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In this article, we define and study the problem of exchanging knowledge between a 
source and a target knowledge base (KB), connected through mappings. Differently from 
the traditional database exchange setting, which considers only the exchange of data, 
we are interested in exchanging implicit knowledge. As representation formalism we use 
Description Logics (DLs), thus assuming that the source and target KBs are given as a DL 
TBox+ABox, while the mappings have the form of DL TBox assertions. We define a general 
framework of KB exchange, and study the problem of translating the knowledge in the 
source KB according to the mappings expressed in OWL 2 QL, the profile of the standard 
Web Ontology Language OWL 2 based on the description logic DL-LiteR. We develop novel 
game- and automata-theoretic techniques, and we provide complexity results that range 
from NLogSpace to ExpTime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ontologies are at the heart of various Computer Science disciplines, among which the most prominent ones are Semantic 
Web, Biomedical informatics, and of course, Artificial Intelligence and Knowledge Representation. Here, for simplicity, by 
ontology we mean a formal representation of the knowledge about a domain in terms of concepts (unary predicates) and 
roles (binary predicates). In the biomedical domain, e.g., Pneumonia and Lung could be concepts, and finding_site could be a 
role, and the knowledge about the domain could be asserted in an axiom of the form “The finding site of pneumonia is lungs”
[1,2]. The advantages of using ontologies are that, on the one hand, they provide a framework for organizing and structuring 
information, and on the other hand, they are equipped with capabilities to reason about concepts and roles.

When representing the knowledge about a domain of interest in terms of an ontology, on the one hand the designer is 
free to choose the formalism in which to express the ontology, among a variety of different alternatives (e.g., a relational 
database possibly with constraints, Datalog, or Description Logics). On the other hand, she can select the specific terminology 
she considers more appropriate to convey the domain semantics. For instance, when creating a biomedical ontology about 
deseases, the lungs can be modeled as Pair_of _lungs or Both_lungs. This leads to having complex forms of information, 
maintained in different formats and organized according to different structures. Often, this information needs to be shared 
between agents: to reuse the existing ontologies, to integrate knowledge from different agents, and so on. Therefore in 
recent years, both in the data management and in the knowledge representation communities, several settings have been 
investigated that address this problem from various perspectives: (i) in information integration, uniform access is provided 
to a collection of data sources by means of an ontology (or global schema) to which the sources are mapped [3]; (ii) in 
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Fig. 1. Data exchange framework.

peer-to-peer systems, a set of peers declaratively linked to each other collectively provide access to the information assets 
they maintain [4–6]; (iii) in ontology matching, the aim is to understand and derive the correspondences between elements 
in two ontologies [7–9]; (iv) in ontology modularity, the aim is to extract independent, possibly small, subsets of an ontology, 
so-called modules [10–12]; (v) in knowledge translation, axioms are being translated from one representation (i.e., logical 
language and vocabulary) into another [13–15]; and, finally, (vi) in data exchange, the information stored according to a 
source schema needs to be restructured and translated so as to conform to a target schema [16,17]. The work we present 
in this article is inspired by this latter setting investigated in databases.

Data exchange is a field of database theory, motivated by several applications from industry [18,19], that deals with 
transferring data between differently structured databases. In the seminal article [16], the data exchange problem was 
defined as the problem of transforming data structured under a source schema into data structured under a target schema, 
given a mapping specifying how to translate data from the source to the target schema. This problem is depicted in Fig. 1, 
where the obtained target data instance is referred to as a solution. The data exchange problem has been studied for 
different combinations of languages used to specify the source schema, the target schema and the mapping [17,20,21]. Most 
of the results in the literature consider source-to-target tuple generating dependencies (tgds) as the language to specify 
mappings. The dependencies in this class allow one to express containment of conjunctive queries: if a conjunction of 
several predicates holds, then a conjunction of some other predicates must hold as well. For example, the tgd

∀a,b . AuthorOf (a,b) → ∃y, g . BookInfo(b,a, y) ∧ BookGenre(b, g) (1)

says that if a is the author of a book b, then there exist y and g such that b is a book with author a that was published in 
year y, and b has genre g . Many database integrity constraints can be expressed by tgds, so these dependencies have been 
widely used in databases. Source-to-target tgds (st-tgds) are tgds of a special shape: the conjunction on the left-hand side 
uses only symbols from a source schema, while the conjunction on the right-hand side uses only symbols from a target 
schema.

A fundamental assumption in the (traditional) data exchange framework is that the source is a complete database: every 
fact is either true or false. On the other hand, a target instance can be incomplete and a source instance can have many 
different solutions, as incomplete information can be introduced by the mapping layer (see also [22]).

Example 1.1. If we consider the mapping consisting of the constraint (1), and a source instance consisting of one entry 
AuthorOf (tolkien, lotr), encoding that Tolkien is the author of ‘The Lord of the Rings’, then the following two target instances, 
I2 and I ′2, are solutions:

I2 = {BookInfo(lotr, tolkien,1937), BookGenre(lotr, fantasy)},
I ′2 = {BookInfo(lotr, tolkien,null1), BookGenre(lotr,null2)}.

Note that here incompleteness is caused by the existential restriction ∃y, g . . . , which can be satisfied by introducing new 
objects: either named individuals (or constants), like fantasy, or anonymous objects, like null1. Note also that null1 and 
null2 are labeled nulls, which are widely used in databases to represent anonymous objects. �

To characterize good transformations, several criteria have been considered [23]. We emphasize two types of good trans-
lations, universal solutions and query solutions. Universal solutions are the most general solutions: any other solution is more 
specific (I ′2 in Example 1.1 is a universal solution), while query solutions are good solutions from the point of view of 
answering target queries, i.e., queries formulated over the target schema.

Data exchange with incomplete information. As mentioned before, in the (traditional) data exchange framework, source 
instances are assumed to contain complete information. However, there are natural scenarios where source instances may 
contain incomplete information [24,25,21]. In particular, the problem of data exchange with incomplete source data was 
studied in [25], where an incomplete specification is understood as an object with (possibly infinitely) many interpretations. 
A simple example of such an object is a database with nulls: assume that we have a table storing information about book 
genres, and that ‘The Lord of The Rings’ is a book whose genre is unknown. In this case, the table would consist of an entry 
of the form BookGenre(lotr, null), which represents all different instances containing a concrete value for the genre of ‘The 
Lord of The Rings’: BookGenre(lotr, fantasy), BookGenre(lotr, history), BookGenre(lotr, scifi), etc.
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A knowledge base is another example of an object with multiple interpretations. A knowledge base (KB) is a description 
of a domain of interest that includes two kinds of information: (i) ground facts, i.e., extensional information of the form 
“John is a student”, “Databases is a course”, “John attends the Databases course”, etc., which assert properties of individual objects 
that are part of the domain; and (ii) logical axioms, i.e., intensional information of the form “Every course must be taught by 
somebody”, “A student cannot be a professor”, etc., which structure the knowledge about the domain. We also call the second 
type of information an ontology. It is implicit in the standard semantics of a KB that the knowledge it describes is only a 
partial description of a domain of interest, which means that the KB represents many actual states of the world. For instance, 
if we consider the KB consisting of the five axioms mentioned above, then it could represent one possible state of the world, 
where John also attends the Statistics course, David teaches Databases and Peter teaches Statistics. The general knowledge 
exchange framework proposed in [25] considers the case where the source is a KB as opposed to a relational database. 
Moreover, it is shown in that work that some natural problems (such as query answering over the target schema) become 
undecidable if KBs are specified by tgds and mappings are specified by source-to-target tgds. Thus, some decidability results 
are obtained by considering some restricted fragments of the class of tgds when specifying KBs.

An alternative to the approach proposed in [25] to achieve decidability is to consider less expressive ontological languages 
when specifying both KBs and mappings. A good candidate for that role is the formalism of Description Logics, which come 
in variants that provide fair expressive power, and at the same time possess good computational properties.

Description Logics as ontology language. Description Logics (DLs) [26] are a family of formal languages, more precisely, 
fragments of first-order logic, that are specifically designed to serve as ontology languages. They exhibit a reasonable tradeoff 
between their expressive power and the computational complexity of logical inference tasks. Nice computational properties 
in DLs are achieved by restricting attention to unary and binary predicates, called concepts and roles, respectively, and to 
restricted forms of axioms. Ground facts in DLs are encoded in the form of an ABox, which is a set of membership assertions, 
and logical axioms are encoded in the form of a TBox, which is a set of concept and role inclusions. For instance, the DL KB 
containing the five axioms describing the university domain mentioned before looks as follows:

Student(john)

Course(databases)
attends(john,databases)

Course � ∃teaches−
Student � ¬Professor

Notice that both inclusions above are between concepts.

Thus, the starting point for our work is the knowledge exchange framework defined in [25], and the main motivation is 
to find ontology and mapping specification languages where the fundamental problem of knowledge base exchange can be 
solved, and which are both natural and useful in practice. For this purpose, we focus on the Description Logic underlying 
OWL 2 QL, which is the profile [27] of the standard Web Ontology Language OWL 2 [28] that has been specifically designed 
for efficient query answering. Next we describe our contributions in this respect.

Our contributions. First, we propose and develop a framework for KB exchange based on DLs; both source and target 
are KBs constituted by a DL TBox, representing intensional information, and an ABox, representing extensional information, 
and mappings are sets of DL concept and role inclusions. We then specialize this framework to the case of lightweight 
DLs of the DL-Lite family [29]. In particular, we consider DL-LiteR , which is the logic underlying the OWL 2 QL profile of 
OWL 2. In this framework, we are interested in three types of solutions: universal solutions, universal UCQ-solutions, and 
UCQ-representations. Universal solutions are the most precise solutions: a target KB Kt is a universal solution for a source 
KB Ks under a mapping M if it preserves all the interpretations of Ks with respect to M. Universal UCQ-solutions is 
a relaxation of the notion of universal solutions: a target KB Kt is a universal UCQ-solution for a source KB Ks under 
a mapping M if it preserves all answers to unions of conjunctive queries (UCQs) formulated over the target signature. 
UCQ-representations are similar to universal UCQ-solutions, but they do not depend on the source ABox, only on the source 
TBox and the mapping: a target TBox T is a UCQ-representation of a source TBox S under a mapping M if for each possible 
source ABox As , it holds that T , M, and As give the same answers to UCQs as S , M, and As . The rationale behind the 
notion of UCQ-representation is to maximize the implicit knowledge translated to the target. Thus, a UCQ-representation 
of a source TBox captures at best the intensional information that can be extracted from this source TBox according to a 
mapping and using UCQs.

Second, we study each one of the three notions of solution just described, and their relationship to each other for 
the case of KBs and mappings defined using DL-LiteR . We provide examples that justify the need for target ABoxes with 
labeled nulls in order for universal solutions and universal UCQ-solutions to exist, as the language of DL-LiteR is capable of 
implying the existence of new objects. Such ABoxes mentioning anonymous objects are called extended ABoxes, as opposed 
to simple ABoxes, which mention only named individuals (or constants).

Finally, in order to obtain a good understanding of the knowledge base exchange problem, we study the computa-
tional complexity of the membership and non-emptiness problems for universal solutions, universal UCQ-solutions and 
UCQ-representations. For universal solutions (resp., universal UCQ-solutions), the membership problem verifies, given a 
source KB Ks , a mapping M, and a target KB Kt , whether Kt is a universal solution (resp., universal UCQ-solution) for 
Ks under M; instead, the non-emptiness problem addresses the question whether there exists a universal solution (resp., 
universal UCQ-solution) for a given source KB Ks and a given mapping M. For UCQ-representations, the membership 
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Table 1
Complexity results for the membership and non-emptiness problems.

Universal solutions Membership Non-emptiness

simple ABoxes PTime-complete (Th. 6.10) PTime-complete (Th. 6.11)
extended ABoxes NP-complete (Th. 6.14) PSpace-hard (Lem. 6.15), in ExpTime (Th. 6.19)

Universal UCQ-solutions
simple ABoxes ExpTime-complete ([30, Th. 45]) in ExpTime ([30])
extended ABoxes ExpTime-complete ([30, Th. 46]) PSpace-hard (Lem. 6.16)

UCQ-representations
NLogSpace-complete (Th. 7.6) NLogSpace-complete (Th. 7.17)

problem verifies, given a source TBox S , a mapping M, and a target TBox T , whether T is a UCQ-representation for S un-
der M; instead, the non-emptiness problem addresses the question whether there exists a UCQ-representation for a given 
source TBox S and a given mapping M, that is, whether S is UCQ-representable under M. Notice that the non-emptiness 
problem is directly related to the task of materializing a translation; moreover, determining UCQ-representability is a crucial 
task, since it allows one to use the obtained target TBox to infer new knowledge in the target, thus reducing the amount of 
extensional information to be transferred from the source.

The complexity results obtained in this article (for DL-LiteR) are summarized in Table 1, where we also mentioned 
the theorems and lemmas where the results are proved. For universal solutions with simple ABoxes, we show that both 
the membership and the non-emptiness problems are PTime-complete, where the upper bound is obtained by considering 
infinite games on graphs with the reachability acceptance condition, for which it is known that the problem of finding a 
winning strategy is in PTime. Then, for universal solutions with extended ABoxes, we prove that the membership problem 
is NP-complete, while the non-emptiness problem is PSpace-hard, and provide for the latter an ExpTime upper bound 
based on a novel approach exploiting two-way alternating tree automata. For UCQ-representations, we show that both the 
membership and non-emptiness problems are NLogSpace-complete, the key condition for this low complexity being the 
fact that UCQ-representations do not depend on the shape of ABoxes. As for universal UCQ-solutions, the main results have 
been established in [30], where it has been shown that the membership problem (both for simple and for extended ABoxes) 
is ExpTime-complete. The upper bound immediately provides also an ExpTime algorithm for solving the non-emptiness 
problem with simple ABoxes [30]. For extended ABoxes, we prove instead a PSpace lower bound, which does not carry over 
to simple ABoxes.

