T2,A′〉. Initially, we

define h′(a) = a, let us immediately verify that t
U〈T2∪T12,A〉
Ξ (a) ⊆ t

U〈T2,A′〉
Ξ (h′(a)). Notice that by the

definition of h we have:

t
U〈T12,A〉
Ξ (a) ⊆ t

UA′
Ξ (h(a)), (3)

h(a) = h′(a). (4)

Let C ∈ t
U〈T2∪T12,A〉
Ξ (a), it follows by Lemma C.1 (i) there exists B over Σ, such that A |= B(a) and

T ∪ T ′ ` B v C. Taking into account the shape of T2 and T12, t follows also there exists D over Ξ such
that T12 ` B v D and T2 ` D v C. Observe that B ∈ tU〈T12,A〉(a), then by Lemma C.1 (i) and (iii)



it follows D ∈ t
U〈T12,A〉
Ξ (a) and taking into account (3) and (4) we conclude D ∈ t

UA′
Ξ (h′(a)). Finally,

using again Lemma C.1 (i) and (iii) we obtain C ∈ t
U〈T2,A′〉
Ξ (h′(a)). The proof that r

U〈T2∪T12,A〉
Ξ (a, b) ⊆

r
U〈T2,A′〉
Ξ (h′(a), h′(b)) for all constants a and b is analogious.

Now we show how to define h′ for σ = aw[R] ∈ path(〈T2 ∪ T12,A〉). It follows a 〈T2∪T12,A〉 w[R],
then two cases are possible:
(I) R is over Σ;

(II) R is over Ξ.
In case (I) it follows a  〈T12,A〉 w[R] and by the condition of the current lemma it follows there is
δ ∈ ∆UA′ such that:

t
U〈T12,A〉
Ξ (aw[R]) ⊆ t

UA′
Ξ (δ), (5)

r
U〈T12,A〉
Ξ (a, aw[R]) ⊆ r

UA′
Ξ (a, δ). (6)

Then, using Lemma C.2 (with A′ = A, T = ∅, T ′ = T2) we obtain γ ∈ ∆U〈T2,A′〉 such that

tUA′ (δ) ⊆ tU〈T2,A′〉(γ), (7)

rUA′ (a, δ) ⊆ rU〈T2,A′〉(a, γ). (8)

Now define h′(σ) = γ; we need to show

t
U〈T2∪T12,A〉
Ξ (σ) ⊆ t

U〈T2,A′〉
Ξ (γ), (9)

r
U〈T2∪T12,A〉
Ξ (a, σ) ⊆ r

U〈T2,A′〉
Ξ (a, γ). (10)

For (9) consider the set ~B = {B over Ξ | T12 ` ∃R− v B} and observe that ~B ⊆ t
U〈T12,A〉
Ξ (aw[R]) and

also by Lemma C.1 and the structure of T2∪T12, for each B′ ∈ t
U〈T12,A〉
Ξ (aw[R]) there exists B ∈ ~B such

that T2 ` B v B′. By (5) and (7) we obtain ~B ⊆ t
U〈T2,A′〉
Ξ (γ); then using Lemma C.1 it can be easily

verified B′ ∈ t
U〈T2,A′〉
Ξ (γ) for all B′ as above, which concludes the proof of (9). The (10) is analogious

using (6), (8), and the set ~S = {S over Ξ | T12 ` R v S}.
Consider the case (II), using Lemma C.1 and the structure of T2 ∪ T12 and A, one can show:

∃R ∈ t
U〈T2∪T12,A〉
Ξ (a), (11)

T2 ` ∃R− v B for all B ∈ t
U〈T2∪T12,A〉
Ξ (σ), (12)

T2 ` R v S for all S ∈ r
U〈T2∪T12,A〉
Ξ (a, σ). (13)

Provided that the homomorphism h′ is defined for a, it follows ∃R ∈ tU〈T2,A′〉(h′(a)), therefore, there
exists γ ∈ ∆U〈T2,A′〉 such that R ∈ rU〈T2,A′〉(h′(a), γ). Now define h′(σ) = γ; we need to show

t
U〈T2∪T12,A〉
Ξ (σ) ⊆ tU〈T2,A′〉(γ), (14)

r
U〈T2∪T12,A〉
Ξ (a, σ) ⊆ rU〈T2,A′〉(a, γ). (15)

For (14) consider (12) and Lemma C.1; similarly, for (15) consider (13).
Assume now σ = σ′w[R] and the homomorphism from U〈T2∪T12,A〉 to U〈T2,A′〉 is defined for σ′. The

proof is done in the same way as for the case (II), all the statements are valid if one substitutes a by σ′. �

Let M = (Σ,Ξ, T12) be a mapping, and, T1 and T2, respectively, Σ- and Ξ-TBoxes. Define KBs
SB = 〈T1 ∪ T12, {B(o)}〉 and XB = 〈T2 ∪ T12, {B(o)}〉 for a basic concept B over Σ. We slightly abuse
the notation and write SA to denote the KB 〈T1 ∪T12,A〉 for a given ABoxA, analogously we use XA to
denote 〈T2 ∪ T12,A〉. We show

Lemma C.9 LetA be an ABox over Σ and assume for each concept B, role R, and all σ, δ ∈ ∆USA such
that

(i) B ∈ tSAΣ (σ),

(ii) R ∈ rSAΣ (σ, δ),



the following conditions hold

(iii) tXB

Ξ (o) ⊆ tSB (o);

(iv) T2 ∪ T12 ` R v R′ implies T1 ∪ T12 ` R v R′ for all roles R′ over Ξ;

(v) for each role R such that o XB
w[R] there exists y ∈ ∆USB such that

(a) t
UXB

Ξ (ow[R]) ⊆ tUSB (y),

(b) r
UXB

Ξ (o, ow[R]) ⊆ rUSB (o, y).

Then UXA is finitely homomorphically embeddable into USA .
Proof. Let A as above and assume the condition of the lemma are satisfied. We build a mapping h from
path(XA) to path(SA) such that for any finite subinterpretation of UXA the restriction of h to it is a
homomorphism to USA . Initially, we define h(a) = a, let us immediately verify that tUXA (a) ⊆ tUSA (a).
Let C ∈ tUXA (a), it follows by Lemma C.1 (i) there exists B over Σ such that A |= B(a) and T2 ∪ T12 `
B v C. Observe that B ∈ tUSA (a); now if C is over Σ it follows C = B, so C ∈ tUSA (a) and the proof
is done. Otherwise, C ∈ sXB

Ξ (o), then by (iii) C ∈ sSB (o), so T1 ∪ T12 ` B v C. Finally, using Lemma
C.1 (i) obtain C ∈ tUSA (a). The proof of rUXA (a, b) ⊆ rUSA (a, b) is analogous using Lemma C.1 (ii)
and current (iv).

Now we show how to define h for σ = aw[R] ∈ path(XA). It follows a  XA w[R], then by Lemma
C.3 (with K = XA) there exists B over Σ such that A |= B(a), o XB

w[R], and

tUXA (aw[R]) ⊆ tUXB (ow[R]) (16)

rUXA (a, aw[R]) ⊆ rUXB (o, ow[R]). (17)

We are going to show now there exists y ∈ ∆USB such that

tUXB (ow[R]) ⊆ tUSB (y) and (18)

rUXB (o, ow[R]) ⊆ rUSB (o, y). (19)

Assume, first, t
UXB

Σ (ow[R]) = ∅, then also r
UXB

Σ (o, ow[R]) = ∅; it remains to observe that fromA |= B(a)
it follows (i) is satisfied with σ = a, then by (v) we obtain y satisfying (18) and (19).

Assume now t
UXB

Σ (ow[R]) 6= ∅, it follows B = ∃R, t
UXB

Σ (ow[R]) = {∃R−}, and r
UXB

Σ (o, ow[R]) =
{R}. Since B = ∃R, there must exists a role Q such that o  SB w[Q] and T1 ∪ T12 ` Q v R, we

choose w[Q] to be the required y; it is immediate to see t
UXB

Σ (ow[R]) ⊆ tUSB (y), and r
UXB

Σ (o, ow[R]) ⊆
rUSB (o, y). To prove also t

UXB

Ξ (ow[R]) ⊆ tUSB (y) and r
UXB

Ξ (o, ow[R]) ⊆ rUXB (o, y) we are going to use

(iii) and (iv), but we need ∃R− ∈ t
USA
Σ (σ) and R ∈ r

USA
Σ (σ, δ) for some σ, δ ∈ ∆USA . To get the latter

two facts it is sufficient to notice ∃R ∈ tUXA (a) (since a  XB
w[R]) and tUXA (a) ⊆ tUSA (a) proven

above.
The proof of t

UXB

Ξ (ow[R]) ⊆ tUSB (y) is as follows: assume B′ ∈ t
UXB

Ξ (ow[R]), then since R is

over Σ it follows B′ ∈ t
UX∃R−
Ξ (o). By ∃R− ∈ t

USA
Σ (σ) and (iii) obtain B′ ∈ t

US∃R−
Ξ (o), then since

T1 ∪ T12 ` Q v R it follows t
US∃R− (o) ⊆ tUSB (ow[Q]) and we obtain B′ ∈ tUSB (y). The proof of

r
UXB

Ξ (o, ow[R]) ⊆ rUXB (o, y) is analogous using R ∈ r
USA
Σ (σ, δ), (iv), and T1 ∪ T12 ` Q v R. We

finished showing there exists y ∈ ∆USB , such that (18) and (19).
To continue the proof consider {B} ⊆ tUSA (a) and Lemma C.4 (with T = T1 ∪T12 and T ′ = ∅) there

exists δ ∈ ∆USA such that tUSB (y) ⊆ tUSA (δ) and rUSB (o, y) ⊆ rUSA (a, δ). It follows now using (16)
and (18) that tUXA (aw[R]) ⊆ tUSA (δ). Analogously using (17) and (19) one obtains rUXA (a, aw[R]) ⊆
rUSA (a, δ).

We show how to define the homomorphism for σw[R] ∈ path(XA) with tail(σ) = w[R′] given that
the homomorphism for h(σ) is defined. It follows w[R′]  XA w[R] and by definition of  and the
structure of T2 ∪ T12 we obtain T2 ∪ T12 ` ∃R′− v ∃R and R is a Ξ role different from R−. By Lemma
C.1 it also follows {∃R′−,∃R} ⊆ tUXA (σ). Since h is a homomorphism, {∃R′−,∃R} ⊆ tUSA (δ) for
δ = h(σ) ∈ ∆USA . We use Lemma C.5 to obtain B over Σ such that B ∈ tUSA (δ) and T12 ` B v ∃R.
Notice that such B exists: since ∃R′− and ∃R are different concepts, (ii) of Lemma C.5 is excluded, so
(i) holds.



Then in XB we have that o XB
w[R] for a Ξ role R, and the proof continues analogously to the proof

for the case σ = aw[R] above using the conditions (ii), (iii) and Lemmas C.4 to obtain δ′ in ∆USA such
that tUXA (σw[R]) ⊆ tUSA (δ′) and rUXA (σ, σw[R]) ⊆ rUSA (δ, δ′). We assign h(σw[R]) = δ′.

Thus, we defined the mapping h that is clearly a Ξ-homomorphism from each finite subinterpretation
of U〈T1∪T12,A〉 into U〈T2∪T12,A〉. �

Lemma C.10 Let A be an ABox over Σ and assume for each concept B, role R, and all σ, δ ∈ ∆USA
such that

(i) B ∈ tSAΣ (σ),

(ii) R ∈ rSAΣ (σ, δ)

the following conditions hold

(iii) t
USB
Ξ (o) ⊆ tUXB (o);

(iv) T1 ∪ T12 ` R v R′ implies T2 ∪ T12 ` R v R′ for all roles R′ over Ξ;

(v) for each role R such that o USB w[R] there exists y ∈ ∆UXB such that

(a) t
USB
Ξ (ow[R]) ⊆ tUXB (y),

(b) rSBΞ (o, ow[R]) ⊆ rUXB (o, y).

Then USA is finitely Ξ-homomorphically embeddable into UXA .

Proof. Assume the condition of the lemma is satisfied, and letA be an ABox over Σ. We build a mapping
h from path(SA) to path(XA) such that for any finite subinterpretation of USA the restriction of h to it
is a Ξ-homomorphism to UTA . Initially, we define h(a) = a, let us immediately verify that t

USA
Ξ (a) ⊆

t
UXA
Ξ (a). Let B′ ∈ t

USA
Ξ (a), it follows by Lemma C.1 (i) there exists B over Σ such that A |= B(a) and

T1 ∪ T12 ` B v B′. Observe that B ∈ tUSA (a), then by (iii) B′ ∈ tUXB (o), so T2 ∪ T12 ` B v B′.
Finally, using Lemma C.1 (i) obtain B′ ∈ tUSA (a). The proof of r

USA
Ξ (a, b) ⊆ r

UXA
Ξ (a, b) is analogious

using Lemma C.1 (ii) and current (iv).
Now we show how to define h for σ = aw[R] ∈ path(SA). It follows a SA w[R] and by Lemma C.3

(with K = SA) we obtain B over Σ such that A |= B(a), o SB w[R], and

tUSA (aw[R]) ⊆ tUSB (ow[R]) (20)

rUSA (a, aw[R]) ⊆ rUSB (o, ow[R]). (21)

Notice that B ∈ sSBΣ (a) (that is, (i)), then by (v) there exists y ∈ ∆XB such that

t
USB
Ξ (w[R]) ⊆ tUXB (y), (22)

r
USB
Ξ (o, w[R]) ⊆ rUXB (o, y). (23)

Since {B} ⊆ tUXA (a), by Lemma C.4 (with T = T2 ∪ T12 and T ′ = ∅) there exists δ ∈ ∆UXA

such that tUXB (y) ⊆ tUSA (δ) and rUXB (o, y) ⊆ rUXA (a, δ). It follows now using (20) and (22) that
t
USA
Ξ (aw[R]) ⊆ t

UXA
Ξ (δ). Analogously using (21) and (23) one obtains r

USA
Ξ (a, aw[R]) ⊆ r

UXA
Ξ (a, δ).

We assign h(σ) = δ.
We show how to define the homomorphism for σw[R] ∈ path(SA) with σ = σ′w[R′] given that the

homomorphism h(σ) and h(σ′) is defined. It follows w[R′]  SA w[R] and it that case R′ is over Σ by the
structure of T1 ∪ T12. Analogously to the proof of Lemma C.3 it can be verified o S(∃R′−)

w[R] and

tUSA (σw[R]) ⊆ t
US

(∃R′−) (ow[R]) and (24)

rUSA (σ, σw[R]) ⊆ r
US

(∃R′−) (o, ow[R]). (25)

Observe that ∃R′− ∈ t
USA
Σ (σ) (that is, (i)), then by (v) there is y ∈ ∆

UX
(∃R′−) satisfying (a) and (b).

Given the structure of T2 ∪ T12 two cases are possible:



(III) y ∈ ∆U〈T2,{B(o)|B∈B}〉 for the set B of all concepts B over Ξ such that T12 ` ∃R′− v B,

t
US

(∃R′−)

Ξ (ow[R]) ⊆ tU〈T2,{B(o)|B∈B}〉(y), and (26)

r
US

(∃R′−)

Ξ (o, ow[R]) ⊆ rU〈T2,{B(o)|B∈B}〉(o, y). (27)

(IV) o X(∃R′−)
w[R′−],

y ∈ ∆U〈T2,{B(o)|B∈B}〉 , for the set B of all concepts B over Ξ such that T12 ` ∃R′ v B, (28)

t
US

(∃R′−)

Ξ (ow[R]) ⊆ tU〈T2,{B(o)|B∈B}〉(y), and (29)

r
US

(∃R′−)

Ξ (o, ow[R]) ⊆ r
UX

(∃R′−) (o, ow[R′−]). (30)

Consider (III); then, B ⊆ t
UXA
Ξ (h(σ)), since obviously B ⊆ t

USA
Ξ (σ) and h is a homomor-

phism on σ. By Lemma C.4 (with T = T2 and T ′ = T12) we obtain δ ∈ ∆UXA such that
tU〈T2,{B(o)|B∈B}〉(y) ⊆ tUXA (δ) and rU〈T2,{B(o)|B∈B}〉(o, y) ⊆ rUXA (h(σ), δ). Note that using (24)
and (26) we obtain tUSA (σw[R]) ⊆ tUXA (δ); also using (25) and (27) we obtain r

USA
Ξ (σ, σw[R]) ⊆

r
UXA
Ξ (h(σ), δ). We assign h(σw[R]) = δ which concludes the proof.

Consider (IV); at this point we need

B ⊆ tUSA (σ′) and (31)

R ⊆ rUSA (σ, σ′), (32)

for R = {R′′ | T12 ` R′− v R′′}. Indeed, (31) follows since ∃R′ ∈ tUSA (σ′), by the definition of B, and
Lemma C.1 (i) and (iii). For (32) let R′′ ∈ R it follows [R′−] ≤T1∪T12

[R′′] and so [R′] ≤T1∪T12
[R′′−].

Then by the definition of USA obtain R′′− ∈ rUSA (σ′, σ), so obviously R′′ ∈ rUSA (σ, σ′).
Observe that, since h is a Ξ-homomorphism on σ′ and (31), it follows

B ⊆ t
UXA
Ξ (h(σ′)) (33)

and distinguish two subcases:

(V) r
USA
Ξ (σ, σw[R]) = ∅;

(VI) r
USA
Ξ (σ, σw[R]) 6= ∅.

In case (V) consider (28), (33) and Lemma C.4 to obtain δ ∈ ∆UXA such that tU〈T2,{B(o)|B∈B}〉(y) ⊆
tUXA (δ). Then using (24) and (29) one obtains t

USA
Ξ (σw[R]) ⊆ t

UXA
Ξ (δ). Taking δ = h(σw[R]) completes

the proof of the first subcase.

In the alternative case (VI), it follows by (25) that r
US

(∃R′−)

Ξ (o, w[R]) 6= ∅ therefore y = o (c.f.

(28)). We assign h(δw[R]) = h(σ′) and we prove t
USA
Ξ (σw[R]) ⊆ tUXA (h(σ′)), and r

USA
Ξ (σ, σw[R]) ⊆

rUXA (h(σ), h(σ′)).

Indeed, let B ∈ t
USA
Ξ (σw[R]), by (24) B ∈ s

S(∃R′−)

Ξ (ow[R]), then by (29) there exists B′ ∈ B such that
T2 ` B′ v B. Using (33) and Lemma C.1 (iii) obtain B ∈ tUXA (h(σ′)).