It should be noticed that in the non-emptiness problem mentioned before, the target signature is assumed to be part of 
the input. Thus, the constructed solutions (i.e., universal solutions, universal UCQ-solutions and UCQ-representations) are 
not allowed to use any new concept or role symbols not included in the given target signature. The problem of allowing 
additional symbols in these constructions is certainly interesting and worth investigating in the future. However it is a 
different problem from the one we are studying here. In fact, the problem we are investigating is a natural one, fully in 
line with the work done in data exchange [16,17,20,25,21]. Moreover, there are several reasons why it may be undesirable 
or even impossible to allow for additional concepts or roles in the target. First, the target signature might be given and not 
under control of the user, therefore it might not be extensible. Second, there might be privacy issues that prevent the use 
of all the information in a source KB, so only the information about some concepts and roles have to be displayed. This 
problem can be viewed as a knowledge exchange problem where the target signature stores the symbols to be displayed, 
and which cannot include some new concepts or roles. Third, a source signature might be very large, hence the user would 
like to switch to a smaller target signature. In this case, it is not desirable to add new symbols that can make the target 
signature to grow. Finally, an instance of data exchange could be part of the more general problem of schema evolution 
[31,32], where one needs to consider a sequence of several instances of data exchange. In this context, allowing for keeping 
existing symbols or adding new symbols at each step, might result in an unacceptable (and undesired) growth of the 
signature.

Organization of the article. The rest of the article is structured as follows. We start with related work in Section 2, and 
then we provide in Section 3 the preliminary notions and terminology needed in the rest of the article. In Section 4, we 
introduce our knowledge base exchange framework: we formally define the three notions of solution, and we set up the 
space of computational complexity-related problems that we consider. Section 5 gives some intuition and basic results about 
each kind of solution, and provides several examples about these notions. Then, the complexity results and the technical 
development are presented in Section 6 for universal solutions, and in Section 7 for UCQ-representations. Finally, we provide 
in Section 8 some concluding remarks. Detailed proofs of many of the results are provided in an appendix, so as to ease the 
presentation in the main body of the article.

2. Related work

Data exchange, including the case with incomplete information, which is the most important area related to our work, 
has already been discussed in the introduction. Below we discuss other related areas.

Knowledge translation. The problem of knowledge translation was addressed in [13] with the goal of formalizing the task 
of reusing/sharing existing encoded knowledge in the process of the development of new intelligent systems. This problem 
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had emerged already in the early nineties, and in [33] an interlingua-based methodology for this problem was proposed, 
where logical theories encoded in one representation (source) are translated to another representation (target). Interlingua
is a mediating first-order logic based language designed for communicating knowledge between the source and the target 
representations, where a representation is formed using a declarative language, a vocabulary, and a base theory (associated 
with the language). In [34–36], the authors devised a formalism for producing translations based on a theory of contexts; 
a translation is specified as a set of first-order logic sentences, each of which describes a rule for deriving a formula in a 
target output context that is a translation of a formula in a source input context. Such an approach, first, provides a formal 
semantics for translation, and second, enables translations to be computed by standard theorem provers.

A decade later there has been a revival of interest in knowledge translation in the context of the Semantic Web, where 
the problem of communicating knowledge between heterogeneous agents is especially relevant [14,37,15]. The focus of 
these works is to translate axioms represented in a rule-based formalism, where the mapping axioms, that is, the axioms 
defining how the source and target vocabularies are related, are represented in a simple fragment of first-order logic. In this 
context, algorithms for translating axioms have been developed and implemented.

While the first work [13] gives a rather abstract and high-level view on the problem of knowledge translation, the more 
recent contributions [14,37,15] are more on the practical side and lack solid theoretical foundations. Thus, none of these 
results provides a precise understanding of the complexity of the problems related to translating knowledge.

Data and information integration. A problem closely related to data exchange is that of data integration, which is concerned 
with the task of combining data coming from a variety of heterogeneous sources [3,38–41]. The main aim is to provide 
a uniform view of these data so that users can query and access them in an integrated way. This problem is relevant in 
many real-world applications, both in commercial and scientific domains [42]. The problem of data integration is addressed 
by defining a global schema (i.e., a schema available to the user) and mappings between the schemas of the data sources 
and the global schema. While the combination of the schemas of the sources to be integrated naturally corresponds to the 
source schema in data exchange, the global schema plays the role of the target schema.

Information integration has also been studied under the assumption that the global schema is expressed by means of 
an ontology, which provides a layer that captures the semantics of the domain of interest and that helps to overcome 
the semantic heterogeneity of the data sources [43,44]. In fact, the problem of integration has also been considered when 
applied to ontologies themselves, i.e., when the sources to be integrated are incompletely specified, in terms of logical 
constraints encoded in an ontology [45].

Although the data and ontology integration settings bear similarity to the one we are studying here, the techniques 
developed there are not applicable towards our goals, due to the difference in focus between information integration and 
exchange: while in information integration the aim is to query the source through the target via the mappings, possibly 
without materializing any data at the target, the aim of exchange is precisely to understand which data to materialize and 
how to do this efficiently.

Ontology and knowledge base maintenance. There are various scenarios where one ontology or KB needs to be compared 
against another or against its own part. On one hand, this occurs when an ontology was updated and the update needs 
to be verified. On the other hand, modularization (or module extraction) aims at splitting a given ontology into smaller 
sub-ontologies, each of which can be used autonomously, when only a subset of the ontology signature is of interest [10,12,
46,47]. Such sub-ontologies are called modules, and since they are typically of a small size (compared to the entire ontology, 
which can be very large), it is easier to understand them and perform reasoning with them. Another mechanism to extract 
information relevant to a subset of the ontology signature, is uniform interpolation, also known as forgetting [48–50]. As 
opposed to modules, uniform interpolates are not restricted to subsets of the original ontology, but can be arbitrary sets 
of axioms over the restricted signature that at best capture the semantics. It is important to observe that, in general, the 
restriction to a smaller signature can lead to a much larger ontology [49].

In the Description Logics domain, ontology modularity and uniform interpolation rely on the notion of inseparability for 
a signature �, or �-inseparability, as a main technical tool. This notion has been studied for expressive DLs [51,47,52] and 
for Horn variants of DLs [53–55,30]. Two major forms of inseparability have been considered in the literature. First, two KBs 
are said to be �-model inseparable, if every model of one of these KBs can be extended to a model of the other one in such 
a way that they agree on the symbols from �, and vice-versa. In other words, these KBs cannot be logically distinguished 
in the signature �. The second notion is query-based: two KBs are �-query inseparable if they give the same answers 
to all queries formulated over �. So intuitively, such KBs cannot be distinguished as far as answering queries formulated 
over � is concerned. This work is relevant for our investigation, as the notions of �-model and �-query inseparability are 
tightly related to some of the concepts studied in this paper. We formally define these notions in Section 3, and make these 
connections precise in Section 4.

3. Preliminaries

3.1. The description logic DL-LiteR

In this work we are concerned with OWL 2 QL, which is grounded on the lightweight DLs of the DL-Lite family [29]. Such 
DLs are characterized by the fact that conjunctive query answering is first-order rewritable and that standard reasoning can 
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be done in polynomial time. Specifically, the formal counterpart of OWL 2 QL is DL-LiteR , for which we present now syntax 
and semantics.

Let NC , NR , Na , N� be pairwise disjoint countably infinite sets of concept names, role names, constants, and labeled nulls, 
respectively. Assume in the following that A ∈ NC and P ∈ NR ; in DL-LiteR , B and C are used to denote basic and arbitrary 
(or complex) concepts, respectively, and R and Q are used to denote basic and arbitrary (or complex) roles, respectively, 
which are defined as follows:

R ::= P | P−
Q ::= R | ¬R

B ::= A | ∃R
C ::= B | ¬B

From now on, for a basic role R , we use R− to denote P− when R = P , and P when R = P− .
A TBox, usually denoted O, is a finite set of concept inclusions B � C and role inclusions R � Q encoding relevant domain 

knowledge. We call an inclusion of the form B1 � ¬B2 or R1 � ¬R2 a disjointness axiom. An ABox A is a finite set of 
membership assertions B(a), R(a, b), where a, b ∈ Na , indicating which individuals belong to the concepts and how they are 
related by the roles in the ontology. We use ind(A) to denote the set of constants appearing in A.

Example 3.1. We define now an ontology PhotoCamera about digital photo cameras, underlying the structure of an electron-
ics selling website. Specifically, we want to capture the fact that DSLR (digital single lens reflex) cameras have exchangeable 
lenses, and that there are different types of connectors between the camera and the lens, which are called mounts. For 
instance, some camera manufacturers have proprietary mounts, which allow one to connect to a camera only lenses of 
that manufacturer. Instead other manufacturers adopt standard mounts, e.g., the Micro Four Thirds system, that work across 
camera and lens models of different manufacturers. We define first a TBox Ocam introducing some concepts and roles that 
are relevant for this domain. For clarity, we use strings beginning with capital letters to denote concepts, and strings begin-
ning with lowercase letters to denote roles. The concept DigitalCamera denotes digital cameras, while DSLRCamera denotes 
digital reflex cameras. ExchangeLens denotes exchange lenses that can be mounted onto DSLR cameras through lens mounts, 
which in turn are grouped together in the concept Mount. The role cameraMounts relates DSLR cameras to their mounts, and 
hence has Mount as its range. The role lensMounts relates exchange lenses to their mounts, and its domain is ExchangeLens. 
Moreover, we require that every Mount is the mount of some ExchangeLens to which it is connected via the inverse of the 
role lensMounts. This knowledge is captured by the following DL-LiteR TBox Ocam of the ontology PhotoCamera:

DSLRCamera � DigitalCamera, DSLRCamera � ∃cameraMounts, ∃cameraMounts− � Mount
Mount � ∃lensMounts−, ∃lensMounts � ExchangeLens

The ABox Acam = {DSLRCamera(canon5d)} of PhotoCamera simply introduces an instance of a DSLR camera. �
In this paper, we also consider extended ABoxes, which are obtained by allowing labeled nulls in membership assertions. 

Formally, an extended ABox is a finite set of membership assertions B(u) and R(u, v), where u, v ∈ (Na ∪ N�). Moreover, 
a(n extended) KB K is a pair 〈O, A〉, where O is a TBox and A is an (extended) ABox. When we need to emphasize the 
distinction between ABoxes and extended ABoxes, we might also use the term simple ABox to refer to an ABox that is not 
extended; likewise for simple KBs. Note that labeled nulls are quite natural in the Semantic Web, since RDF (and hence OWL) 
in fact supports “extended ABoxes” by allowing blank nodes to occur in membership assertions. Similarly to labeled nulls, 
blank nodes are used to refer to unnamed objects.

A signature � is a finite set of concept and role names. A KB K is said to be defined over (or simply, over) � if all the 
concept and role names occurring in K belong to � (and likewise for TBoxes, ABoxes, concept inclusions, role inclusions 
and membership assertions). Moreover, an interpretation I of � is a pair 〈�I , ·I〉, where �I is a non-empty domain and 
·I is a partial interpretation function over NC ∪ NR ∪ Na , such that: (1) AI is defined and AI ⊆ �I , for every concept name 
A ∈ �; (2) PI is defined and PI ⊆ �I × �I , for every role name P ∈ �; and (3) aI ∈ �I , for every constant a ∈ Na , 
such that aI is defined (such constants are called interpreted). Function ·I is also extended to interpret concept and role 
constructs:

(∃R)I = {o ∈ �I | ∃o′ ∈ �I such that (o,o′) ∈ RI};
(P−)I = {(o,o′) ∈ �I × �I | (o′,o) ∈ PI};

(¬B)I = �I \ BI;
(¬R)I = (�I × �I) \ RI .

Note that, consistently with the semantics of OWL 2 QL, we do not make the unique name assumption (UNA), i.e., we allow 
distinct constants a, b ∈ Na to be interpreted as the same object, that is, aI = bI . Observe also that labeled nulls are not
interpreted by I . Finally, note that interpretations do not have to interpret all constants in Na . This is required first of all 
to avoid that both the canonical model and the generating structure (as defined in Section 3.2) are forced to be infinite. 
Moreover, this allows for finite interpretation domains without the need for interpreting an infinite number of constants as 
the same object.

Let I = 〈�I , ·I〉 be an interpretation of a signature �. Then I is said to satisfy a concept inclusion B � C over �, 
denoted by I |= B � C , if BI ⊆ CI ; I is said to satisfy a role inclusion R � Q over �, denoted by I |= R � Q , if RI ⊆ Q I ; 
and I is said to satisfy a TBox O over �, denoted by I |=O, if I |= α for every α ∈O. Moreover, satisfaction of membership 
assertions over � is defined as follows. A substitution over I is a partial function hI : (Na ∪ N�) → �I such that for every 
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a ∈ Na , (1) hI(a) is defined if and only if aI is defined; and (2) if hI(a) is defined, then hI(a) = aI . Then, I is said to 
satisfy an (extended) ABox A, denoted by I |=A, if there exists a substitution hI over I such that:

– for every B(u) ∈A, it holds that hI(u) is defined and hI (u) ∈ BI ; and
– for every R(u, v) ∈A, it holds that hI(u) and hI(v) are defined and (hI (u), hI(v)) ∈ RI .

Finally, I is said to satisfy a(n extended) KB K = 〈O, A〉, denoted by I |=K, if I |= O and I |= A. Such I is called a model
of K, and we use Mod(K) to denote the set of all models of K. We say that K is consistent if Mod(K) �= ∅.

As is customary, given a(n extended) KB K over a signature � and a membership assertion or an inclusion α over �, 
we use notation K |= α to indicate that for every interpretation I of �, if I |=K, then I |= α. Similarly, we use O |= α for 
a TBox O, and A |= α, for an ABox A.

3.2. The canonical and generating models

Throughout this section we consider only simple KBs. Horn logics in general, and DL-LiteR in particular, enjoy the 
canonical model property. It means that, given a KB K, if K is consistent, then it is possible to construct a model of K that is 
more general than any of the other models of this KB. We now introduce this notion formally, and show how the canonical 
model can be constructed for a DL-LiteR KB.