Let now Q ∈ r
USA
Ξ (σ, σw[R]), by (25) it follows Q ∈ r

US
(∃R′−)

Ξ (o, ow[R]), then by (30) there ex-
ists R′′ ∈ R such that T2 ` R′′ v Q. Since h is a homomorphism on σ, σ′ and (32) obtain
R′′ ∈ t

UXA
Ξ (h(σ), h(σ′)). By the definition of UXA we conclude also Q ∈ r

UXA
Ξ (h(σ), h(σ′)). This

concludes the proof of the second subcase and the whole case (IV). We have shown how to define h for
σw[R] ∈ path(SA) so that h is Ξ-homomorphism. �

C.3 Proof of Proposition 6.1
This proof can be obtained as an easy consequence of the following
Lemma C.11 LetM = (Σ,Ξ, T12) be a mapping, and T1 and T2, respectively, Σ- and Ξ-TBoxes, q(~x) a
Ξ-query, and A a Σ ABox. Then⋂

A′− ABox, s.t. it is
UCQ-solution forA

under T12

cert(q, 〈T2,A′〉) ⊆
⋂

A′− extended ABox, s.t.
it is UCQ-solution forA

under T12

cert(q, 〈T2,A′〉).



Proof. Consider a tuple of constants ~a such that 〈T2,A′〉 |= q[~a] for all Ξ-ABoxes A′, such that A′ is
a UCQ-solution for A under T12. Assume an extended ABox A′, such that it is a UCQ-solution for A;
we are going to show 〈T2,A′〉 |= q[~a]. If 〈T2,A′〉 is inconsistent, the proof is done; otherwise, take an
interpretation I |= 〈T2,A′〉. It follows there exists a substitution over I, such that h(u) ∈ BI for every
B(u) ∈ A, and (h(u), h(v)) ∈ RI for all R(u, v) ∈ A. We associate with every null n in A′ a fresh
(w.r.t. constants in A′, ~a, and q(~x)) constant an ∈ Na; then take A∗ the result of the substitution of each
n by an in A′. Consider an interpretation I∗, such that it is equal to I, except for an, such that n is a null
in A′, we set aI

∗

n = h(n). It should be clear that I∗ |= 〈T2,A∗〉, then we obtain I∗ |= q[~a]. It remains to
show I |= q[~a]; for that assume ~x = (x1, . . . xn), ~a = (a1, . . . , an), and

q(~x) = ∃y1, . . . , ymϕ(~x, y1, . . . , ym, b1, . . . , bk),

where bi are constants and ϕ a quantifier-free formula. It follows, there exist
d1, . . . , dn, e1, . . . em, f1, . . . , fk ∈ ∆I

∗
, such that di = aI

∗

i , fi = bI
∗

i , and

I∗ |= ϕ(d1, . . . dn, e1, . . . , em, f1, . . . , fk).

It remains to observe that all of di, ei, fi belong to the interpretation of the same concepts/roles in I as in
I ′, and aIi = di, bIi = fi. Therefore, I |= ϕ(d1, . . . dn, e1, . . . , em, f1, . . . , fk), and, finally, I |= q[~a]. �

C.4 Proof of Proposition 6.2
The result is proved in Theorem C.16, which is based the series of lemmas.
Lemma C.12 LetM = (Σ,Ξ, T12) be a mapping, and T1 and T2, respectively, Σ- and Ξ-TBoxes. Then
T2 is a UCQ-representation of T1 under T12 if and only if 〈T1 ∪ T12,A〉 is Ξ-query equivalent to 〈T2 ∪
T12,A〉 for every ABox A over Σ such that 〈T1,A〉 is consistent.
Proof. We first prove the following:
Proposition C.13 LetM = (Σ,Ξ, T12) be a mapping, and T1 and T2, respectively, Σ- and Ξ-TBoxes, A
a Σ-ABox, such that 〈T1,A〉 is consistent, q(~x) a Ξ query and~a a tuple of constants. Then 〈T2∪T12,A〉 |=
q[~a] iff 〈T2,A′〉 |= q[~a] for all Ξ-ABoxes A′ such that A′ is a UCQ-solution for A underM.
Proof. (⇒) Let A and A′ as above; we show 〈T2,A′〉 Ξ-query entails 〈T2 ∪ T12,A〉. Notice that since
A′ is a UCQ-solution, it follows 〈T12,A〉 Ξ-query entails A′; and since A is consistent, 〈T12,A〉 is
consistent as well. Using Claim A.4, we obtain that U〈T12,A〉 is Ξ homomorphically embeddable into
UA′ . By Lemma C.8 it follows U〈T2∪T12,A〉 is Ξ homomorphically embeddable into U〈T2,A′〉. Now, if
〈T2 ∪ T12,A〉 is inconsistent, it can be shown in the way similar to the proof of Lemma C.6 that 〈T2,A′〉
is inconsistent, then the proof is done. Otherwise, we use Claim A.4 to conclude 〈T2,A′〉 Ξ-query entails
〈T2 ∪ T12,A〉.

(⇐) Let A, q(~x), and ~a as above; assume 〈T2,A′〉 |= q[~a] for all solutions A′ for A under T12. We
are going to show 〈T2 ∪ T12,A〉 |= q[~a]. If 〈T2 ∪ T12,A〉 is inconsistent, the proof is done; assume the
opposite, then we will show U〈T2∪T12,A〉 |= q[~a], using Theorem A.3 the proof will be done. Consider
U〈T12,A〉 and define the set

ΘT12,A = Ind(A) ∪ {aw[R] ∈ ∆U〈T12,A〉 | a ∈ Ind(A) and R over Σ}.
For each σ ∈ ΘT12,A define tσ = a if σ = a ∈ Ind(A), and tσ = aσ for a fresh w.r.t. A, ~a, and q(~x)
constant aσ , otherwise. Now, define

A′ ={B(tσ) | B basic conc. over Ξ, σ ∈ BU〈T12,A〉 ∩ΘT12,A}∪
{P (tσ, tσ′) | P role name over Ξ, (σ, σ′) ∈ PU〈T12,A〉 ∩ (ΘT12,A ×ΘT12,A)}.

It is straightforward to build a Ξ-homomorphism from 〈T12,A〉 to A′ and use Claim A.4 to show A′ is
a UCQ-solution for A under T12. Consider now U〈T2,A′〉 and a mapping g : ∆U〈T2,A′〉 7→ ∆U〈T2∪T12,A〉

defined in the following way:

g(aw[R1] . . . w[Rn]) =

{
σw[R1] . . . w[Rn], if a = tσ and σ ∈ ΘT12,A,

a, otherwise,

where n ≥ 0. Notice that g is not a homomorphism, however, using the definitions of U〈T2,A′〉 and
U〈T2∪T12,A〉 one can straightforwardly verify

t〈T2,A′〉(δ) ⊆ t〈T2∪T12,A〉(g(δ)), (34)

r〈T2,A′〉(δ, δ′) ⊆ r〈T2∪T12,A〉(g(δ), g(δ′)), (35)



for all δ, δ′ ∈ ∆U〈T2,A′〉 . This is sufficint to prove in the way analogious to the proof of Lemma C.6, that
U〈T2,A′〉 is consistent. Using Claim A.3 one can obtain U〈T2,A′〉 |= q[~a]. Finally, observe

g(a) = a, (36)

for all a in Ind(A), ~a, or q(~x); then using (34), (35), (36) in the same way as the proof of Claim A.4 one
can show U〈T2∪T12,A〉 |= q[~a], which concludes the proof.

�

Now, given a Σ ABoxA such that 〈T1,A〉 is consistent, we show that 〈T1∪T12,A〉 is Ξ-query equivalent
to 〈T2 ∪ T12,A〉 if and only if for every Ξ query q(~x) it holds

cert(q, 〈T1 ∪ T12,A〉) =
⋂

A′− solution forA under T12

cert(q, 〈T2,A′〉). (37)

(⇒) Let q(~x) be a Ξ query, it follows cert(q, 〈T1 ∪ T12,A〉) = cert(q, 〈T2 ∪ T12,A〉), and we easily
obtain (37) using Proposition C.13. (⇐) Let q(~x) be a Ξ query, we need to show cert(q, 〈T1 ∪T12,A〉) =
cert(q, 〈T2 ∪ T12,A〉), which is easily concluded using Proposition C.13 and (37). �

Lemma C.14 The Ξ-TBox T2 is a UCQ-representation of Σ-TBox T1 under the mapping M =
(Σ,Ξ, T12) if and only if following conditions hold:

(i) for each pair of T1-consistent conceptsB,B′ over Σ,B,B′ is T1∪T12-consistent iffB,B′ is T2∪T12-
consistent;

(ii) for each pair of T1-consistent roles R,R′ over Σ, R,R′ is T1 ∪ T12-consistent iff R,R′ is T2 ∪ T12-
consistent;

(iii) for each T1 ∪ T12-consistent concept B over Σ and each B′ over Σ2, T1 ∪ T12 ` B v B′ iff
T2 ∪ T12 ` B v B′;

(iv) for each T1 ∪ T12-consistent role R over Σ and each R′ over Σ2, T1 ∪ T12 ` R v R′ iff T2 ∪ T12 `
R v R′;

(v) for each B ∈ consC(T1 ∪T12) over Σ and each role R such that o SB w[R] there exists y ∈ ∆UXB

such that

(a) t
USB
Ξ (ow[R]) ⊆ tUXB (y),

(b) r
USB
Ξ (o, ow[R]) ⊆ rUXB (o, y);

(vi) for each B ∈ consC(T1 ∪ T12) over Σ and each role R such that o  XB
w[R] there exists y such

that y ∈ ∆USB and

(a) t
UXB

Ξ (ow[R]) ⊆ tUSB (y),

(b) r
UXB

Ξ (o, ow[R]) ⊆ rUSB (o, y)

Proof. (⇐) Let the conditions above hold for T1, T2 and T12. Let A be an ABox over Σ such that 〈T1,A〉
is consistent, we show SA is Ξ-query equivalent to XA.