The canonical model. Let K = 〈O, A〉 be a consistent simple DL-LiteR KB. To define the canonical model of K, we need to 
introduce some terminology. For every basic role R in K, we define the equivalence class [R] as

[R] = {S | S is a basic role, O |= R � S, and O |= S � R}.
We introduce a witness w[R] for each [R], and write [R] �O [S] if O |= R � S . Then the generating relation �K between 
the set Na ∪ {w[R] | R is a basic role} and the set {w[R] | R is a basic role} is defined as follows:

– a �K w[R] , if (1) K |= ∃R(a); (2) K �|= R(a, b), for every b ∈ Na; and (3) [R ′] = [R], for every [R ′] such that [R ′] �O [R]
and K |= ∃R ′(a).

– w[S] �K w[R] , if (1) O |= ∃S− � ∃R; (2) [S−] �= [R]; and (3) [R ′] = [R] for every [R ′] such that [R ′] �O [R] and 
O |= ∃S− � ∃R ′ .

Intuitively, the generating relation defines when an existing object can be reused to satisfy an axiom of the form B � ∃R , or 
a new object has to be generated.

A sequence aw[R1] . . . w[Rn] , where a ∈ ind(A), n ≥ 0, a �K w[R1] and w[Ri ] �K w[Ri+1] for i ∈ {1, . . . , n − 1}, is called 
a K-path. We denote by path(K) the set of all K-paths, and by wit(K) the set of all w[R] such that aw[R1] . . . w[Rn] is a 
K-path, n ≥ 1 and w[R] = w[Rn] . A K-path aw[R1] . . . w[Rn] with n ≥ 1 encodes an object that has to be generated to satisfy 
all axioms in K, and which is called an anonymous individual as it is distinct from any named individual (i.e., constant). 
Finally, for every σ ∈ path(K), denote by tail(σ ) the last element in σ . With this we have the necessary ingredients to 
define the canonical (or, universal) model of K, which is denoted by uni(K). Formally, uni(K) is defined as an interpretation 
such that:

�uni(K) = path(K),

auni(K) = a,

Auni(K) = {a ∈ ind(A) | K |= A(a)} ∪ {σ · w[R] ∈ path(K) | O |= ∃R− � A},
P uni(K) = {(a,b) ∈ ind(A) × ind(A) | K |= P (a,b)} ∪ {(σ ,σ · w[R]) | tail(σ ) �K w[R] and [R] �O [P ]} ∪

{(σ · w[R],σ ) | tail(σ ) �K w[R] and [R−] �O [P ]},
where a ∈ ind(A), A is a concept name, and P is a role name occurring in K.

Notice that the part of uni(K) formed by the anonymous individuals is tree shaped. On the other hand, individuals in 
ind(A) can be connected in an arbitrary way in uni(K), and they are the only individuals that are interpreted by uni(K).

Example 3.2. Let K = 〈O, A〉, where O = {A � ∃R, ∃R− � ∃R} and A = {A(a)}. Then the canonical model uni(K) can be 
seen as an infinite R-path starting in a, which can depicted as follows:

a aw[R] aw[R] w[R] aw[R] w[R] w[R]

A R R R

In this figure, dots represent domain elements, a label A on a node x represents the fact x ∈ Auni(K) , and a label R on an 
arrow between x and y represents the fact (x, y) ∈ Runi(K) . �
Example 3.3. Assume that Kcam = 〈Ocam, Acam〉, where Ocam and Acam are as in Example 3.1. Then the canonical model 
uni(K) can be depicted as follows:
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canon5d

DSLRCamera
DigitalCamera

canon5d · w[cameraMounts]

Mount

canon5d · w[cameraMounts] · w[lensMounts−]

ExchangeLenscameraMounts lensMounts

�
The interpretation uni(K) is called the canonical model because every other model of K is less general than uni(K). 

We formalize generality in terms of homomorphisms. For an interpretation I and a signature �, the �-types tI�(o) and 
rI�(o, o′) for o, o′ ∈ �I are given by the set of concepts B (respectively, roles R) over �, such that o ∈ BI (respectively, 
(o, o′) ∈ RI ). We also use tI (o) and rI(o, o′) to refer to the types over the signature of all concepts and roles names. 
Then, a �-homomorphism from an interpretation I to J is a function h : �I �→ �J such that: (1) for every a ∈ Na such 
that aI is defined, it holds that aJ is defined and h(aI ) = aJ ; (2) tI�(o) ⊆ tJ� (h(o)) and rI�(o, o′) ⊆ rJ� (h(o), h(o′)) for all 
o, o′ ∈ �I . We say that I is �-homomorphically embeddable into J if there exists a �-homomorphism from I to J , and 
I is �-homomorphically equivalent to J , if they are �-homomorphically embeddable into each other. If � is the set of all 
concepts and roles names, we call a �-homomorphism simply homomorphism.

The theorem below establishes the relationship between the canonical model uni(K) and an arbitrary model of K.

Theorem 3.4 ([55]). If K is consistent, then uni(K) is a model of K. Moreover, for every model I of K, there exists a homomorphism 
from uni(K) to I .

The generating structure. In general, the canonical model of a DL-LiteR KB K can be infinite, which makes it impossible to 
deal with it in practice. Thus, we define here an alternative notion that is called the generating structure of K. This structure 
is always finite and can be used for deciding various reasoning tasks efficiently. Formally, given a simple KB K = 〈O, A〉, 
the generating structure gen(K) = 〈�gen(K), ·gen(K)〉 of K, is defined as:

�gen(K) = ind(A) ∪ wit(K),

agen(K) = a,

Agen(K) = {a ∈ ind(A) | K |= A(a)} ∪ {w[R] ∈ wit(K) | O |= ∃R− � A},
P gen(K) = {(a,b) ∈ ind(A) × ind(A) | K |= P (a,b)} ∪ {(x, w[R]) | x �K w[R] and [R] �O [P ]} ∪

{(w[R], x) | x �K w[R] and [R−] �O [P ]},
where a ∈ ind(A), A is a concept name, and P is a role name occurring in K. It is easy to see that gen(K) is of polynomial 
size in the size of K. Note that the canonical model uni(K) can be obtained by unraveling [56, Ch. 2] the generating 
structure gen(K), i.e., by introducing a new domain element for every path starting from (the interpretation of) a constant.

3.3. Queries and certain answers

In this paper, we deal with conjunctive queries and their unions. A conjunctive query (CQ) (of arity k ≥ 0) over a signature 
� is a formula of the form q(�x) = ∃�y. ϕ(�x, �y), where �x, �y are tuples of variables, �x = (x1, . . . , xk) is the tuple of free variables 
of q(�x), and ϕ(�x, �y) is a conjunction of atoms of the form A(z) and P (z, z′), where A is a concept name in �, P is a role 
name in �, and each of z, z′ is a variable from �x ∪ �y. Given an interpretation I = 〈�I , ·I〉 of � and a k-tuple �o of elements 
of �I , we write I |= q[�o], if there exist a tuple �o1 of elements of �I such that I, ξ |= ϕ(�x, �y), where ξ is the substitution 
that assigns �x to �o and �y to �o1, and we write I �|= q[�o] otherwise. A union of conjunctive queries (UCQ) over a signature �
is a first-order formula of the form q(�x) = ∨n

i=1 qi(�x), where each qi , for i ∈ {1, . . . , n}, is a CQ over �. Then, I |= q[�o] if 
I |= qi[�o] for some i ∈ {1, . . . , n}, and I �|= q[�o] otherwise. If k = 0, then q is said to be a Boolean query, and we simply write 
I |= q if I |= q[()], and I �|= q otherwise.

Given a query q of arity k and a KB K defined over a signature �, the certain answers to q over K are defined as:

cert(q,K) = {(a1, . . . ,ak) | {a1, . . . ,ak} ⊆ Na and I |= q[aI1 , . . . ,aIk ], for every I ∈ Mod(K)}.
Each tuple �a = (a1, . . . , ak) in cert(q, K) is called a certain answer for q over K, and we write K |= q[�a]. Notice that, by 
definition, the certain answers to a query do not contain labeled nulls. If q is a Boolean query, then cert(q, K) = {()}
(representing the value true) if I |= q for every I ∈ Mod(K), and cert(q, K) = ∅ (representing the value false) otherwise. 
Observe also that, if K is unsatisfiable, then cert(q, K) is trivially the set of all possible tuples (a1, . . . , ak) of constants in Na , 
which we denote by AllTup(q).

It is important to notice that the notion of certain answers can be characterized through the notion of canonical model. 
The following lemma establishes that the canonical model can be used for checking certain answers to UCQs.

Lemma 3.5. Let K be a consistent KB, q(�x) a UCQ, and �a a tuple of constants. Then K |= q[�a] iff uni(K) |= q[�a].

Proof. Let �a = (a1, . . . , ak) for ai ∈ Na , and q(�x) = ∃y1 · · · ∃ym. ϕ(x1, . . . , xk, y1, . . . , ym).
(⇒) Assume K |= q[�a]. Then for each model I of K, we have that I |= q[aI1 , . . . , aIk ]. Since uni(K) is a model of K, and 

auni(K) = ai , for each constant ai , it follows that uni(K) |= q[�a].
i
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(⇐) Assume uni(K) |= q[�a]. Then there exist σ1, . . . , σm ∈ �uni(K) such that uni(K) |= ϕ[a1, . . . , ak, σ1, . . . , σm]. Let I
be a model of K. By Theorem 3.4, there exists a homomorphism h from uni(K) to I . Then it is easy to see that I |=
ϕ[aI1 , . . . , aIk , h(σ1), . . . , h(σm)], hence I |= q[aI1 , . . . , aIk ]. Thus, as I is an arbitrary model of K, we conclude that K |=
q[�a]. �
3.4. �-query entailment

We refine the notion of �-query entailment studied in [55]. Let K1 and K2 be KBs, and � a signature. Then, K1 �-query 
entails K2 if for each UCQ q over �, cert(q, K2) ⊆ cert(q, K1). Moreover, K1 and K2 are �-query inseparable, if they �-query 
entail each other. Note that we define �-query entailment and inseparability with respect to UCQs, whereas in [55] these 
notions are defined with respect to CQs. Since DL-LiteR enjoys the canonical model property, it is easy to see that our 
definitions and the previous ones coincide.

It is well known that homomorphisms preserve answers to UCQs [57], in particular, if uni(K2) is �-homomorphically 
embeddable into uni(K1), then K1 �-entails K2. However, for a characterization of �-query entailment one has to consider 
finite �-homomorphisms, as illustrated in the following example.

Example 3.6 ([55]). Let K1 = 〈O1, A〉 and K2 = 〈O2, A〉, where A = {A(a)}, O1 = {A � ∃R, ∃R− � ∃R} and O2 = {A �
∃S, ∃S− � ∃R−, ∃R � ∃R−}, and � = {A, R}. The canonical models of K1 and K2 are as follows:

a aw[R] aw[R] w[R] aw[R] w[R] w[R]
Auni(K1):

R R R

a aw[S] aw[S] w[R−] aw[S] w[R−] w[R−] aw[S] w[R−] w[R−] w[R−]
Auni(K2):

S R R R

In this case there is no �-homomorphism from uni(K2) to uni(K1), although K1 �-query entails K2. �
Given an interpretation I over a signature �, we say that I ′ is a finite sub-interpretation of I (induced by a finite set 

D) if: (1) �I ′ = �I ∩ D; (2) AI ′ = AI ∩ D for every concept name A ∈ �; (3) PI ′ = PI ∩ (D × D) for every role name 
P ∈ �; and (4) aI

′ = aI for every a ∈ Na such that aI is defined and aI ∈ �I ′
. We say that I is finitely �-homomorphically 

embeddable into an interpretation J if there exists a �-homomorphism from every finite sub-interpretation I ′ of I to J .

Lemma 3.7 ([55]). Let K1 and K2 be consistent KBs, and � a signature. Then K1 �-query entails K2 iff uni(K2) is finitely 
�-homomorphically embeddable into uni(K1).

By using this lemma, we can confirm that KB K1 �-query entails KB K2 in Example 3.6, as uni(K2) is finitely 
�-homomorphically embeddable into uni(K1).

4. Knowledge base exchange

The goal of this section is to generalize the setting proposed in [25] to consider DL-LiteR , and to formalize the problems 
studied in this paper. The former is done in Section 4.1, while the latter is done in Section 4.2.

4.1. A knowledge base exchange framework

We start by defining the fundamental notion of mapping, which plays a key role in both data and knowledge exchange. 
Assume that �, 	 are signatures with no concepts or roles in common. An inclusion Es � Et is said to be from � to 	, if 
Es is a concept or a role over � and Et is a concept or a role over 	. Then we have that

Definition 4.1 ([16,58]). A mapping is a tuple M = (�, 	, B), where B is a TBox consisting of inclusions from � to 	.

Example 4.2. Consider the ontology PhotoCamera defined in Example 3.1, and a second ontology DigitalPhoto talking about 
digital photo camera. This new ontology uses the following vocabulary 	cam:

DigitalPhotoCamera(·), ReflexCamera(·), InterchangeableLens(·), MountType(·),
hasMountType(·, ·), mountsOn(·, ·)

Then we can specify the relation between the terms in the different ontologies by means of a mapping. Formally, let 
Mcam = (�cam, 	cam, Bcam), where �cam is the vocabulary from Example 3.1, and Bcam consists of the following inclusions:
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DigitalCamera � DigitalPhotoCamera
DSLRCamera � ReflexCamera

ExchangeLens � InterchangeableLens

Mount � MountType
cameraMounts � hasMountType

lensMounts � mountsOn

Thus, Mcam relates the concepts and roles of the PhotoCamera ontology with the concepts and roles of the DigitalPhoto 
ontology. �

The semantics of such a mapping was initially defined in [58]. Here we adapt it to the setting without the unique name 
assumption (and, more generally, without the standard name assumption). More specifically, given interpretations I , J of 
� and 	, respectively, the pair (I, J ) satisfies TBox B, denoted by (I, J ) |= B, if

– for every a ∈ Na such that aI or aJ is defined, it holds that both aI and aJ are defined and aI = aJ ,
– for every concept inclusion B � C ∈ B, it holds that BI ⊆ CJ , and
– for every role inclusion R � Q ∈ B, it holds that RI ⊆ Q J .

Notice that the connection between the information in I and J is established through the constants that move from source 
to target according to the mapping. For this reason, we require constants to be interpreted in the same way in I and J , 
i.e., they preserve their meaning when they are transferred. Besides, notice that this is the only restriction imposed on the 
domains of I and J (in particular, we require neither that �I = �J nor that �I ⊆ �J ). Finally, SatM(I) is defined as 
the set of interpretations J of 	 such that (I, J ) |= B, and given a set X of interpretations of �, SatM(X ) is defined as ⋃

I∈X SatM(I).
The main problem studied in the knowledge exchange framework is the problem of translating a KB according to a 

mapping. We formalize this problem through three different notions of translation introduced below (see Section 5 for a 
comparison of these different notions of solution). We start by introducing the concepts of solution and universal solution. 
More precisely,

Definition 4.3. Given a mapping M = (�, 	, B) and KBs Ks , Kt over � and 	, respectively, Kt is a solution (resp., universal 
solution) for Ks under M if Mod(Kt) ⊆ SatM(Mod(Ks)) (resp., Mod(Kt) = SatM(Mod(Ks))).

Thus, Kt is a solution for Ks under M if every interpretation of Kt is a valid translation of an interpretation of Ks ac-
cording to M. Although natural, this is a mild restriction, which gives rise to the stronger notion of universal solution. More 
precisely, if Kt is a universal solution for Ks under M, then Kt is designed to exactly represent the space of interpretations 
obtained by translating the interpretations of Ks under M. It should be noticed that this definition of universal solution 
can be restated in terms of the notion of model inseparability presented in Section 2. More precisely, we have that Kt is a 
universal solution for Ks = 〈S, As〉 under M = (�, 	, B) if and only if Kt is 	-model inseparable with 〈S ∪B, As〉.

Example 4.4. Let Kcam = 〈Ocam, Acam〉 where Ocam and Acam are respectively the TBox and the ABox of the PhotoCamera
KB from Example 3.1, and Mcam the mapping from Example 4.2. Then K′

cam = 〈O′
cam, A′

cam〉 is a universal solution for Kcam

under Mcam , where O′
cam = ∅ and A′

cam contains the following assertions:

ReflexCamera(canon5d), DigitalPhotoCamera(canon5d), hasMountType(canon5d,m),

MountType(m), mountsOn(l,m), InterchangeableLens(l).

Here m and l are distinct labeled nulls. For more examples of universal solutions see Section 5.1. �
A second class of translations is obtained by observing that solutions and universal solutions are too restrictive for some 

applications, in particular when one only needs a translation storing enough information to properly answer some queries. 
For the particular case of UCQ, this gives rise to the notions of UCQ-solution and universal UCQ-solution.

Definition 4.5. Given a mapping M = (�, 	, B), a KB Ks = 〈S, As〉 over � and a KB Kt over 	, Kt is a UCQ-solution for Ks

under M if Kt 	-query entails 〈S ∪B, As〉. Moreover, Kt is a universal UCQ-solution for Ks under M if Kt and 〈S ∪B, As〉
are 	-query inseparable.

Example 4.6. Consider Kcam and Mcam from Example 4.4. Then K′′
cam = 〈O′′

cam, A′′
cam〉 is a universal UCQ-solution for Kcam

under Mcam , where A′′
cam = {ReflexCamera(canon5d)} and O′′

cam is the following TBox:

ReflexCamera � DigitalPhotoCamera, ReflexCamera � ∃hasMountType,
∃hasMountType− � MountType, MountType � ∃mountsOn−, ∃mountsOn � InterchangeableLens.

This can be straightforwardly verified using Lemma 3.7 and the fact that the canonical models of 〈Ocam ∪ Bcam, Acam〉 and 
K′′

cam are finite. Note that, the universal solution K′
cam of Example 4.4 is also a universal UCQ-solution. This holds in general, 

as shown in Section 5.2. �
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Fig. 2. UCQ-representations in the context of knowledge base exchange.

Finally, a last class of solutions is obtained by considering that users want to translate as much of the knowledge in a 
TBox as possible, as a lot of effort is put in practice when constructing a TBox. This observation gives rise to the notion 
of UCQ-representation, which formalizes the idea of translating a source TBox according to a mapping. We present an 
alternative to the formalization of this notion given in [58], which is appropriate for our setting where disjointness axioms 
are considered.1

Definition 4.7. Assume that M = (�, 	, B) and S , T are TBoxes over � and 	, respectively. Then T is a UCQ-representation
of S under M if for every ABox As over � that is consistent with S , it holds that 〈S ∪B, As〉 and 〈T ∪B, As〉 are 	-query 
inseparable.

Notice that As is required to be consistent with S in this definition, which avoids the trivialization of the notion of 
certain answers because of the use of an inconsistent knowledge base (if 〈S, As〉 is inconsistent, cert(q, 〈S ∪B,As〉) contains 
every possible tuple of constants). Below we provide a simple example of a UCQ-representation in the digital camera 
scenario.

Example 4.8. Consider Mcam = (�cam, 	cam, Bcam) from Example 4.2 and Scam = {DSLRCamera � DigitalCamera}. Then Tcam =
{ReflexCamera � DigitalPhotoCamera} is a UCQ-representation of Scam under Mcam . �

We would like to emphasize why we are interested in UCQ-representations. First of all, UCQ-representations are de-
signed to preserve in the target the implicit information from the source, which conforms to the idea of knowledge 
base exchange as opposed to plain data exchange. Second, UCQ-representations allow to minimize the amount of exten-
sional information that has to be transferred from the source (which can be very large in size). Third, if there exists a 
UCQ-representation T of a source TBox S under a mapping M, then we obtain a straightforward algorithm to construct a 
universal UCQ-solution for a given source KB 〈S, As〉: take a target ABox obtained by “translating” the source ABox As with 
respect to M and denote it by M(As),2 then 〈T , M(As)〉 is a universal UCQ-solution for 〈S, As〉 under M (see Fig. 2). 
Finally, notice that UCQ-representations do not depend on the actual data, so if in the previous case ABox As is updated, 
then it is sufficient to update M(As) in order to obtain a universal UCQ-solution for 〈S, As〉 under M.

A natural question at this point is why in knowledge base exchange the source KB is not mapped as it is, thus simplifying 
the problem of computing solutions (under any of the notions given before). Notice that this can be easily done by including 
some additional concept and role symbols in the target signature, which represent the corresponding concepts and roles in 
the source signature. We would like to conclude this section by providing evidence why this is not desirable, or it could 
even be impossible, in some scenarios. First, the target signature might be given and not under control of the user, therefore 
it might not be extensible. Second, there might be privacy issues that prevent the use of all the information in a source KB, 
so only the information about some concepts and roles have to be displayed. This problem can be viewed as a knowledge 
exchange problem where the target signature stores the symbols to be displayed, and which cannot include some new 
concepts or roles. Third, a source signature might be very large, hence the user would like to switch to a smaller target 
signature. In this case, it is not desirable to add new symbols that can make the target signature to grow. Finally, an instance 
of data exchange could be part of the more general problem of schema evolution [31,32], where one needs to consider a 
sequence of several instances of data exchange. In this context, allowing for keeping existing symbols might result in an 
unacceptable (and undesired) growth of the signature.

1 If disjointness axioms are not allowed, then this new notion can be shown to be equivalent to the original formalization of UCQ-representation.
2 Observe that M(As) could be defined as a universal UCQ-solution for 〈∅, As〉 under M.
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Fig. 3. The space of reasoning problems.

4.2. On the problem of computing solutions

In this section, we present the space of reasoning problems that naturally arise in the framework introduced in this paper. 
The problem space has three dimensions and can be depicted as in Fig. 3. First, one is interested in the task of computing 
a translation of a KB or a TBox according to a mapping, which is arguably the most important problem in knowledge 
exchange [25,58], as well as in data exchange [16,59]. Thus, the first dimension in Fig. 3 defines the type of translation, 
which as mentioned in the previous section can be either: (1) a universal solution, or (2) a universal UCQ-solution, or 
(3) a UCQ-representation. Second, as it will become clear in Section 5, in order to be able to compute a translation, in some 
cases it is necessary to use extended ABoxes. Therefore, the second dimension is along the type of ABoxes allowed to be 
used in translations: (1) simple ABoxes, or (2) extended ABoxes. Finally, to study the computational complexity of knowledge 
exchange, we consider two classical decision problems: the membership problem and the non-emptiness problem, which 
constitute the third dimension.

As usual, the membership problem is concerned with deciding whether a particular instance (a target KB or target TBox, 
in our case) belongs to a class of instances (all solutions for a given source KB or TBox under a given mapping, in our 
case). Since we consider three classes of translations, we need to deal with three membership problems. The membership
problem for universal solutions (resp. universal UCQ-solutions) has as input a mapping M = (�, 	, B) and KBs Ks , Kt over 
� and 	, respectively. Then the question to answer is whether Kt is a universal solution (resp. universal UCQ-solution) 
for Ks under M. Moreover, the membership problem for UCQ-representations has as input a mapping M = (�, 	, B) and 
TBoxes S , T over � and 	, respectively, and the question to answer is whether T is a UCQ-representation of S under M.

The non-emptiness problem corresponds to the existential version of the membership problem, and it is concerned 
with deciding whether a class has at least one instance (is there some solution for a given source KB or TBox under a 
given mapping?). Again, we consider three non-emptiness problems, one for each class of translation. Formally, the non-
emptiness problem for universal solutions (resp. universal UCQ-solutions) has as input a mapping M = (�, 	, B) and a KB 
Ks over �. Then the question to answer is whether there exists a universal solution (resp. universal UCQ-solution) for Ks

under M. Moreover, the non-emptiness problem for UCQ-representations has as input a mapping M = (�, 	, B) and a 
TBox S over �, and the question to answer is whether there exists a UCQ-representation of S under M. In the case it 
exists, we say that S is UCQ-representable under M, otherwise, S is not UCQ-representable under this mapping.

Observe that UCQ-representations do not depend on target ABoxes, therefore, in total we have defined 10 different rea-
soning problems: 4 for universal solutions, 4 for universal UCQ-solutions, and 2 for UCQ-representations. We investigate in 
Sections 6 and 7 the computational complexity of the reasoning problems for universal solutions and UCQ-representations, 
respectively. As for universal UCQ-solutions, the main results, summarized in Table 1, have been established in [30]. 
We prove here only, in Section 6.4, that the non-emptiness problem for universal UCQ-solutions for extended ABoxes is 
PSpace-hard. A lower bound for simple ABoxes has yet not been established.

5. The shape of different notions of solutions

The goal of this section is to provide examples and some facts about universal solutions, universal UCQ-solutions and 
UCQ-representations, which can help the reader to understand their advantages and limitations.

5.1. Universal solutions

We start by giving some simple examples of universal solutions.

Example 5.1. Let M = (�, 	, B), where � = {A, B}, 	 = {A′, B ′}, and B = {A � A′ , B � B ′}. If S = {} and As = {A(a), B(a)}, 
then the KB Kt = 〈T , At〉, where T = ∅ and At = {A′(a), B ′(a)} is a universal solution for Ks = 〈S, As〉 under M. Moreover, 
if S = {A � B} and As = {A(a)}, then Kt is again a universal solution for Ks = 〈S, As〉 under M. �
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Universal solutions are the preferred solutions to materialize when exchanging relational databases [16,60,23,17], even 
in the case of incomplete information [25]. However, universal solutions were not thought to take into account source data 
including implicit knowledge (in the form of TBoxes), which is demonstrated in the following example.

Example 5.2. Let M = (�, 	, B) be as in Example 5.1, and assume that Ks = 〈S, As〉, where S = {A � B} and As = {A(a)}. 
Furthermore, suppose that Kt = 〈T , At〉, where T = {A′ � B ′} and At = {A′(a)}. Then we have that Kt is a solution for Ks

under M. However, Kt is not a universal solution for Ks under M. To see why this is the case, consider an interpretation I
of � such that aI = 1, AI = {1} and BI = {1}, and an interpretation J of 	 such that aJ = 1, B ′J = {1} and A′J = {1, 2}. 
Then we have that I is a model of Ks and (I, J ) |= B, and thus J ∈ SatM(Mod(Ks)). Thus, given that J is not a model 
of Kt (since it does not satisfy inclusion A′ � B ′), we conclude that Kt is not a universal solution for Ks under M as 
SatM(Mod(Ks)) �= Mod(Kt). �

All the universal solutions shown in the previous examples have empty TBoxes. In the following proposition, we prove 
that this is the case in general, which shows that universal solutions are not appropriate to represent implicit knowledge. 
We say that a TBox O over a signature � is trivial if for every interpretation I of �, it holds that I |= O (or, in other 
words, if O is equivalent to the empty set of formulas).

Proposition 5.3. Let M = (�, 	, B) be a mapping, Ks = 〈S, As〉 a KB over �, and Kt = 〈T , At〉 a KB over 	. If 〈S ∪ B, As〉 is 
consistent and Kt is a universal solution for Ks under M, then T is a trivial TBox.

The proof of Proposition 5.3 can be found in the appendix. Notice that this proposition shows that universal solutions 
can be viewed as target ABoxes with empty TBoxes. We denote by A a KB of the form 〈∅, A〉.

We continue our investigation by showing that extended ABoxes are necessary to guarantee the existence of universal 
solutions in certain cases.

Example 5.4. Let M = ({A, R}, {B}, {∃R− � B}) and Ks = 〈S, As〉, where S = {A � ∃R} and As = {A(a)}. A natural way to 
construct a universal solution for Ks under M is to “populate” the target with all the facts implied by uni(S ∪ B, As) (as 
it is usually done in data exchange [16,17,20]). In this case, we have that Auni(S∪B,As) = {a}, Runi(S∪B,As) = {(a, aw[R])}
and Buni(S∪B,As) = {aw[R]}, where aw[R] is an object different from any of the constants in Na , which is used to represent 
a null value. Thus, the ABox At = {B(n)}, where n is a labeled null, is a universal solution for Ks under M if nulls are 
allowed, which can be readily checked using the definition of universal solution. Nevertheless, a universal solution with 
simple ABoxes does not exist in this case, as substituting n by any constant is too restrictive, ruining universality. �

A natural question at this point is whether the use of null values guarantees the existence of universal solutions. Un-
fortunately, the following example shows that this is not the case. In fact, this example shows two different situations in 
which universal solutions do not exist; in the first case this is due to the impossibility of representing an infinite number 
of facts in a finite ABox, while in the second case this is due to the use of disjointness axioms and the absence of the UNA 
(which has to be given up to comply with the OWL 2 QL standard).