Observe that SA is consistent iff XA is consistent. Indeed, if SA is inconsistent then by Lemma C.6
one of the following holds:

(VII) B1, B2 is T1 ∪ T12-inconsistent for some basic concepts B1, B2 and a ∈ Ind(A) such that A |=
B1(a), A |= B2(a);

(VIII) R1, R2 is T1 ∪ T12-inconsistent for some roles R1, R2 and a, b ∈ Ind(A) such that A |= R1(a, b),
A |= R2(a, b)

Consider (VII) and observe that by Lemma C.6B1, B2 are T1 consistent. Then by (i)B1, B2 are T2∪T12-
inconsistent and again by Lemma C.6 XA is inconsistent. The proof for the case of (VIII) is similar using
(ii). The proof can be inverted to show XA is inconsistent implies SA is inconsistent.

First, assume SA is inconsistent, it follows SA |= q[~a] for all ~a ⊆ Ind(A) and Ξ-queries q. By the
paragraph above, XA is inconsistent, so XA |= q[~a] for all ~a ⊆ Ind(A) and Ξ-queries q, and so SA is
Ξ-query equivalent to XA.

Now assume SA is consistent, by Lemma C.7 each B is T1 ∪ T12-consistent for all δ, σ ∈ ∆USA , each
B such that B ∈ tUSA (δ), and each R such that R ∈ rUSA (δ, σ). It follows from (iii), (iv) and (v), that
all the conditions of Lemma C.10 are satisfied, therefore we conclude USA is finitely Ξ-homomorphically
embeddable into UXA . Since XA is consistent, then we can apply Theorem A.4 to obtain XA Ξ-query



entails SA. On the other hand, (iii), (iv) and (vi) imply that all the conditions of Lemma C.9 are satisfied,
therefore we conclude UXA is finitely Ξ-homomorphically embeddable into USA and SA Ξ-query entails
XA by Theorem A.4. We again obtain SA is Ξ-query equivalent to XA.

(⇒) Assume, by contraction, one of the conditions (i) – (vi) is not satisfied. We produce a T1-consistent
ABox A over Σ and a instance Ξ-query q[] such that it is not the case that SA |= q iff XA |= q.

Assume, first, the condition (i) is violated, then we takeA = {B1(o), B2(o)} violating it and q = B1(a)
for some constant a 6= o. If B1, B2 are T1 ∪ T12-consistent, but T2 ∪ T12 inconsistent, it follows SA 6|= q
and XA |= q, and the opposite holds if B1, B2 are T2 ∪ T12-consistent, but T1 ∪ T12-inconsistent. If (ii) is
violated, the proof is analogous.

Let now the condition (iii) be violated for B ∈ consC(T1 ∪ T12) over Σ. Assume, first, there is
B′ ∈ t

USB
Ξ (o) \ tUXB

Ξ (o), then we take q = B′(o). By definition of USB , UXB
and Lemma C.1 it follows

USB |= q and UXB
6|= q; then by Claim A.3 it follows SB |= q and XB 6|= q. The opposite follows if there

exists B′ ∈ t
UXB

Ξ (o) \ tUSBΞ (o), which completes the proof for this case. If (iv) is violated, the proof is
analogios.

To prove the case when (v) is violated, we need an additional lemma below. Before we present it, notice
that, w.l.o.g., one can consider UCQ’s with atoms over basic concepts B(t); one can convert such a UCQ
into the one over the standard syntax by using fresh existentially quantified variables.

Lemma C.15 Let T TBox, B a concept, ~B and ~R the sets of concepts and roles, respectively, and the
instance query

q ~B,~R = ∃x
( ∧
B′∈ ~B

B′(x) ∧
∧
R′∈~R

R′(o, x)
)
.

Then U〈T ,{B(o)}〉 |= q ~B,~R iff there exists y ∈ ∆U〈T ,{B(o)}〉 , such that

(i) ~B ⊆ tU〈T ,{B(o)}〉(y),

(ii) ~R ⊆ rU〈T ,{B(o)}〉(o, y).
Proof. Straightforward using Lemma C.4 and the definition of U〈T ,{B(o)}〉. �

Now, assume (v) is violated, so there exists B ∈ consC(T1 ∪ T12) over Σ and a role R such that
o SB w[R] and for all y ∈ ∆UXB either t

USB
Ξ (ow[R]) 6⊆ tUXB (y) or r

USB
Ξ (o, w[R]) 6⊆ rUXB (o, y). Then,

by Lemma C.15 with ~B = t
USB
Ξ (ow[R]), ~R = r

USB
Ξ (o, ow[R]) and T = T1 ∪ T12 it follows USB |= q ~B,~R.

On the other hand, by Lemma C.15 with T = T2 ∪T12 it follows UXB
6|= q ~B,~R. Using Claim A.3 we then

obtain SB |= q ~B,~R and XB 6|= q ~B,~R.
The case when (vi) is violated is analogous to the case above. The proof is complete.

�

Theorem C.16 The membership problem for UCQ-representability is NLOGSPACE-complete.
Proof. The lower bound can be obtained by the reduction from the directed graph reachability problem,
which is known to be NLogSpace-hard: given a graph G = (V, E) and a pair of vertices vk, vm ∈ V ,
decide if there is a directed path from vk to vm. To encode the problem, we need a set of Σ concept names
{Vi | vi ∈ V} and a set of Ξ concept names {V ′i | vi ∈ V}. Consider T1 = {Vk v Vm} ∪ {Vi v Vj |
(vi, vj) ∈ E}, T12 = {Vi v V ′i | vi ∈ V}, and T2 = {V ′i v V ′j | (vi, vj) ∈ E}. One can easily verify that
the condition (iii) of Lemma C.14 is satisfied iff there is a directed path from vk to vm in G, whereas the
other conditions of Lemma C.14 are satisfied trivially. Therefore,
Proposition C.17 There is a directed path from vk to vm in G iff T2 is a representation for T1 under
M = (Σ,Ξ, T12).
This concludes the proof of the lower bound. For the upper bound, we show that the conditions (i)–(vi)
of Lemma C.14 can be verified in NLOGSPACE. It is well known (see, e.g., [Artale et al., 2009]), that
given a pair of DL-LiteR concepts B,B′, and a TBox T , it can be verified in NLOGSPACE, if B,B′ is T
consistent (using an algorithm, based on directed graph reachability solving procedure); the same holds
for a pair of DL-LiteR roles R, R′. The same algorithm can be straightforwardly adopted to check, if
T ` B v B′ or T ` R v R′. Therefore, clearly, the conditions (i)–(iv) can be verified in NLOGSPACE.

The conditions (v) and (vi) are slightly more involved; first of all, observe that, given a concept B and
a role R, it can be checked in NLOGSPACE, whether o  〈T ,{B(o)}〉 w[R], using an algorithm based on
the directed graph reachability solving procedure. At the same time, given z ∈ {o} ∪ {w[R] | R− role},



we can verify, if there exists y ∈ ∆U〈T ,{B(o)}〉 with z = tail(y): we “follow” the sequence of roles
R1, . . . , Rn = R (with n ≥ 0) in the way that when we “guess” Ri+1, we check w[Ri]  〈T ,{B(o)}〉
w[Ri+1] (by the algorithm, similar to the one for checking o 〈T ,{B(o)}〉 w[R]), and “forget” Ri.

Furthermore, in a similar way, as testing T ` B v B′, one can, check for a concept B′, if B′ ∈
t
U〈T ,{B(o)}〉
Ξ (ow[R]) in NLOGSPACE; the same holds for checking if a role R′ ∈ r

USB
Ξ (o, ow[R]), and,

then, for checking B′ ∈ t
U〈T ,{B(o)}〉
Ξ (y), for y as above. By combining the algorithms outlined above, one

can produce a procedure that checks the conditions (v) and (vi) in NLOGSPACE. �

D Non-emptyness Problem for UCQ-representability
The definitions that follow are needed for the non-emptyness problem of UCQ-representability. Let the
mappingM = (Σ,Ξ, T12), T1 and T2 TBoxes over, respectively, Σ and Ξ. For a pair of concepts B′, C ′
be over Ξ, we say that T1 ∪ T12 is closed under inclusion between B′ and C ′ if the following is satisfied
for each T1-consistent concept B over Σ:

(IX) T1 ∪ T12 ` B v B′ implies T1 ∪ T12 ` B v C ′;

(X) if B′ = ∃Q′, then ∃Q′− ∈ t
USB
Ξ (o) implies o  SB w[Q] for some role Q such that Q′− ∈

r
USB
Ξ (o, ow[Q]) and C ′ ∈ t

USB
Ξ (ow[Q]).

Then, for a pair R′, Q′ of roles over Ξ, we say T1 ∪ T12 is closed under inclusion between R′ and Q′ if
the following is satisfied:

(XI) T1 ∪ T12 ` R v R′ implies T1 ∪ T12 ` R v Q′ for each T1-consistent role R over Σ;
(XII) T1 ∪ T12 is closed under inclusion between ∃R′ and ∃Q′;

(XIII) T1 ∪ T12 is closed under inclusion between ∃R′− and ∃Q′−.
Next, we say T1 ∪ T12 is closed under disjointness between B′ and C ′ if the following is satisfied:

(XIV) for each T1 ∪ T12-consistent pair of concepts B,C over Σ it is not the case T1 ∪ T12 ` B v B′ and
T1 ∪ T12 ` C v C ′;

(XV) for each T1 ∪ T12-consistent concept B over Σ1 and each role R such that o  SB w[R] it is not the

case B′, C ′ ∈ t
USB
Ξ (ow[R]).