Example 5.5. Let M = (�, 	, B), where � = {A, R}, 	 = {Q }, and B = {R � Q }. Furthermore, assume that Ks = 〈S, As〉, 
where As = {A(a)} and S = {A � ∃R, ∃R− � ∃R}. In this case, uni(S ∪B, As) is infinite:

a aw[R] aw[R] w[R] aw[R] w[R] w[R]

R, Q R, Q R, Q

so in principle one would need an infinite number of labeled nulls to construct a universal solution. It can be easily proved 
that if At is an (extended) ABox over 	, then At cannot be a universal solution for Ks under M. �
Example 5.6. Now let M = (�, 	, B) be defined as in Example 5.1. Moreover, assume that Ks = 〈S, As〉, where S = {A �
¬B} and As = {A(a), B(b)}, and assume that At = {A′(a), B ′(b)}. As in Example 5.1, it is possible to show that At is a 
universal solution for KB 〈∅, As〉 under M. However, with the addition of the disjointness axiom A � ¬B , KB At is no 
longer a universal solution (not even a solution) for Ks under M. The reason for this is the lack of the UNA on the one 
hand, and the presence of the disjointness axiom that forces a and b to be interpreted differently in the source, on the other 
hand. More precisely, for a model J of At such that aJ = bJ , A′J = B ′J = {aJ }, there is no model I of Ks such that 
(I, J ) |= B, as this forces aI = aJ and bI = bJ , which is not possible since aI �= bI . It can be straightforwardly proved 
that in this case there is no universal solution for Ks under M. �
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From the previous examples, we conclude that:

Proposition 5.7. There exists a mapping M = (�, 	, B) and a KB Ks = 〈S, As〉 over � such that there is no universal solution for 
Ks under M (even if extended ABoxes are allowed).

Let M = (�, 	, B) be a mapping and Ks = 〈S, As〉 be a KB over �. As pointed out in the previous examples, a natural 
way to construct a universal solution for Ks under M is to populate the target with all the facts implied by uni(S ∪B, As). 
In Example 5.5, this procedure generates an infinite chain that cannot be represented in a finite ABox, which lead us to 
conclude that Ks does not have a universal solution under M in this case. Thus, the reader may wonder whether the 
finiteness of uni(S ∪ B, As) is a necessary condition for the existence of universal solutions. The following example shows 
that this is not the case, and also gives evidence that checking whether a universal solution exists can be a computationally 
hard task (the complexity of this problem is studied in Section 6).

Example 5.8. Let M = (�, 	, B), where � = {A, R, S}, 	 = {Q } and B = {S � Q , R � Q }. Moreover, let Ks = 〈S, As〉, where 
S = {A � ∃R, ∃R− � ∃R} and As = {A(a), S(a, a)}. Notice that uni(S ∪ B, As) as well as its projection over 	 are infinite. 
However, we can conclude that At = {Q (a, a)} is a universal solution for Ks under M, as if the projection of uni(S ∪B, As)

over 	 is transformed into an infinite ABox, then the resulting ABox has the same interpretations as At . Or, in other words, 
it is possible to conclude that At is a universal solution for Ks under M as uni(At) is contained in the projection of 
uni(S ∪B, As) over 	, and there exists a homomorphism h from the projection of uni(S ∪B, As) over 	 to uni(At):

uni(At) :
a

Q

projection of uni(S ∪B,As) over 	 :
a aw[R] aw[R] w[R] aw[R] w[R] w[R]

Q Q Q
Q

h

�
We conclude this section by demonstrating that universal solutions can be of exponential size, thus indicating that it can 

be difficult to deal with them in practice. We use |M| and |K| to denote the sizes (number of symbols) of a mapping M
and a KB K, respectively.

Example 5.9. We show that there exists a family of mappings {Mn = (�n, 	n, Bn)}n≥1 and a family of KBs {Kn
s }n≥1 such 

that every Kn
s is defined over �n (n ≥ 1), and the smallest universal solution for Kn

s under Mn is of size 2c(|Mn |+|Kn
s |) , for 

some constant c > 0.
Indeed, let n ≥ 1 be a natural number. Then mapping Mn = (�n, 	n, Bn) is defined as follows:

�n = {A} ∪ {Rk
i | i ∈ {1, . . . ,n},k ∈ {0,1}},

	n = {Q k | k ∈ {0,1}}
Bn = {Rk

i � Q k | i ∈ {1, . . . ,n},k ∈ {0,1}}.
Moreover, knowledge base Kn

s is defined as 〈Sn, An
s〉, where Sn is defined as:

{A � ∃Rk
1 | k ∈ {0,1}} ∪ {∃Rk

i
− � ∃R�

i+1 | i ∈ {1, . . . ,n − 1},k ∈ {0,1} and � ∈ {0,1}},
and An

s is defined as {A(a)}.
For every n ≥ 1, a universal solution An

t for Kn
s under Mn exists. This universal solution An

t is an edge-labeled full 
binary tree of depth n (containing 2n leaves). Below we depict A3

t , where n1, . . ., n14 are null values:

a

n1 n2

n3 n4 n5 n6

n7 n8 n9 n10 n11 n12 n13 n14

Q 0 Q 1

Q 0 Q 1 Q 0 Q 1

Q 0 Q 1 Q 0 Q 1 Q 0 Q 1 Q 0 Q 1

It can be proved that |An
t | ≥ 2c(|Mn |+|Kn

s |) (for every n ≥ 1) for some c > 0. Moreover, it is straightforward to prove that An
t

is the smallest universal solution for Kn
s under Mn . �
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5.2. Universal UCQ-solutions

Our first observation is that the notion of universal UCQ-solution is a relaxation of the notion of universal solution, as 
shown in the following proposition.

Proposition 5.10. Let M = (�, 	, B) be a mapping, Ks a KB over �, and Kt a KB over 	. If Kt is a universal solution for Ks under 
M, then Kt is a universal UCQ-solution for Ks under M.

Proof. Let Kt be a universal solution for Ks = 〈S, As〉 under M and q a UCQ over 	.
First, we show cert(q, 〈S ∪ B, As〉) ⊆ cert(q, Kt). Assume J is a model of Kt . Since Kt is a solution for Ks under M, 

there exists a model I of Ks such that (I, J ) |= B. Let H be the interpretation of � ∪ 	 defined as the union of I and J , 
that is, H = 〈�H, ·H〉, �H = �I ∪ �J , aH = aI for each a ∈ Na such that aI is defined, AH = AI for each concept name 
A ∈ �, AH = AJ for each concept name A ∈ 	, PH = PI for each role name P ∈ �, and PH = PJ for each role name 
P ∈ 	. Then H is a model of 〈S ∪B, As〉. Suppose �a ∈ cert(q, 〈S ∪B, As〉), it implies H |= q(�a). Next, as q is a target query, 
we have that J |= q(�a). Given that J is an arbitrary model of Kt , we conclude that �a ∈ cert(q, Kt).

Now, we show cert(q, Kt) ⊆ cert(q, 〈S ∪B, As〉). Let H be a model of 〈S ∪B, As〉. From H we can construct interpreta-
tions I and J of � and 	, respectively, such that H is the union of I and J . Then I is a model of Ks and (I, J ) |= B. 
Since Kt is a universal solution for Ks under M, it follows that J is a model of Kt . Suppose �a ∈ cert(q, Kt), it implies that 
J |= q(�a), and since q is a target query, and J and H agree on the constants and target symbols, it follows that H |= q(�a). 
Given that H is an arbitrary model of 〈S ∪B, As〉, we have that �a ∈ cert(q, 〈S ∪B, As〉). �

However, the converse direction of Proposition 5.10 does not hold, as shown in the following example.

Example 5.11. Let Ks, M and Kt be as in Example 5.2. As pointed out in that example, Kt is not a universal solution for 
Ks under M. However, it is easy to see that Kt is a universal UCQ-solution for Ks under M. �

Notably, the previous example also shows that, as opposed to universal solutions, universal UCQ-solutions can have 
non-trivial TBoxes. As a consequence of this, we obtain that universal UCQ-solutions can be smaller than universal solutions, 
as there is no need to materialize all facts (since they can be derived using the target TBoxes).

In the following example, we show that there are cases where universal solutions do not exist but universal 
UCQ-solutions do. More precisely, we focus on the two cases provided in Example 5.5, and show that certain infinite 
chains that cannot be encoded in a universal solution can be finitely represented if the more relaxed notion of universal 
UCQ-solution is considered, and also show that disjointness axioms in the source or the mapping do not have any impact 
on universal UCQ-solutions.

Example 5.12. Let M = (�, 	, B), where � = {A, R}, 	 = {Q }, and B = {R � Q }. Furthermore, assume that Ks = 〈S, As〉, 
where As = {A(a)} and S = {A � ∃R, ∃R− � ∃R}. It can be verified that KB Kt = 〈T , At〉, where T = {∃Q − � ∃Q } and 
At = {∃Q (a)}, is a universal UCQ-solution for Ks under M, as the aforementioned infinite chain (cf. Example 5.5) can be 
finitely represented by combining ∃Q (a) with ∃Q − � ∃Q . �
Example 5.13. Now let M = (�, 	, B) be defined as in Example 5.1. Moreover, assume that Ks = 〈S, As〉, where S = {A �
¬B} and As = {A(a), B(b)}, and assume that At = {A′(a), B ′(b)}. In Example 5.6, we show that At is not a universal solution 
for KB Ks under M. On the other hand, it can be shown that At is a universal UCQ-solution for Ks under M. In fact, this 
holds independently of whether the unique name assumption is employed. �

From the previous examples, we conclude that:

Proposition 5.14. There exists a mapping M = (�, 	, B) and a KB Ks = 〈S, As〉 over � such that, there is no universal solution for 
Ks under M, but there exists a universal UCQ-solution for Ks under M.

Unfortunately, we show in the following example that there are cases where universal UCQ-solutions do not exist.

Example 5.15. Let M = (�, 	, B), where � = {A, R, S}, 	 = {Q } and B = {R � Q , S � Q }. Moreover, let Ks = 〈S, As〉, 
where S = {A � ∃R, ∃R− � ∃R} and As = {A(a), S(a, b)}. Then the projection over 	 of the canonical model of 〈S ∪B, As〉
can be depicted as follows:

projection of
uni(S ∪B, As) over 	 :

ab aw[R] aw[R] w[R] aw[R] w[R] w[R]

Q Q Q Q
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In this case, the basic requirement for a KB Kt = 〈T , At〉 to be a universal UCQ-solution for Ks under M is that At

contain {∃Q (a), Q (a, b)}. Thus, the approach in Example 5.12 to obtain a universal UCQ-solution cannot work, as having 
the axiom ∃Q − � ∃Q in T would also make the query ∃x. Q (b, x) evaluate to true over Kt , while it evaluates to false over 
〈S ∪ B, As〉. In general, a universal UCQ-solution for Ks under M does not exists, as every KB Kt = 〈T , At〉 over 	 with 
{∃Q (a), Q (a, b)} ⊆At is not a universal UCQ-solution for Ks under M. �

We conclude this section by showing that, as in the case of universal solutions, there are some cases where only universal 
UCQ-solutions of exponential size exists.

Example 5.16. There exists a family of mappings {Mn = (�n, 	n, Bn)}n≥1 and a family of KBs {Kn
s }n≥1 such that every Kn

s

is defined over �n (n ≥ 1), and the smallest universal UCQ-solution for Kn
s under Mn is of size 2
(|Mn |+|Kn

s |) .
Indeed, let n ≥ 1 be a natural number. Then mapping Mn = (�n, 	n, Bn) is defined as follows:

�n = {A} ∪ {Rk
i | i ∈ {1, . . . ,n},k ∈ {0,1}} ∪ {S0, S1},

	n = {Q k | k ∈ {0,1}}
Bn = {Rk

i � Q k | i ∈ {1, . . . ,n},k ∈ {0,1}} ∪ {Sk � Q k | k ∈ {0,1}}.
Moreover, knowledge base Kn

s is defined as 〈Sn, An
s〉, where Sn is defined as:

{A � ∃Rk
1 | k ∈ {0,1}} ∪ {∃Rk

i
− � ∃R�

i+1 | i ∈ {1, . . . ,n − 1},k ∈ {0,1} and � ∈ {0,1}},
and An

s is defined as {A(a), S0(b, c), S1(d, e)}, where a, b, c, d, e are pairwise distinct constants.
For every n ≥ 1, a universal solution An

t for Kn
s under Mn exists. This universal solution An

t consists of membership 
assertions Q 0(b, c), Q 1(d, e) together with an edge-labeled full binary tree of depth n (that contains 2n leaves). As in the 
case of Example 5.9, the root of this tree is a, the label of each edge is one of the role names Q k (k ∈ {0, 1}), and the tree 
contains labeled nulls in every node except for the root.

In this case, there exist no universal UCQ-solution distinct from the universal solutions for Kn
s under Mn , as each of 

the non-trivial axioms over 	n = {Q 0, Q 1} combined with An
t would produce more certain answers to some queries than 

Sn ∪ Bn combined with An
s . Hence, as in the case of Example 5.9, we can conclude that An

t is the smallest universal 
UCQ-solution for Kn

s under Mn , from which our initial claim follows. �
5.3. UCQ-representations

In this section, we discuss several simple examples explaining various cases when a UCQ-representation exists and when 
it does not. We start by showing how the existence of UCQ-representations depends on the shape of the mappings. In the 
following example, we consider signatures consisting of concept names only, and TBoxes and mappings containing only 
positive axioms (i.e., no disjointness axioms).

Example 5.17. Assume that M = (�, 	, B), where � = {A, B, C} and 	 = {A′, B ′, C ′}. Moreover, let S = {A � B}. Consider 
the following cases for TBox B.

(1) If B = {B � B ′}, then there exists no UCQ-representation: take ABox As = {A(a)}, then query q = B ′(a) evaluates to true 
over 〈S ∪B, As〉. However, for every target TBox T , q evaluates to false over 〈T ∪B, As〉.

(2) If B = {A � A′, B � B ′}, then, as expected, T = {A′ � B ′} is a UCQ-representation of S under M.
(3) If B = {A � A′, B � B ′, A � C ′}, then there exist several UCQ-representations: T = {A′ � B ′}, T ′ = {C ′ � B ′} and their 

combination.
(4) If B = {A � A′, B � B ′, C � A′}, then there exists no UCQ-representation: on one hand, if a target TBox contains A′ � B ′ , 

then for As = {C(c)}, q = B ′(c) evaluates to true over 〈T ∪B, As〉 and to false over 〈S ∪B, As〉. On the other hand, if a 
target TBox does not imply A′ � B ′ , then for As = {A(a)}, q = B ′(a) evaluates to true over 〈S ∪B, As〉 and to false over 
〈T ∪B, As〉.

(5) If B = {A � A′, B � B ′, A � C ′, C � A′}, then T ′ = {C ′ � B ′} is a UCQ-representation of S under M. Note that T =
{A′ � B ′} is not a UCQ-representation of S under M for the same reason as explained in item (4) above. �

Roughly speaking, the previous example illustrates that there exists no UCQ-representation when the mapping is un-
derspecified for the source concepts, as in (1) where A is not mapped to anything, or the mapping is overspecified for the 
target concepts, as in (4) where A′ is the image of two source concepts. A “good” mapping is a mapping that is overspecified 
for the source concepts, as in (3) where A is mapped to two distinct target concepts and it is possible to construct two 
incomparable UCQ-representations.

In the next example, we also consider roles in the signatures. This example shows that in some cases to ensure the 
existence of a UCQ-representation, it is necessary to map a complete role, that is, it must appear in a role inclusion in the 
mapping.
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Example 5.18. Assume that M = (�, 	, B), where � = {A, R} and 	 = {A′, R ′, B ′}. Moreover, let S = {A � ∃R}. Consider the 
following cases for TBox B.

(1) If B = {A � A′, ∃R− � B ′}, then there exists no UCQ-representation of S under M: take As = {A(a)} and a Boolean 
target query q = ∃x. 

(
A′(a) ∧ B ′(x)

)
. Then q evaluates to true over 〈S ∪B, As〉. Let us consider two target TBoxes T such 

that q also evaluates to true over 〈T ∪B, As〉:
(a) T = {A′ � B ′}. Then for the query q′ = B ′(a), it holds that 〈T ∪B, As〉 |= q′ , while 〈S ∪B, As〉 �|= q′ . Hence T is not 

a UCQ-representation.
(b) T = {A′ � ∃R ′, ∃R ′− � B ′}. Then for the query q′ = ∃x. R ′(a, x), it holds that 〈T ∪B, As〉 |= q′ , while 〈S∪B, As〉 �|= q′ . 

Hence T is not a UCQ-representation.
(2) If B = {A � A′, ∃R− � B ′, R � R ′}, then, as opposed to the previous case, T = {A′ � ∃R ′, ∃R ′− � B ′} is a UCQ-represen-

tation of S under M. �
Finally, we provide an example involving disjointness axioms in the mapping. Now we will, however, fix the mapping, 

and see how the shape of UCQ-representations depends on the shape of the source TBox.

Example 5.19. Assume M = ({A, B, C}, {A′, B ′}, B), where B = {A � A′, B � B ′, C � ¬A′}. In the following, to better illustrate 
the structure of TBoxes and mappings, we use a graphical notation in which basic concepts are represented as nodes in a 
graph, and we use different types of directed edges: ( ) unlabeled edges to represent inclusion assertions between basic 
concepts, ( ) unlabeled “wavy” edges to represent assertions in the mapping. The barred arrows represent disjointness 
axioms.

(1)

If S = {A � B}, then TBox T = {A′ � B ′} is a UCQ-representation of S under M. First, notice that 
every source ABox As is consistent with S . It should be clear that for every As = {X(a)} for 
X ∈ {A, B, C} or As = {B(a), C(a)}, As is consistent with S ∪B, and 
cert(q, 〈S ∪B, As〉) = cert(q, 〈T ∪B, As〉) for each UCQ q.
Consider now As = {A(a), C(a)}, then As is not consistent with S ∪B (in fact, As is not consistent 
already with B), so cert(q, 〈S ∪B, As〉) = AllTup(q) for each UCQ q. On the other hand, As is not 
consistent with T ∪B either, so as well, cert(q, 〈T ∪B, As〉) = AllTup(q) for each UCQ q.

A

C

B

A′

B ′

(2)

If S = {B � A}, then similarly to the previous case, TBox T = {B ′ � A′} is a UCQ-representation of S
under M, but now it is a bit more involved. Namely, in this case ABox As = {B(a), C(a)} is not 
consistent with S ∪B, but consistent with B alone. But As is not consistent with T ∪B due to the 
axiom B ′ � A′ in T . So cert(q, 〈S ∪B, As〉) = cert(q, 〈T ∪B, As〉) for each ABox As and UCQ q
over 	.

A

C

B

A′

B ′

(3)
If S = {B � C}, then TBox T = {B ′ � ¬A′} is a UCQ-representation of S under M. This case is in 
some sense the opposite of (2). Consider ABox As = {A(a), B(a)}, then As is inconsistent with S ∪B. 
Now the fact that As is inconsistent with T ∪B is achieved with the disjointness axiom B ′ � ¬A′
in T .

A

C

B

A′

B ′

(4)

If S = {A � C}, then TBox T = {A′ � ¬A′} is a UCQ-representation of S under M. Observe, that 
every ABox As such that A(a) ∈ As for some constant a is inconsistent with S ∪B. So the axiom 
A′ � ¬A′ in T assures that every such As is also inconsistent with T ∪B. One the other hand, it is 
easy to see that for every source ABox that does not contain assertions of the form A(a), the required 
condition is satisfied.

A

C

B

A′

B ′
�

Notice that in the previous example, the source TBox always contains exactly one inclusion of concept names, and 
depending on the concepts involved in it, this inclusion needs to be represented either by another inclusion of concept 
names, or by a disjointness axiom.

It is worth mentioning that in Section 7.1, Example 7.4 illustrates a case with disjointness axioms in the mapping where 
a UCQ-representation does not exist.

5.4. Comparison of solutions

Out of the three notions of solution discussed in the previous sections, none of them could be considered as the preferred 
one in all possible scenarios. Each one of them has its strengths and its weaknesses, which can be summarized as follows.

Universal solutions are the preferred translations if one is interested in preserving logical correctness of the knowledge 
stored in the target KB, as these solutions are the most precise model-theoretical translations. However, they present several 
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limitations from the practical point of view: (i) if one considers extended ABoxes, then universal solutions can be of expo-
nential size; (ii) universal solutions are sensitive to presence of disjointness axioms: in some cases one disjointness axiom is 
enough to ruin existence of a universal solution (see Example 5.6); and (iii) universal solutions are sensitive to whether the 
UNA is employed or not: there are examples when a universal solution exists under the UNA, but it does not exist without 
the UNA. This is illustrated, e.g., in Example 5.13.3

Universal UCQ-solutions are the preferred translations if one considers a scenario where the main reasoning task is 
query answering over the target KB. In this scenario, universal UCQ-solutions behave better than universal solutions, in 
particular they overcome the last two limitations of universal solutions mentioned in the previous paragraph. Besides, 
universal UCQ-solutions are, in general, more succinct than universal solutions (although in the worst case can be of the 
same size).

Finally, in a scenario where data is changing, or it is not known, and where the main reasoning task is query answering, 
UCQ-representations immediately stand out with their nice computational properties: it is shown in Section 7 that their 
existence is decidable in polynomial time, and their size is bound by a polynomial as they are TBoxes. Moreover, when a 
UCQ-representation exists, one has a straightforward polynomial-time algorithm for computing universal UCQ-solutions of 
polynomial size.

6. Complexity results on existence and membership of universal solutions

In this section, we study the membership and non-emptiness problems for universal solutions, in the cases where such 
solutions are required to be (simple) KBs, see Section 6.2, and where they are allowed to be extended KBs (i.e., nulls are 
allowed in the ABoxes), see Sections 6.3 and 6.4. We start by presenting in Section 6.1 a characterization of universal 
solutions in DL-LiteR .

6.1. Characterization of universal solutions

We define the notion of 	-safeness required to deal with disjointness axioms in the source KB and mapping. Assume 
that M = (�, 	, B) is a mapping and Ks = 〈S, As〉 is a KB over �. Let K = 〈S ∪ B, As〉 and let uni(K) be the canonical 
model of K. We say that an element o ∈ �uni(K) is 	-invisible if

o /∈ Na and tuni(K)
	 (o) = ∅.

Then a basic concept B over � is said to be safe in uni(K) if for every o ∈ Buni(K) , o is 	-invisible. Intuitively, safeness for 
B means no constant “associated” with B and no target concept “associated” with B via S and B can be mentioned in the 
target; in Example 5.6 neither A nor B is safe in uni(S ∪ B, As). Furthermore, a pair of basic concepts (B, C) is said to 
be safe if B or C is safe. Intuitively, if a pair (B, C) is not safe and (B � ¬C) ∈ S , then universal solutions cannot exist, as 
explained in Example 5.6. Similarly, we say that a basic role R over � is safe in uni(K) if for every (o, o′) ∈ Runi(K) , either 
o or o′ is 	-invisible. Then, a pair of basic roles (R, Q ) is safe in uni(K) if (1) R or Q is safe in uni(K), and (2) for every 
(o, o′) ∈ Runi(K) and (o, o′′) ∈ Q uni(K) , either o′ or o′′ is 	-invisible.

Definition 6.1. Ks = 〈S, As〉 is 	-safe with respect to M = (�, 	, B) if

(cs) each pair of concepts (B, C) is safe in uni(S ∪B, As), whenever (B � ¬C) ∈ S ,
(rs) each pair of roles (R, Q ) is safe in uni(S ∪B, As), whenever (R � ¬Q ) ∈ S ,
(ce) Buni(S∪B,As) = ∅, for each basic concept B such that (B � ¬B ′) ∈ B,
(re) Runi(S∪B,As) = ∅, for each basic role R such that (R � ¬R ′) ∈ B.

Note that if Ks and B do not contain disjointness axioms, Ks is trivially 	-safe with respect to M.
We also define the canonical model of an extended ABox A. Without loss of generality we may assume that A contains 

only membership assertions with atomic concepts and roles. Denote by null(A) the set of labeled nulls occurring in A. Then 
the canonical model uni(A) is defined as follows:

�uni(A) = ind(A) ∪ null(A),

auni(A) = a, for a ∈ ind(A),

Auni(A) = {a ∈ ind(A) ∪ null(A) | A(a) ∈ A},
P uni(A) = {(a,b) ∈ (

ind(A) ∪ null(A)
) × (

ind(A) ∪ null(A)
) | P (a,b) ∈ A}.

Now, we are ready to provide a characterization of universal solutions, where we already take into account Proposi-
tion 5.3, and therefore consider only target ABoxes as universal solutions. The proof can be found in the appendix.

Lemma 6.2. An (extended) ABox At over 	 is a universal solution for a KB Ks = 〈S, As〉 under a mapping M = (�, 	, B) iff the 
following conditions hold:

3 Note that standard reasoning and conjunctive query answering in DL-LiteR is not sensitive to the presence of the UNA.



M. Arenas et al. / Artificial Intelligence 238 (2016) 11–62 29
(safe) Ks is 	-safe with respect to M;
(hom) uni(At) is 	-homomorphically equivalent to uni(Ksb), for Ksb = 〈S ∪B, As〉.

Below we show how checking whether a concept is safe can be done in NLogSpace by using TBox reasoning in DL-
LiteR [61]. The proof can be extended to show that condition (safe) can also be checked in NLogSpace.

Proposition 6.3. Given a KB K, it can be decided in NLogSpace whether a basic concept B is safe in uni(K).

Proof. Checking whether B is safe in uni(K), for K = 〈O, A〉, amounts to verifying whether (i) K �|= B(a) for each a ∈ ind(A), 
and (ii) for each role R such that w[R] ∈ �gen(K) and O |= ∃R− � B , it holds that O �|= ∃R− � B ′ for each basic concept 
B ′ over 	. Then, given a role R , we can verify whether w[R] ∈ �gen(K) in NLogSpace as follows. We use an algorithm for 
directed graph reachability, in a graph where the nodes are taken from the union of ind(K) and {w[S] | S is a role in K}, and 
the edges correspond to the generating relation �K (cf. Section 3.2, the definition of the canonical model). Starting from 
some a ∈ ind(K), we “follow” a sequence of roles R1, . . . , Rn = R (with n ≥ 1) in such a way that, when we “guess” R1 we 
check whether a �K w[R1] , and when, while “remembering” Ri , i > 0, we “guess” Ri+1, we check whether w[Ri ] �K w[Ri+1] , 
and “forget” Ri . �

As for condition (hom), we show how to check it in Section 6.2 for simple universal solutions, i.e., when we consider only 
simple target ABoxes, and in Section 6.3 for extended universal solutions, i.e., when we consider extended target ABoxes. 
Next, we provide a characterization of the cases when a universal solution exists.

Lemma 6.4. Let M = (�, 	, B) be a mapping, and Ks = 〈S, As〉 a KB over �. Then, a universal solution with extended ABoxes for 
Ks under M exists iff the following conditions hold: (safe) and

(core) uni(Ksb) is 	-homomorphically embeddable into a finite subset of itself, for Ksb = 〈S ∪B, As〉.

Proof. (⇐) Let At be an ABox over 	 such that uni(At) is a finite subset of uni(Ksb) and there exists a 	-homomorphism 
h from uni(Ksb) to uni(At). Then, uni(At) is trivially homomorphically embeddable into uni(Ksb). Since, Ks is 	-safe with 
respect to M, by Lemma 6.2, we obtain that At is a universal solution for Ks under M.