Then, T1 ∪ T12 is closed under disjointness between R′ and Q′ if the following is satisfied:
(XVI) for each T1 ∪ T12-consistent pair of roles R,Q over Σ it is not the case T1 ∪ T12 ` R v R′ and

T1 ∪ T12 ` Q v Q′;
(XVII) for each T1 ∪ T12-consistent concept B over Σ1 and each role R such that o  SB w[R] it is neither

the case R′, Q′ ∈ r
USB
Ξ (o, ow[R]) nor R′−, Q′− ∈ r

USB
Ξ (o, ow[R])

Define a generating pass for a concept B over Σ as a pair π = (〈C0, C1, . . . Cn〉, L), where
〈C0, C1, . . . Cn〉 a is tuple of concepts of the length greater or equal 1, C0 = B, and for each 1 ≤ i ≤ n
it holds Ci = ∃Q−i for some role Qi; then L is a labeling function

L : Ci ∪ Ci × Cj 7→ 2Ξ - concepts ∪ 2Ξ -roles

such that L(Ci, Cj) = ∅ for j 6= i+ 1. It is said that a generating pass π for B is conform with T1 ∪ T12

if the following is satisfied:
(XVIII) ∃Q ∈ L(Ci) or ∃Q = Ci for all 0 ≤ i < n and roles Q such that Ci+1 = ∃Q−;

(XIX) For each 0 ≤ i ≤ n and B′ ∈ L(Ci) there exists C ′ over Ξ such that T12 ` Ci v C ′ and T1 ∪ T12 is
closed under inclusion between C ′ and B′.

(XX) For each 0 ≤ i < n, role Q such that Ci+1 = ∃Q− and R′ ∈ L(Ci, Ci+1) there exists Q′ over Ξ
such that T12 ` Q v Q′ and T1 ∪ T12 is closed under inclusion between Q′ and R′.

D.1 Basic Preliminary Results
Lemma D.1 LetM = (Σ,Ξ, T12) be a mapping, and a Σ-TBox T2 be is a representation for a Ξ-TBox
T1 under T12. Then T1 ∪ T12 is closed under:

(i) inclusion between concepts B′ and C ′ (roles R′ and Q′) for all B′, C ′ over Ξ (R′, Q′ over Ξ) such
that T2 ` B′ v C ′ (T2 ` R′ v Q′);



(ii) disjointness between concepts B′ and C ′ (roles R′ and Q′) for all B′, C ′ over Ξ (R′, Q′ over Ξ)
such that T2 ` B′ v D′, T2 ` C ′ v E′, and (D′ u E′ v ⊥) ∈ T2 for some concepts D′, E′ over Ξ
(T2 ` R′ v S′, T2 ` Q′ v T ′, and (S′ u T ′ v ⊥) ∈ T2 for some roles S′, T ′ over Ξ);

(iii) disjointness between B′ and B′ (R′ and R′) for all T2 inconsistent concepts B′ (roles R′).

Proof. We assume that T2 is a representation, but (i), (ii) or (iii) is violated, and derive a contradiction.
Let, first, (i) be violated for concepts, i.e., there are B′, C ′ over Ξ such that T2 ` B′ v C ′ and T1 ∪ T12

is not closed under inclusion between B′ and C ′. Then, (IX) or (X) must be violated for some B ∈
consC(T1 ∪ T12) over Σ. Assume (IX) is violated, i.e., B′ ∈ t

USB
Ξ (o) and C ′ 6∈ t

USB
Ξ (o). By Lemma

C.14 (iii) we get the contradiction. If (X) is violated, i.e., B′ = ∃Q′, ∃Q′− ∈ t
USB
Ξ (o), and for all

roles Q such that o  SB w[Q] and Q′− ∈ r
USB
Ξ (o, ow[Q]) it holds C ′ 6∈ t

USB
Ξ (o). By Lemma C.14 (iii)

obtain ∃Q′− ∈ t
UXB

Ξ (o) and since T2 ` B′ v C ′ it follows there exists a role Q such that o  XB
w[Q],

Q′− ∈ r
UXB

Ξ (o, ow[Q]), and C ′ ∈ t
UXB

Ξ (ow[Q]). Using (vi) we obtain a contraction.
Suppose there are rolesR′, Q′ over Ξ such that T2 ` R′ v Q′ and T1∪T12 is not closed under inclusion

between R′ and Q′, then one of (XI), (XII), (XIII) is violated. Assume it is (XI), then T1∪T12 ` R v R′
and it is not the case T1 ∪ T12 ` R v Q′ for some R ∈ consR(T1 ∪ T12) over Σ. Using Lemma C.14
(iv) we get the contradiction. Assume (XII) is violated, then there is B ∈ consC(T1 ∪ T12) over Σ such
that ∃R′− ∈ t

USB
Ξ (o) and for all roles Q such that o  SB w[Q] and R′− ∈ r

USB
Ξ (o, ow[Q]) it holds

∃Q′ 6∈ t
USB
Ξ (o). By Lemma C.14 (iii) obtain ∃R′− ∈ s

UXB

Ξ (o) and since T2 ` R′ v Q′ it follows there
exists a role Q such that o  XB

w[Q], R′− ∈ r
UXB

Ξ (o, ow[Q]), and ∃Q′ ∈ t
UXB

Ξ (ow[Q]). Using (vi) we
obtain a contraction. The proof when (XIII) is violated is analogous.

Let now (ii) be violated for concepts, i.e., there are B′, C ′, D′, E′ over Ξ such that T2 ` B′ v D′,
T2 ` C ′ v E′, (D′ u E′ v ⊥) ∈ T2 and T1 ∪ T12 is not closed under disjointness between B′ and
C ′. Then, (XIV) or (XV) must be violated. If it is (XIV) there is a T1 ∪ T12-consistent pair of concepts
B,C such that B′ ∈ t

USB
Ξ (o) and C ′ ∈ t

USC
Ξ (o). By Lemma C.14 (iii) obtain B′ ∈ t

UXB

Ξ (o) and
C ′ ∈ t

UXC

Ξ (o), then by T2 ` B′ v D′, T2 ` C ′ v E′ and (D′ u E′ v ⊥) ∈ T2 it follows the pair
B,C is T2 ∪ T12 inconsistent. We obtained a contradiction to Lemma C.14 (i). If (XV) is violated there
is B ∈ consC(T1 ∪ T12) over Σ and a role R such that o  SB w[R] and B′, C ′ ∈ t

USB
Ξ (ow[R]). By

Lemma C.14 (v) there is y ∈ ∆UXB such thatB′, C ′ ∈ t
UXB

Ξ (y). Using Lemmas C.4, C.7, T2 ` B′ v D′,
T2 ` C ′ v E′ and (D′ u E′ v ⊥) ∈ T2 it follows B is T2 ∪ T12 inconsistent, which is a contradiction to
B ∈ consC(T1 ∪ T12) over Σ by Lemma C.14 (i). The proof of the case when (ii) is violated for roles is
analogous to the case of concepts above.

Finally, assume (iii) is violated for concepts, i.e., there is T2 inconsistent B′ such that T2 ∪ T12 is not
closed under inclusion between B′ and B′. It follows (XIV) or (XV) must be violated. If it is (XIV) there
is a T1 ∪ T12-consistent pair of concepts B,C such that B′ ∈ t

USB
Ξ (o) and B′ ∈ t

USC
Ξ (o). By Lemma

C.14 (iii) obtain B′ ∈ t
UXB

Ξ (o) and B′ ∈ t
UXC

Ξ (o), then by Lemmas C.4 and C.7 we obtain that the
pair B,C is T2 ∪ T12-inconsistent. We obtained a contradiction to Lemma C.14 (i). If (XV) is violated
there is B ∈ consC(T1 ∪ T12) over Σ and a role R such that o  SB w[R] and B′ ∈ t

USB
Ξ (ow[R]). By

Lemma C.14 (v) there is y ∈ ∆UXB such that B′ ∈ t
UXB

Ξ (y). Using Lemmas C.4 and C.7 it follows B is
T2 ∪ T12-inconsistent, which is a contradiction to B ∈ consC(T1 ∪ T12) over Σ by Lemma C.14 (i). The
proof of the case when (iii) is violated for roles is analogous to the case of concepts above. �

D.2 Proof of Proposition 6.3
The result is shown in Theorem D.4; we need a series of lemmas before we present the proof.

Lemma D.2 Given a mappingM = (Σ,Ξ, T12) and a Σ-TBox T1, there exists Ξ-TBox T2, such that it is
a UCQ-representation of T1 underM, if and only if the following conditions are satisfied:

(i) For each T1 ∪ T12-consistent concept B over Σ and each B′ over Ξ such that T1 ∪ T12 ` B v B′

there exists C ′ over Ξ such that T12 ` B v C ′ and T1 ∪ T12 is closed under the inclusion between
C ′ and B′.

(ii) For each T1 ∪ T12-consistent role R over Σ and each R′ over Ξ such that T1 ∪ T12 ` R v R′ there
exists Q′ over Ξ such that T12 ` R v Q′ and T1 ∪ T12 is closed under inclusion between Q′ and R′.



(iii) For each T1 ∪ T12-consistent concept B over Σ and each role R such that o  SB w[R] there exists
a generating pass π = (〈C0, . . . Cn〉, L) for B conform with T1 ∪ T12, such that:

(a) t
USB
Ξ (ow[R]) ⊆ L(Cn).

(b) r
USB
Ξ (o, ow[R]) ⊆ L(C0, Cn);

(iv) For each T1-consistent pair of concepts B1, B2 over Σ, such that B1, B2 is T1 ∪ T12-inconsistent,
there are concepts B,C such that one of the following holds:
(a) B,C ∈ {B1, B2} and one of the following holds:

(1) T12 ` B v B′, T12 ` C v C ′, and T1 ∪ T12 is closed under the disjointness between B′ and
C ′;

(2) T12 ` B v B′, T12 3 (C uC ′ v ⊥), and T1 ∪T12 is closed under inclusion between B′ and
C ′.