(⇒) Let At be a universal solution for Ks under M. By Lemma 6.2, it follows that Ks is 	-safe with respect to M
and that uni(At) is 	-homomorphically equivalent to uni(Ksb). Let h be a homomorphism from uni(At) to uni(Ksb), and 
h(uni(At)) the image of h. Then, h(uni(At)) is a finite subset of uni(Ksb), moreover it is homomorphically equivalent to 
uni(At) and to uni(Ksb). Therefore, uni(Ksb) is 	-homomorphically embeddable to a finite subset of itself. �

It follows from the proof of Lemma 6.4 that the ABox At corresponding to the finite subset uni(At) of uni(Ksb) in 
condition (core) is a universal solution. Hence, if we additionally require in condition (core) that the finite subset uni(At)

does not contain anonymous individuals, we obtain a characterization for universal solutions with simple ABoxes.
We introduce some additional notation needed in this section. For a KB K and a ∈ ind(K) define gena(K) to be an 

interpretation obtained from gen(K) by restricting it to the domain {a} ∪ wit(K) and removing (a, a) from the interpretation 
P gen(K) of every role name P . We denote by unia(K) the unraveling of gena(K). Observe that �unia(K) = {aσ | aσ ∈ �uni(K)}
and that unia(K) is a tree structure.

6.2. Universal solutions with simple ABoxes

In this section, we show that both the membership and the non-emptiness problems for universal solutions without null 
values are PTime-complete.

We start with tackling the membership problem: we are given a mapping M = (�, 	, B), a source KB Ks = 〈S, As〉, 
and a simple target ABox At , and the question to decide is whether At is a universal solution for Ks under M. By 
Lemma 6.2, it is sufficient to check conditions (safe) and (hom). The former condition does not depend on At and can 
be checked in polynomial time. As for the latter condition, denote by Ksb the KB 〈S ∪B,As〉. First, checking the existence 
of a 	-homomorphism from uni(At) to uni(Ksb) for a simple ABox At amounts to checking,

tuni(At)
	 (a) ⊆ tuni(Ksb)

	 (a) and runi(At)
	 (a,b) ⊆ runi(Ksb)

	 (a,b) for all a,b ∈ ind(At). (2)

Second, a necessary condition for the existence of a 	-homomorphism in the opposite direction, is that

tuni(Ksb)
	 (a) ⊆ tuni(At)

	 (a) and runi(Ksb)
	 (a,b) ⊆ tuni(At)

	 (a,b) for all a,b ∈ ind(As). (3)

Clearly, these two conditions can be checked in PTime. In addition, we need to check for each a ∈ ind(As), whether the 
tree unia(Ksb) can be 	-homomorphically mapped to uni(At). To do so, we make use of infinite reachability games on 
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Fig. 4. Example of a game: a) the game arena Aa , b) projection of uni(K) over � , c) uni(A).

graphs [62]. Specifically, we show how this problem can be reduced to the problem of existence of a winning strategy 
for Duplicator in a reachability game, known to be solvable in polynomial time. For a short introduction to (reachability) 
games, we refer to Section B.6. Below we show how to construct the game Gc for a KB K, an ABox A, a signature �, and 
c ∈ ind(K).

The reachability game Gc = (Ac, Fc) is formally defined as follows: Ac = (S, D, T) is the game arena, where S and D
are respectively the sets of Spoiler and Duplicator states defined next, and T is the transition relation defined below; Fc

is the winning condition, i.e., the set of states that Spoiler wants to reach. Each state in S has the form (u �→a) with 
tgen(K)

� (u) ⊆ tuni(A)
� (a), while each state in D has the form (a, u � u′) with u �K u′ , where u, u′ ∈ �genc(K) and a ∈ ind(A). 

Intuitively, the game proceeds as follows. Duplicator tries to construct a �-homomorphism from the tree unic(K) to uni(A), 
and Spoiler attempts to fail him by finding a path in unic(K) that does not have a homomorphic image in uni(A), given 
the partial homomorphism constructed so far. Spoiler starts in (u0 �→a0) for u0 = a0 = c if (c �→ c) ∈ S, which corresponds 
to mapping c to c, and at each of his turns chooses a successor ui+1 of ui in gena(K): the “challenge” represented by 
the state (ai, ui � ui+1). Then Duplicator tries to find a constant ai+1 ∈ ind(A) that could be the image of the “challenged” 
element u0 · · · ui+1 of unic(K), i.e., he chooses a state (ui+1 �→ai+1) such that rgenc(K)

� (ui, ui+1) ⊆ runi(A)
� (ai, ai+1). Note that, 

if rgenc(K)

� (ui, ui+1) is empty, then Duplicator can respond with any ai+1 such that (ui+1 �→ai+1) is a Spoiler state, even if 
ai+1 is not connected to ai in uni(A). Duplicator loses if he cannot find where to map the challenged element, i.e., for all 
ai+1 ∈ uni(A) we have that either rgenc(K)

� (ui, ui+1) � runi(A)
� (ai, ai+1) or (ui+1 �→ai+1) is not a state in S. In other words, 

the game reaches a “dead-end” of Duplicator, i.e., (ai, ui � ui+1) ∈ Fc . Otherwise, the game can reach a dead-end of Spoiler, 
or continue forever avoiding the dead-ends of Duplicator, hence Duplicator wins. Note that, if (c �→ c) /∈ S, then we assume 
that Spoiler “wins” the game immediately.

Formally, we define T and Fc as follows:

T = { (
(u �→a), (a, u � u′)

) | (u �→a) ∈ S and (a, u � u′) ∈ D
} ∪{ (

(a, u � u′), (u′ �→a′)
) | (a, u � u′) ∈ D, (u′ �→a′) ∈ S, and rgenc(K)

� (u, u′) ⊆ runi(A)
� (a,a′)

}
Fc = {

(a, u � u′) | (u′ �→a′) /∈ S or rgenc(K)

� (u, u′) � runi(A)
� (a,a′), for all a′ ∈ �uni(A)

}
.

Notice that the size of Ac is O (|genc(K)| × |A|), and that Ac and Fc can be directly computed according to their definition 
in time that is linear in their size.

We illustrate such games in the following example.

Example 6.5. Assume � = {R ′ , S ′, Q ′}, K = 〈O, {∃R(a), ∃S(a)}〉, where O = {∃R− � ∃R, ∃S− � ∃Q , ∃Q − � ∃S, R � R ′,
S � S ′, Q � Q ′}, and A = {R ′(a, a), S ′(a, b), Q ′(b, b)}. Then Fa = {(b, w[Q ] � w[S])}, and the game arena Aa can be de-
picted as in Fig. 4(a), where the Duplicator states are shown as ovals and the Spoiler states are shown as boxes (we ignore 
the states that are not reachable from (a �→a)). In Fig. 4(b) and (c), we show the projection over � of uni(K) and uni(A), 
respectively.

The game starts in state (a �→a), which corresponds to setting the homomorphic image of a ∈ �unia(K) to a ∈ �uni(A) . 
Then Spoiler can choose one of the two successors of a in gena(K): either w[R] or w[S] . If he chooses w[R] , it means he 
moves to the state (a, a � w[R]). Now, Duplicator has to respond by finding where in uni(A) to map aw[R]: he can map it 
only to a (note the role labels), so he moves to (w[R] �→a). In this manner, the two players have to continue forever moving 
between the states (a, w[R] � w[R]) and (w[R] �→a), which corresponds to mapping all elements of the form aw[R] · · · w[R] ∈
�unia(K) to a ∈ �uni(A) . Thus, this play is infinite: (a �→a) · (a, a � w[R]) · (w[R] �→a) · (a, w[R] � w[R]) · (w[R] �→a) · · · and it 
is a win for Duplicator.
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Fig. 5. Example of a game: a) the game arena Aa , b) projection of uni(K) over � , c) uni(A).

Instead, if Spoiler at his first move chooses the successor w[S] of a, hence moves to the state (a, a � w[S]), the game fin-
ishes soon in a dead-end of Duplicator. Hence, the second play is finite: (a �→a) · (a, a � w[S]) · (w[S] �→b) · (b, w[S] � w[Q ]) ·
(w[Q ] �→b) · (b, w[Q ] � w[S]), and it is a win for Spoiler, since the game reaches a state in Fa . �

Having constructed the game Gc = (Ac, Fc), we prove that verifying whether unic(K) can be �-homomorphically mapped 
to uni(A) reduces to checking whether both (c �→ c) is a state in the game arena Ac (i.e., tgen(K)

� (c) ⊆ tuni(A)
� (c)) and Dupli-

cator has a winning strategy in Gc from (c �→ c).

Lemma 6.6. Let K be a KB, A an ABox, and � a signature. There exists a �-homomorphism from uni(K) to uni(A) iff

(abox1) runi(K)
� (a, b) ⊆ runi(A)

� (a, b), for all a, b ∈ ind(K);
(win) (c �→ c) is a state in Ac and Duplicator has a winning strategy in Gc = (Ac, Fc) from (c �→ c), for each c ∈ ind(K).

Proof. (⇒) Suppose h is a �-homomorphism from uni(K) to uni(A): clearly, (abox1), and tgen(K)

� (a) ⊆ tuni(A)
� (a) for each 

a ∈ ind(K) hold. Let c ∈ ind(K), then (c �→ c) is a state of Ac . We describe a winning strategy f for Duplicator in Gc from 
(c �→ c). Let π = (u0 �→a0) · (a0, u0 � u1) · · · (uk �→ak) · (ak, uk � uk+1) be a finite sequence of states in Ac , where k ≥ 0, 
u0 = a0 = c, and ai ∈ ind(A), ui ∈ �genc(K) for i ≥ 1. Then we set f (π) = (uk+1 �→h(cu1 · · · uk+1)). Note that by construction 
of T, cu1 · · · uk+1 is an element of �unic(K) , and since h is defined for �uni(K) , it follows that f is defined for each possible 
sequence π . Moreover, f (π) is never a dead-end of Duplicator. Hence each play, either ends in a dead-end of Spoiler (i.e., 
Spoiler is in a leaf of the tree in uni(K)), or continues infinitely long avoiding visits to the dead-ends of Duplicator. In any 
case Duplicator wins.

(⇐) Assume that both (abox1) and (win) hold (in particular, tgen(K)

� (a) ⊆ tuni(A)
� (a), for each a ∈ ind(K)). Given c ∈

ind(K), we construct a �-homomorphism hc from the tree unic(K) to uni(A). Let f be a winning strategy of Duplicator from 
(c �→ c). Let π = (u0 �→a0) · (a0, u0 � u1) · · · (uk �→ak) · (ak, uk � uk+1) · · · be a play conforming with f , where u0 = a0 = c, 
ui ∈ �genc(K) , and ai ∈ ind(A). Then Duplicator wins π , and either

– π = (u0 �→a0) · (a0, u0 � u1) · · · (uk �→ak) is a finite play, k ≥ 0, and (uk �→ak) is a dead-end of Spoiler. In this case, we 
set hc(cu1 · · · ui) = ai , for 0 ≤ i ≤ k.

– π is an infinite play such that no state from Fc occur in it. In this case, we set hc(cu1 · · · ui) = ai , for i ≥ 0.

The function hc is well defined for all elements in �unic(K) , and one can verify that it is a �-homomorphism from unic(K)

to uni(A). Finally, we define a �-homomorphism from uni(K) to uni(A) as the union of hc , for each c ∈ ind(K). �
The example below illustrates the presented reduction.

Example 6.7. Assume � = {R ′ , Q ′}, K = 〈O, {∃R(a), ∃S(a)}〉, where O = {∃S− �∃R , ∃R− �∃Q , ∃Q − �∃Q , R � R ′ , S � R ′ , 
Q � Q ′} and A = {R ′(a, a), R ′(a, b), Q ′(b, b)}. Then Fa = {(b, w[S] � w[R]), (a, w[R] � w[Q ])}. In Fig. 5 we depict the game 
arena Aa and a �-homomorphism h from uni(K) to uni(A). Observe that in the game Ga Spoiler does not have a winning 
strategy from (a �→a), because there is a way for Duplicator to play (infinitely) so that the game never reaches Fa . It is not 
difficult to see that such strategy of Duplicator can be used to define the homomorphism h, and vice versa. �
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Finally, combining Lemma 6.2 and Lemma 6.6, and considering that (win) in Lemma 6.6 can be checked in polynomial 
time (see Section B.6), we obtain that the membership problem for universal solutions with simple ABoxes is in PTime. 
Below we show the matching lower bound.

Lemma 6.8. Given a KB Ks = 〈S, As〉, a mapping M, and a simple target ABox At, checking whether At is a universal solution for 
Ks under M is PTime-hard.

Proof. The proof is inspired by one in [30], but makes use of a reduction from the Circuit Value problem, known to be
PTime-complete [63, Theorem 8.1], instead of a reduction from the Horn Satisfiability problem. Given a monotone Boolean 
circuit C consisting of a finite set of assignments to Boolean variables P1, . . . , Pn of the form Pi = 0, Pi = 1, Pi = P j ∧ Pk , 
j, k < i, or Pi = P j ∨ Pk , j, k < i, where each Pi appears on the left-hand side of exactly one assignment, check whether the 
value Pn is 1 in C .