(b) ∃R ∈ {B1, B2} and one of the following holds:
(1) T12 ` ∃R− v B′, T12 ` ∃R− v C ′, and T1 ∪ T12 is closed under disjointness between B′

and C ′;
(2) T12 ` ∃R− v B′, T12 3 (∃R− u C ′ v ⊥), and T1 ∪ T12 is closed under inclusion between

B′ and C ′;
(3) T12 ` R v R′, T12 ` R v Q′, and T1 ∪ T12 is closed under the disjointness between R′ and

Q′;
(4) T12 ` R v R′, T12 3 (R uQ′ v ⊥), and T1 ∪ T12 is closed under inclusion between R′ and

Q′.
(v) For all T1-consistent pairs of roles R1, R2, such that R1, R2 is T1 ∪ T12-inconsistent one of the

following holds:
(a) there are roles R,Q ∈ {R1, R2} and R′, Q′ over Ξ such that one of the following holds:

(1) T12 ` R v R′, T12 ` Q v Q′, and T1 ∪ T12 is closed under disjointness between R′ and Q′;
(2) T12 ` R v R′, T12 3 (QuQ′ v ⊥), and T1 ∪ T12 is closed under inclusion between R′ and

Q′;
(b) there exist B,C ∈ {∃R1,∃R2} or B,C ∈ {∃R−1 ,∃R

−
2 } such that one of the following holds:

(1) T12 ` B v B′, T12 ` C v C ′, and T1 ∪T12 is closed under disjointness between B′ and C ′;
(2) T12 ` B v B′, T12 3 (C uC ′ v ⊥), and T1 ∪T12 is closed under inclusion between B′ and

C ′.

Proof. (⇐) Assume the conditions (i) – (v) are satisfied, we construct a TBox T2 and prove it is a UCQ-
representation for T1 under M. The required T2 will be given as the union of the fives sets of axioms
presented below. First, take B ∈ consC(T1 ∪ T12) over Σ, B′ ∈ t

USB
Ξ (o), then let ax1(B,B′) = {C ′ v

B′} for C ′ given by the condition (i). For R ∈ consR(T1 ∪ T12) over Σ and R′ over Ξ, such that
T1 ∪ T12 ` R v R′, define ax2(R,R′) = {Q′ v R′} for Q′ given by the condition (ii). For each
B ∈ consC(T1 ∪ T12) over Σ and each role R such that o  SB w[R] define the set ax3(B,R) from the
generating pass 〈C0, . . . , Cn〉 for B conform with T1 ∪ T12 that satisfies (iii). Take ax3(B,R) equal to
the set of all axioms C ′ v B′ satisfying (XIX) and all axioms Q′ v R′ satisfying (XX). Now let B,B2 be
a T1-consistent and T1 ∪ T12-inconsistent pair of Σ concepts, then define a set ax4(B1, B2) to be equal to
{B′uC ′ v ⊥} for the correspondingB′ and C ′, if (iv)(a)(1) or (iv)(b)(1) is satisfied; and {R′uQ′ v ⊥}
for the corresponding R′ and Q′, if (iv)(b)(3) is satisfied. On the other hand, define ax4(B1, B2) to be
equal to {B′ v C ′} for the correspondingB′ and C ′, if (iv)(a)(2) or (iv)(b)(2) is satisfied; and {R′ v Q′}
for the correspondingR′ andQ′, if (iv)(b)(4) is satisfied. Finally, we define ax5(R1, R2) for T1-consistent
and T1 ∪ T12-inconsistent pair of Σ roles R1, R2 analogously to ax4(B1, B2) using the conditions (v)(b)
and (v)(b). Finally we have:

T2 =
⋃

B∈consC(T1∪T12) over Σ,

B′∈t
USB
Ξ (o)

ax3(B,B′) ∪
⋃

R∈consR(T1∪T12) over Σ,
R′ over Ξ, T1∪T12`RvR′

ax4(R,R′)∪

⋃
B∈consC(T1∪T12) over Σ,

o SBw[R]

ax5(B,R) ∪
⋃

B0,B1 conc. over Σ,
T1− consist. and
T1∪T12− inconsist.

ax1(B0, B1) ∪
⋃

R0,R1 roles over Σ,
T1− consist. and
T1∪T12− inconsist.

ax2(R0, R1)

We need the following intermediate result:



Lemma D.3 For all concepts B′, C ′ ∈ Ξ (roles R′, Q′ over Ξ), if T2 ` B′ v C ′ (T2 ` R′ v Q′) then
T1 ∪ T12 is closed under inclusion between B′ and C ′ (R′ and Q′).

Proof. Notice that for all concepts B′ and C ′ (roles R′ and Q′) such that (B′ v C ′) ∈ T2 ((R′ v
Q′) ∈ T2) it holds T1 ∪ T12 is closed under inclusion between B′ and C ′ (R′ and Q′). First we prove
the statement of the lemma for roles, if T2 ` R′ v Q′ there is a sequence of roles Q1, . . . , Qn such that
Q1 = R′, Qn = Q′, and for each 1 ≤ i < n one of the following holds:

(XXI) (Qi v Qi+1) ∈ T2

(XXII) (Q−i v Q
−
i+1) ∈ T2

We show T1 ∪ T12 is closed under inclusion between R′ and Qi by induction on i. For i = 1 the proof
is trivial, assume T1 ∪ T12 is closed under inclusion between R′ and Qi, we show now its closure under
inclusion between R′ and Qi+1. Let, first, (XXI), we show (XI). Assume T1 ∪ T12 ` R v R′ for
some R ∈ consR(T1 ∪ T12) over Σ, since T1 ∪ T12 is closed under inclusion between R′ and Qi, it
follows by (XI) T1 ∪ T12 ` R v Qi, then, again by closure under inclusion between Qi and Qi+1 obtain
T1 ∪ T12 ` R v Qi+1.

To show (XII) we need to prove (IX) and (X) for B′ = ∃R′ and C ′ = ∃Qi+1. For (IX) assume
∃R′ ∈ t

USB
Ξ (o) for some B ∈ consC(T1 ∪ T12) over Σ; since T1 ∪ T12 is closed under inclusion between

R′ and Qi, it follows by (XII) that ∃Qi ∈ t
USB
Ξ (o), and again by closure under inclusion between Qi and

Qi+1 obtain ∃Qi+1 ∈ t
USB
Ξ (o). For (X) assume ∃R′− ∈ t

USB
Ξ (o) for some B ∈ consC(T1 ∪ T12) over Σ

and consider two cases: R′ = Qi and R′ 6= Qi. In the first case o  SB w[Q] for some role Q such that

R′− ∈ r
USB
Ξ (o, ow[Q]) and ∃Qi+1 ∈ t

USB
Ξ (ow[Q]) immediately follows, since T1 ∪ T12 is closed under

inclusion between Qi and Qi+1.
Assume R′ 6= Qi, since T1 ∪ T12 is closed under inclusion between R′ and Qi, it follows by (XII)

and the structure of SB that o  SB w[Q] for some role Q over Σ such that R′− ∈ r
USB
Ξ (o, ow[Q]) and

∃Qi ∈ t
USB
Ξ (ow[Q]). Since SB is consistent, it can be easily shown that ∃Q− ∈ consC(T1∪T12). Observe

now that ∃Qi ∈ t
US∃Q−
Ξ (o); then since T1 ∪ T12 is closured under inclusion between Qi and Qi+1 and

(XIII), obtain ∃Qi+1 ∈ t
US∃Q−
Ξ (o). Finally, it follows ∃Qi+1 ∈ t

USB
Ξ (ow[Q]), which completes the proof

for the case (XXI). The proof for the case (XXII) is analogous.
To prove the lemma for concepts we exploit that T2 ` B′ v C ′ implies there exists a sequence of Ξ

concepts B1, . . . , Bn such that B1 = B′, Bn = C ′, and for each 1 ≤ i < n one of the following holds:
(XXIII) (Bi v Bi+1) ∈ T2

(XXIV) Bi = ∃R′, Bi+1 = ∃Q′, (R′ v Q′) ∈ T2

(XXV) Bi = ∃R′−, Bi+1 = ∃Q′−, (R′ v Q′) ∈ T2

We show T1 ∪ T12 is closed under inclusion between B′ and Bi by induction on i. For i = 1 the proof
is trivial, assume T1 ∪ T12 is closed under inclusion between B′ and Bi, we show now its closure under
inclusion between B′ and Bi+1. First we consider the case of Bi and Bi+1 are as in (XXIII). To show
(IX) assume B ∈ consC(T1 ∪ T12) over Σ and B′ ∈ t

USB
Ξ (o); by closure under inclusion between B′

and Bi and (IX) it follows Bi ∈ t
USB
Ξ (o), then by closure under inclusion between Bi and Bi+1 and (IX)

obtain Bi+1 ∈ t
USB
Ξ (o).

To show (X) assume B′ = ∃Q′ and ∃Q′− ∈ t
USB
Ξ (o). If B′ = Bi, then o  SB w[Q] for some role

Q such that Q′ ∈ r
USB
Ξ (o, ow[Q]) and Bi+1 ∈ t

USB
Ξ (ow[Q]) by closure under inclusion between Bi and

Bi+1, and (X). On the other hand, if B′ 6= Bi, it follows by closure under inclusion between B′ and Bi,
and (X) o SB w[Q] for a role Q over Σ such that Q′ ∈ r

USB
Ξ (o, ow[Q]) and Bi ∈ tSBΞ (ow[Q]). Since SB

is consistent, it follows ∃R− ∈ consC(T1 ∪ T12), then by closure under inclusion between Bi and Bi+1

and (IX) we conclude Bi+1 ∈ t
USB
Ξ (ow[R]), which concludes the proof. The proof for the cases (XXIV)

and (XXV) is analogios. �

We return to the proof of (⇐) of Lemma D.2; we prove T2 above is a representation of T1 under T12 by
showing the conditions (i) – (vi) of Lemma C.14 are satisfied. We start from (iii) (consistency conditions
will be shown in the end.) Let B ∈ consC(T1 ∪ T12) over Σ, B′ ∈ t

USB
Ξ (o), then B′ ∈ t

UXB

Ξ (o)

follows straightforwardly from current (i). Assume now some B′ ∈ t
UXB

Ξ (o), it follows T12 ` B v C ′



and T2 ` C ′ v B′ for some concept C ′ over Ξ; by Lemma D.3 it follows C ′ ∈ t
USB
Ξ (o) implies

B′ ∈ t
USB
Ξ (o), and since T12 ` B v C ′ conclude B′ ∈ t

USB
Ξ (o). The proof that (iv) of Lemma D.2 is

satisfied is analogous to the proof that (iii) is satisfied above, using current (ii) and Lemma D.3.
The (v) of Lemma D.2 follows straightforwardly from current (iii), the definition of a Ξ pass conform

with T1∪T12, and the structure of T2. To show (vi) of Lemma D.2 assumeB ∈ consC(T1∪T12) over Σ and
a role Q such that o XB

w[Q]. We first consider the case Q over Ξ, by the structure of T2 (see the proof

that (iii) of Lemma C.14 is satisfied) it follows ∃Q ∈ t
USB
Ξ (o). If t

UXB

Ξ (w[Q]) = {∃Q−}, the proof is
done; otherwise, T2 ` ∃Q− v C ′ for some C ′ 6= ∃Q−, then by Lemma D.3 and (X) it follows there exists
R such that o SB w[R], Q ∈ r

USB
Ξ (o, ow[R]) and C ′ ∈ t

USB
Ξ (o); also by C ′ 6= ∃Q− and the structure of

SB it follows R is over Σ. Notice that ∃R− ∈ consC(T1 ∪ T12) since SB is consistent. For each (other)
C ′ ∈ t

UXB

Ξ (ow[Q]) we show C ′ ∈ t
USB
Ξ (w[R]). Indeed, it follows T2 ` ∃Q− v C ′; then using Lemma

D.3, (IX), ∃Q− ∈ t
US∃R−
Ξ (o), we can conclude C ′ ∈ t

US∃R−
Ξ (o), and so C ′ ∈ t

USB
Ξ (ow[R]). To show

r
UXB

Ξ (o, ow[Q]) ⊆ r
USB
Ξ (o, ow[R]) consider that R ∈ consR(T1 ∪ T12) and assume Q′ ∈ r

UXB

Ξ (o, ow[Q]);

it follows T2 ` Q v Q′, then by Lemma D.3, (XI) and T1∪T12 ` R v Q it followsQ′ ∈ r
USB
Ξ (o, ow[R]),

which concludes the proof.
Consider now the case Q over Σ, then, clearly, o  SB w[R] and Q ∈ rUSB (o, ow[R]) for some role R

over Σ. We show now t
UXB

Ξ (ow[Q]) ⊆ tUSB (ow[R]): let C ′ ∈ t
UXB

Ξ (ow[Q]), then T12 ` ∃Q− v B′ and

T2 ` B′ v C ′ for some B′ over Ξ. It follows B′ ∈ t
USB
Ξ (ow[R]), then by Lemma D.3 and (IX) obtain

C ′ ∈ t
USB
Ξ (ow[R]). The proof of r

UXB

Ξ (o, ow[Q]) ⊆ rUSB (o, ow[R]) is analogous.
Now we show that the consistency conditions of Lemma C.14 are satisfied. For (i) assume a pairB1, B2

of T1 consistent and T1 ∪ T12-inconsistent concepts; then B1, B2 is T2 ∪ T12-inconsistent follows easily
from current (iv) and definition of T2. Assume B1, B2 are T1 consistent and T2 ∪ T12-inconsistent; it
follows there exists δ, σ ∈ ∆X{B1(o),B2(o)} such that one of the following holds:

(XXVI) There are concepts C,C ′ ∈ t
UX{B1(o),B2(o)} (δ) such that (C u C ′ v ⊥) ∈ T2 ∪ T12;

(XXVII) There are roles Q,Q′ ∈ r
UX{B1(o),B2(o)} (δ, σ) such that (Q uQ′ v ⊥) ∈ T2 ∪ T12.

Assume for the sake of contradiction that B1, B2 is T1 ∪ T12 is consistent. By Lemma C.7 it follows for

each δ, σ ∈ ∆
US{B1(o),B2(o)} , every B ∈ t

US{B1(o),B2(o)}
Σ (δ) and R ∈ r

US{B1(o),B2(o)}
Σ (δ, σ) are T1 ∪ T12-

consistent. By the structure of T2 for all such B and R the conditions (iii) – (v) of Lemma C.10 are
satisfied (see the proof that (iii), (iv) and (vi) of Lemma C.14 are satisfied above). Then, by Lemma C.10
we have that there exist δ, σ ∈ ∆S{B1(o),B2(o)} such that one of the following holds:

(XXVIII) There are concepts C,C ′ ∈ t
US{B1(o),B2(o)} (δ) such that (C u C ′ v ⊥) ∈ T2 ∪ T12;

(XXIX) There are roles Q,Q′ ∈ r
US{B1(o),B2(o)} (δ, σ) such that (Q uQ′ v ⊥) ∈ T2 ∪ T12.

Assume (XXVIII) and observe that w.l.o.g. C ′ is over Ξ, whereas C ∈ Σ ∪ Ξ. If C ∈ Σ it follows
(CuC ′) ∈ T12 and we immediately have the contradiction to the fact thatB1, B2 is T1∪T12 is consistent.
So let C be over Ξ, it follows (C u C ′) ∈ T2, and T1 ∪ T12 is closed under disjointness between C and

C ′ by the definition of T2. Consider, first, the case δ 6= o: by Lemma C.1 C,C ′ ∈ s
US∃Q−
Ξ (o) for the

role Q such that tail(δ) = w[Q]. If Q is over Σ we derive the contradiction because ∃Q− is T1 ∪ T12-
consistent and (XIV). On the other hand, if Q is over Ξ, it can be seen by the structure of US{B1(o),B2(o)}

that o  SB w[Q] for some B ∈ consC(T1 ∪ T12) over Σ; then C,C ′ ∈ t
USB
Ξ (ow[Q]) and we derive the

contradiction because of (XV). Finally, consider the case δ = o, then by the structure of US{B1(o),B2(o)}

there are concepts B,D ∈ {B1, B2} such that C ∈ t
USB
Ξ (o) and C ′ ∈ t

USD
Ξ (o). By (XIV) we again have

a contradiction.
Assume (XXIX), then again, assumingQ is over Σ produces an immediate contradiction; if, however,Q

is over Ξ, we obtain by the definition of T2, that T1∪T12 is closed under disjointness betweenQ andQ′. By
the structure of US{B1(o),B2(o)} we need to consider two cases: σ = δw[R], Q,Q′ ∈ r

US{B1(o),B2(o)} (δ, σ)

and δ = σw[R],Q−, Q′− ∈ r
US{B1(o),B2(o)} (σ, δ). In the first case, o SB w[R] for someB ∈ consC(T1∪

T12) over Σ and Q,Q′ ∈ r
USB
Ξ (o, ow[R]); using (XVII) we derive the contradiction. The second case is

proved analogously using (XVII).



Thus, assuming the pair B1, B2 is T1 ∪ T12-consistent produces a contradiction, therefore B1, B2 is
T1 ∪ T12 inconsistent. This concludes the proof that (i) of Lemma D.2 is satisfied. Analogously, using
(v), Lemma C.10, (XIV), (XV), (XVI), (XVII), it can be shown that (ii) of Lemma D.2 is satisfied, which
concludes the proof (⇐) of Lemma D.2.

(⇒) Assume T2 is a representation for T1 under T12, we show that (iv) – (iii) are satisfied. For (iv)
assume a T1-consistent pair of concepts B1, B2, such that B1, B2 is T1 ∪ T12-inconsistent; it follows
Lemma by C.14 (i) that X{B1(o),B2(o)} is inconsistent. Then, one of the following holds:

(XXX) There are concepts C,C ′ ∈ t
UX{B1(o),B2(o)} (δ) such that (C u C ′ v ⊥) ∈ T2 ∪ T12;

(XXXI) There are roles Q,Q′ ∈ r
UX{B1(o),B2(o)} (δ, σ) such that (Q uQ′ v ⊥) ∈ T2 ∪ T12.

Assume (XXX) is the case and notice that w.l.o.g. we can assume C ′ is over Ξ and C is over Σ ∪ Ξ.
Let, first, δ = o, by the structure of X{B1(o),B2(o)} it follows there are B ∈ {B1, B2} and B′ is over Ξ
such that T12 ` B v B′ and T2 ` B′ v C ′. Suppose C is over Ξ, then it follows (C u C ′ v ⊥) ∈ T2

and, again, there are D ∈ {B1, B2} and D′ is over Ξ such that T12 ` D v D′ and T2 ` D′ v C.
By Lemma D.1 (ii) it follows T1 ∪ T12 is closed under disjointness between B′ and D′, so (iv)(a)(1) is
satisfied. Suppose C is over Σ, then (CuC ′ v ⊥) ∈ T12, and by the structure of X{B1(o),B2(o)} it follows
C ∈ {B1, B2}. By Lemma D.1 (ii) it follows T1 ∪ T12 is closed under inclusion between B′ and C ′, so
(iv)(a)(2) is satisfied. Consider now the case tail(δ) = w[R] for R ∈ Σ; by the structure of X{B1(o),B2(o)}
it follows ∃R ∈ {B1, B2} and by Lemma C.1 T2 ∪T12 ` ∃R− v C, T2 ∪T12 ` ∃R− v C ′. Now we can
repeat the argument above with B = D = ∃R− to conclude either that either (iv)(b)(1) or (2) is satisfied.

Finally, consider the case tail(δ) = w[R′] withR′ over Ξ. By Lemma C.1 it is the case T2 ` ∃R′− v C,
T2 ` ∃R′− v C ′. If o X{B1(o),B2(o)} w[R′], then by the structure of X{B1(o),B2(o)} it follows T12 ` B v
B′ and o 〈T2,{B′(o)}〉 w[R′] for some B ∈ {B1, B2}, B′ over Ξ; also by Lemmas C.4 and C.7 it follows
the concept B′ is T2 inconsistent. Since by Lemma D.1 (iii) T1 ∪ T12 is closed under the disjointness
between B′ and B′, it follows (iv)(a)(1) is satisfied. If it is not the case o X{B1(o),B2(o)} w[R′], it follows
∃R ∈ {B1, B2} and T12 ` ∃R− v B′ for some B′ over Ξ, such that there is σ ∈ ∆U〈T2,{B′(o)}〉 with
tail(σ) = w[R′]. Again, by Lemmas C.4 and C.7 B′ is T2 inconsistent, then by Lemma D.1 (iii) T1 ∪ T12

is closed under disjointness between B′ and B′, so (iv)(b)(1) is satisfied.
Assume (XXXI) is the case and notice that w.l.o.g. we can assumeQ′ is over Ξ andQ is over Σ∪Ξ. By

the structure of UX{B1(o),B2(o)} we need to consider two cases: σ = δw[R], Q,Q′ ∈ r
UX{B1(o),B2(o)} (δ, σ)

and δ = σw[R], Q−, Q′− ∈ r
UX{B1(o),B2(o)} (σ, δ). We show only the first case, the second case is

analogous. Assume σ = o, o  X{B1(o),B2(o)} w[R] for R over Σ, and Q over Ξ. It follows T12 ` R v
R′ and T2 ` R′ v Q′, and also T12 ` R v S and T2 ` S v Q′ for some R′, S over Ξ. Since
(Q u Q′ v ⊥) ∈ T2 by Lemma D.1(ii) we get T1 ∪ T12 is closed under inclusion between R′ and S,
so (iv)(b)(3) is satisfied. Let Q ∈ Σ, it follows o  X{B1(o),B2(o)} w[R] and R = Q. It follows also
T12 ` Q v R′ and T2 ` R′ v Q′, then by Lemma D.1(i) we get T1 ∪ T12 is closed under inclusion
between R′ and Q′, so, since (Q u Q′ v ⊥) ∈ T12, we conclude (iv)(b)(4) is satisfied. Consider now
the case o  X{B1(o),B2(o)} w[R] for R over Ξ, which implies Q is over Ξ and (Q u Q′ v ⊥) ∈ T2;
then T12 ` B v B′ and T2 ` B′ v ∃R for some concepts B ∈ {B1, B2} and B′ over Ξ. It follows
o 〈T2,{B′(o)}〉 w[R], then by Lemmas C.4 and C.7B′ is T2 inconsistent, then by Lemma D.1 (iii) T1∪T12

is closed under disjointness between B′ and B′, so (iv)(b)(1) is satisfied. This concludes the proof for the
case σ = o.

Assume tail(σ) = w[R′] for R′ over Σ, this implies o  XB{B1(o),B2(o)} w[R′], and we lead the proof
analogously to the case above to show there is a T2 inconsistent B′ such that T12 ` ∃R− v B′ and
(iv)(b)(3) is satisfied. If tail(σ) = w[R′] for R′ over Ξ it can be easily verified (iv)(b)(1) or (iv)(b)(3) is
satisfied. This concludes the proof that (iv) is satisfied; then (v) can be shown analogously.

To show (i) is satisfied assume B ∈ consC(T1 ∪ T12) over Σ and B′ ∈ t
USB
Ξ (o). By Lemma C.14 (iii)

it follows B′ ∈ t
UXB

Ξ (o), so there exists C ′ over Ξ such that T12 ` B v C ′ and T2 ` C ′ v B′. By
Lemma D.1 (i) it follows T1 ∪ T12 is closed under inclusion between C ′ and B′; then (ii) can be shown
analogously.

Finally, we show (iii) is satisfied; assume B ∈ consC(T1 ∪ T12) over Σ and o  SB w[R] for some

role R, by Lemma C.14 (v) it follows there exists y ∈ ∆UXB such that t
USB
Ξ (ow[R]) ⊆ t

UXB

Ξ (y), and

r
USB
Ξ (o, ow[R]) ⊆ r

UXB

Ξ (o, y). By the structure of XB it follows there exists a sequence of concepts
〈C0, . . . , Cn〉 = 〈B, ∃Q−1 , . . . ,∃Q−n 〉 such that T2 ∪ T12 ` Ci v ∃Q for all 0 ≤ i < n and roles Q such



that Ci+1 = ∃Q−, T2 ∪ T12 ` Cn v B′ for all B′ ∈ t
USB
Ξ (ow[R]), and r

USB
Ξ (o, ow[R]) 6= ∅ implies

n = 1 and T2 ∪ T12 ` Q v R′ for all R′ ∈ r
USB
Ξ (o, ow[R]) and Q such that C1 = ∃Q−. We define a

generating pass forB conform with T1∪T12 as follows: L(Cn) = sSBΞ (w[R]), L(C1, Cn) = qSBΞ (o, w[R]),
L(Ci) = {∃Q | Ci+1 = ∃Q−, B 6= ∃Q} for all 0 ≤ i < n, and L(Ci, Cj) = ∅ for j 6= i + 1. It can
be straightforwardly verified that (XVIII) holds, then also (XIX) and (XX) follow using Lemma D.1. We
have shown (iii) is satisfied, which concludes the proof (⇒) of Lemma D.2. �

Theorem D.4 The non-emptyness problem for UCQ-representability is NLOGSPACE-complete.

Proof. As in the case of Theorem C.16, the lower bound is shown by the reduction from the directed
graph reachability problem, however, we need a slightly more involved encoding.
Lemma D.5 The non-emptyness problem for UCQ-representability is NLOGSPACE-hard.

Proof. To encode the graph G = (V, E), we need a set of Σ-concept names {Vi | vi ∈ V} ∪ {S, F,X, Y }
and a set of Ξ-concept names {V ′i | vi ∈ V} ∪ {S′, X ′, Y ′}. Consider the TBox

T1 = {Vi v Vj | (vi, vj) ∈ E} ∪ {S v Vk, Vm v F,X v Y },

where vk and vm are, respectively, the initial and final vertices. Then, let

T12 = {Vi v V ′i | vi ∈ V} ∪ {S v S′, S v X ′, F v Y ′, X v X ′, Y v Y ′};

we will show:
Proposition D.6 There is a directed path from vk to vm in G iff there exists a representation for T1 under
M = (Σ,Ξ, T12).

Indeed, using Lemma D.2, there exists a representation iff the condition (i) is satisfied. By the structure
of T1 ∪ T12 one can see that it is the case iff T1 ∪ T12 is closed under the inclusion between X ′ and Y ′.
The latter is the case iff T1 ∪ T12 ` S v X ′ implies T1 ∪ T12 ` S v Y ′, and that holds iff T1 ` S v F ,
which is the case iff there exists a path from vk to vm in G. This completes the proof of Lemma D.4. �

To show the upper bound, we prove that the conditions (i)–(v) of Lemma D.2 can be checked in
NLOGSPACE. In fact, these conditions can be checked using the algorithm, based on directed graph
reachability solving procedure, similar to the proof of Theorem C.16. The only new case is the condi-
tion (iii); to verify that there exists a generating pass π = (〈C0, . . . Cn〉, L) for a concept B conform with
T1∪T12, we can use the following procedure, running in NLOGSPACE. First, we takeC0 = B and decide,
if the pass ends here (i.e., n = 1). If we decided so, it only remains to take L(C0) = t

USB
Ξ (ow[R]), for SB

and R as in the condition (iii), and verify (XIX). This verification can be performed in NLOGSPACE, sim-
ilarly to the method described in the proof of Theorem C.16. If, on the other hand, we decide, that the pass
continues, we “guess” C1 = ∃Q− for some role Q, and verify that for some L(C0) ⊆ {∃Q} the (XVIII)
and (XIX) are satisfied. Now, if we decide that the pass stops, it remains to take L(C1) = t

USB
Ξ (ow[R])

and L(C0, C1) = r
USB
Ξ (o, ow[R]) , for SB and R as in the condition (iii), and verify (XIX) and (XX).

If, on the contrary, we decide that the pass continues, we can “forget” C0, “guess” C2, and proceed with
it in the same way, as we did with C1. Finally, when we reach the concept Cn, such that the algorithm
decides to stop, it remains to verify (XIX) for L(Cn) = t

USB
Ξ (ow[R]). It should be clear that whenever

the generating pass π = (〈C0, . . . Cn〉, L) for a concept B conform with T1 ∪T12 exists, we can find it by
the above non-determinictic procedure. �
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