We fix signatures � = {P (·), L(·, ·), R(·, ·)} and 	 = {L′(·, ·), R ′(·, ·)}. Let a1, . . . , an ∈ Na , and consider

As = {P (an)} ∪ {L(ai,ai), R(ai,ai) | Pi = 1 in C} ∪ {L(ai,a j), R(ai,ak) | Pi = P j ∧ Pk in C}
∪ {L(ai,a j), R(ai,a j), L(ai,ak), R(ai,ak) | Pi = P j ∨ Pk in C}

S = {P � ∃L, P � ∃R, ∃L− � P , ∃R− � P }, B = {L � L′, R � R ′}
At = {L′(ai,a j) | L(ai,a j) ∈ As} ∪ {R ′(ai,a j) | R(ai,a j) ∈ As}

Note that �, 	, S , and B do not depend on C , which is encoded by At only. Hence, the reduction provides a lower bound 
for data complexity [64]. In the appendix we show that the value of Pn in C is 1 if and only if At is a universal solution for 
Ks = 〈S, As〉 under M = (�, 	, B). �
Example 6.9. For a circuit C containing assignments P1 = 1, P2 = 1, P3 = 0, P4 = P1 ∧ P2, and P5 = P3 ∨ P4, we depict 
the projections over 	 of unia5 (S ∪B, As) and uni(At):

a5

a5 w[L] a5 w[R]

a5 w[L] w[L] a5 w[L] w[R] a5 w[R] w[L] a5 w[R] w[R]

L′ R ′

L′ R ′ L′ R ′

unia5 (S ∪B,As)
a5

a4

a3 a1 a2

L′, R ′
L′, R ′

L′ R ′

L′, R ′ L′, R ′

uni(At)

We explain why the value of P5 in C is 1 if and only if there is a 	-homomorphism h from an infinite binary tree unia5 (S ∪
B, As) to a finite tree with loops on the leaves uni(At). First, h(a5) = a5. Then, a5 has two successors in unia5 (S ∪ B, As), 
a5 w[L] and a5 w[R] , that could be mapped either to a3 or to a4. Intuitively, this corresponds to the fact that P5 = P3 ∨ P4, 
therefore in order for the value of P5 to be 1, at least one of P3, P4 should evaluate to 1. The former option is not good 
because the value of P3 is 0 and a3 has no successors. Therefore we map both a5 w[L] and a5 w[R] to a4: h(a5 w[L]) =
h(a5 w[R]) = a4. Intuitively, this corresponds to the fact that the value of P4 is 1. Let σ be a5 w[L] or a5 w[R] . Then σ w[L] has 
to be mapped to a1 and σ w[R] has to be mapped to a2. This corresponds to the fact that P4 = P1 ∧ P2, therefore in order 
for the value of P4 to be 1, the values of both P1 and P1 should be 1. Finally, since the values of P1 and P2 are, in fact, 1, 
there are loops on a1 and a2 labeled with L′ and R ′ . So, all successors of σ w[L] and σ w[R] can be mapped to a1 and a2, 
respectively. �
Theorem 6.10. The membership problem for universal solutions with simple ABoxes is PTime-complete.

We conclude this section by addressing the non-emptiness problem. It follows from what is observed after Lemma 6.4
that there exists a universal solution for Ks under M that is a simple ABox iff the (simple) ABox At over 	 is a universal 
solution for Ks under M, where At satisfies equations (2) and (3). Obviously, we can construct the required At in PTime, 
then it remains to check if it is a universal solution. Moreover, we can adapt the reduction in Lemma 6.8 above to show 
that the PTime bound is tight. We obtain the following result.

Theorem 6.11. The non-emptiness problem for universal solutions with simple ABoxes is PTime-complete. Moreover, there is an effec-
tive algorithm to compute a universal solution in polynomial time.

6.3. The membership problem for universal solutions with extended ABoxes

In this section, we study the membership problem for universal solutions when extended ABoxes are allowed in the 
target, and show that it is NP-complete.
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Assume given a mapping M = (�, 	, B), a KB Ks = 〈S, As〉 over �, and an extended ABox At over 	, and let K =
〈S ∪B,As〉. In this setting, existence of 	-homomorphism from uni(K) to uni(At) can be still checked in PTime using 
the technique of reachability games presented in Section 6.2 (note that for homomorphisms in this direction, there is no 
distinction made between the constants and the labeled nulls in At). Instead, existence of a 	-homomorphism in the 
opposite direction cannot be checked efficiently due to the nulls in At . In fact, we show now that the membership problem 
for universal solutions with extended ABoxes is NP-hard in data complexity.

Lemma 6.12. Given a KB Ks = 〈S, As〉, a mapping M, and an extended target ABox At, checking whether At is a universal solution 
for Ks under M is NP-hard.

Proof sketch. The proof is by reduction from 3-colorability of undirected graphs, known to be NP-hard. Consider an undi-
rected graph G = (V,E), which we view as a symmetric directed graph, and fix signatures � = {E(·,·)} and 	 = {E ′(·,·)}. 
Further, let r, g, b ∈ Na , V ⊆ Nl and

As = {E(r, g), E(g, r), E(r,b), E(b, r), E(g,b), E(b, g)}, S = {}, B = {E � E ′},
At = {E ′(r, g), E ′(g, r), E ′(r,b), E ′(b, r), E ′(g,b), E ′(b, g)} ∪ {E ′(x, y) | (x, y) ∈ E}.

Note that the vertices in G become labeled nulls in At . In the appendix we show that G is 3-colorable if and only if At is 
a universal solution for Ks = 〈S, As〉 under M = (�, 	, B). �

We provide now a matching upper bound.

Lemma 6.13. The membership problem for universal solutions with extended ABoxes is in NP.

Proof. Given a KB Ks = 〈S, As〉, a mapping M = (�, 	, B), and an extended target ABox At , it suffices to show that the 
existence of a homomorphism from uni(At) to uni(K), for K = 〈S ∪B, As〉, can be checked in NP in the size of Ks , M, and 
At (checking the existence of a 	-homomorphism in the other direction is in PTime, as discussed above). For this, we use 
the fact that the image W ⊆ �uni(K) of the function h on �uni(At) is bounded by the size of At . Therefore, for each constant 
and null in At , one needs to guess its homomorphic image in �uni(K) , and then check whether the resulting function is a 
homomorphism.

First, if there exists a homomorphism h from uni(At) to uni(K), then there exists witness W with a number of elements 
bounded by the size of At , such that W ⊆ �uni(K) and h is a function from �uni(At) to W : take W = h(�uni(At)).

Second, we show that there exists a witness W such that W ⊆ �uni(K) and every x ∈ W is a path of length smaller or 
equal 2m, where for x = aw[S1] · · · w[Sk] the length of x is k + 1, and m is the size of S ∪ B ∪ At . To this end, let h be a 
homomorphism from uni(At) to uni(K) and W = h(�uni(At)). Let IW be the sub-interpretation of uni(K) induced by W . 
For x, y ∈ W , we say that x is connected to y in IW , if there exists n ≥ 0 and a path x1, x2, . . . , xn, xn+1 such that xi ∈ W , 
x1 = x, xn+1 = y, and (xi, xi+1) ∈ RIW

i for some role Ri , i ∈ {1, . . . , n}. Assume that x ∈ W and the length of x is more than 
2m. Then, since W = h(�uni(At)), we have that x is not connected to any element of ind(As) in IW . Let C be the maximal 
connected subset of W with x ∈ C , i.e., for each y ∈ C , (i) y is connected to y′ in IW , for each y′ ∈ C , and (ii) y is not 
connected to any z ∈ W \ C . Note that C ∩ ind(As) = ∅. Let y be the path in path(K) of minimal length in C , it exists and is 
unique since C ⊆ �IW and there are no constants in C . Then for each y′ ∈ C , we have that y′ = y · w[R1] · · · w[Rk] for some 
roles R1, . . . , Rk . Further assume tail(y) = w[R] , and let z be a path of minimal length in �uni(K) with tail(z) = w[R] . Then 
the length of z is bounded by the size of S ∪ B and the length of each z · w[R1] · · · w[Rk] for some y · w[R1] · · · w[Rk] ∈ C , is 
bounded by the size of S ∪B∪At . Now, define a new function h′ : �uni(At) → �uni(K) such that h′(x) = h(x) if h(x) /∈ C , and 
h′(x) = z · w[R1] · · · w[Rk] if h(x) = y · w[R1] · · · w[Rk] . It is easy to see that h′ is a 	-homomorphism from uni(At) to uni(K). 
Now we can take W = h′(�uni(At)), and repeat the above construction until the claim is satisfied.

Finally, to verify in NP whether a homomorphism h from uni(At) to uni(K) exists, it is sufficient to guess W of polyno-
mial size and check if uni(At) can be homomorphically mapped to IW . �

Thus, we obtain the exact complexity of the membership problem with extended ABoxes.

Theorem 6.14. The membership problem for universal solutions with extended ABoxes is NP-complete.

6.4. The non-emptiness problem for universal solutions with extended ABoxes

We now turn to the non-emptiness problem for universal solutions with null values. This problem turns out to be 
harder than the membership problem as now candidate solutions, which can be of exponential size, are not part of the 
input. In fact, we show by reduction from the validity problem for quantified Boolean formulas that checking the existence 
of a universal solution is PSpace-hard. We also show an ExpTime upper bound by relying on techniques based on two-way 
alternating automata on infinite trees (2ATA). 2ATAs are a generalization of non-deterministic automata on infinite trees whose 
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non-emptiness problem is in ExpTime [65]. They are at the basis of a variety of reasoning techniques for description and 
modal logics. In particular, due to their ability of traversing trees both downwards and upwards, they are well suited for 
handling inverse roles in DL-LiteR. We briefly introduce in Section B.7 the basic notions about infinite trees and 2ATAs and 
the notation that we use for them.

The lower bound can be shown (see the appendix) similarly to Theorem 11 in [55] by reduction from the validity 
problem for quantified Boolean formulas, known to be PSpace-complete:

Lemma 6.15. The non-emptiness problem for universal solutions with extended ABoxes in DL-LiteR is PSpace-hard.

As a corollary, we obtain a PSpace lower bound for the non-emptiness problem for universal UCQ-solutions with ex-
tended ABoxes by a straightforward reduction from the non-emptiness problem for universal solutions with extended 
ABoxes.

Lemma 6.16. The non-emptiness problem for universal UCQ-solutions with extended ABoxes is PSpace-hard.

Proof. Let M = (�, 	, B) be a mapping, and Ks = 〈S, As〉 a KB over �. We construct K′
s and M′ such that there exists a 

universal solution for Ks under M iff there exists a universal UCQ-solution for K′
s under M′ .

Define M′ to be (�′, 	′, B′), where �′ extends � with fresh concept and roles names {X1 | X ∈ 	} and fresh role names 
Q 1, Q 2, 	′ extends 	 with a fresh role name Q , and B′ = B ∪ {X1 � X | X ∈ 	} ∪ {Q 1 � Q , Q 2 � Q }. Let K′

s = 〈S ′, A′
s〉, 

where A′
s is the union of As , assertions

{X1(aX ) | X ∈ 	 is a concept name} ∪ {X1(aX ,bX ) | X ∈ 	 is a role name},
for fresh constants aX , bX for each symbol X , and assertions {∃Q 1(aQ ), Q 2(aQ , bQ )}, for fresh constants aQ , bQ . If Ks is 
not 	-safe with respect to M, then S ′ = S ∪ {∃Q −

1 � ∃Q 1}, otherwise S ′ = S . In the appendix, we prove that K′
s and M′

are as required. �
As for the upper bound, we show how to check condition (core) of Lemma 6.4, i.e., whether there exists a finite subset 

D of �uni(Ksb) and a 	-homomorphism from uni(Ksb) to its finite sub-interpretation induced by D . In the following, for an 
interpretation U and a finite subset D of �U , we denote with U D the sub-interpretation of U induced by D . We also write 
Ud if D = {d}. To simplify the presentation, in the rest of this section we tackle a more general problem: given two (simple) 
KBs K1 and K2 with canonical models U1 and U2, and a signature �, decide whether there exists a �-homomorphism 
from U1 to U D

2 , for some finite subset D of �U2 .
As in the case of the membership problem for simple universal solutions in Section 6.2, for such a homomorphism to 

exist, (i) an analog of condition (abox1) must hold (cf. Lemma 6.17), and (ii) for each c ∈ ind(K1), the tree U c
1 must be 

�-homomorphically embeddable into U Dc
2 , for some finite subset Dc of �U2 . To check condition (ii) we adopt 2ATAs; more 

precisely, we show how to construct for each constant c ∈ ind(K1), an automaton Ac (with Büchi acceptance condition) ac-
cepting (infinite) trees that correspond to (the finite) U Dc

2 . Hence, to verify the existence of the required �-homomorphism, 
we solve the non-emptiness problem of Ac , for each constant c. It follows that, if the language accepted by Ac for some 
c ∈ ind(K1) is empty, then there is no such homomorphism, otherwise we can obtain U D

2 from the trees accepted by Ac . 
Below we show how to construct the automaton Ac for two KBs K1, K2, a signature �, and some constant c ∈ ind(K1).

In the following, we assume that ind(K2) = {a1, . . . , ana }, wit(K2) = {w1, . . . , wnw }, and n = max(na, nw). Denote by U1
and U2 the canonical models, and by G1 and G2 the generating structures of K1 and K2. We define the automaton Ac as 
the tuple 〈	, Q , δ, q0, F 〉, where the alphabet 	 is the set

	 = {root, stop} ∪ {âi | 1 ≤ i ≤ na} ∪ {ŵi | 1 ≤ i ≤ nw}.
Hence, Ac accepts n-ary trees where each node either corresponds to a constant of K2, labeled with the symbol âi , or 
corresponds to a witness of K2, labeled with the symbol ŵi , or is the root of the tree, labeled with root, or is a node 
outside the finite part, labeled with stop. The set Q of states is partitioned into three sets:

Q = {q0} ∪ Q f ∪ Q h,

where Q f is the set of states responsible for labeling an input tree T as an appropriate finite substructure of U2, and Q h
is the set of states responsible for checking the existence of a homomorphism from U c

1 into a finite substructure of U2. We 
define

Q f = {αi | 1 ≤ i ≤ na} ∪ {ωi | 1 ≤ i ≤ nw},
where the states αi are responsible for labeling T with the constants of K2, and the states ωi are responsible for labeling T
with the witnesses of K2. We define the transition function δ for these states and for the initial state q0 as follows:
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δ(q0, L) =

⎧⎪⎨
⎪⎩

( na∧
i=1

(i,αi)

)
∧ (0,qh), if L = root

⊥, otherwise,

(4)

for 1 ≤ i ≤ na, δ(αi, L) =

⎧⎪⎪⎨
⎪⎪⎩

∧
1≤ j≤nw ,

ai�K2
w j

( j,ω j), if L = âi

⊥, otherwise,

(5)

for 1 ≤ i ≤ nw , δ(ωi, L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∧
1≤ j≤nw ,

wi�K2
w j

( j,ω j), if L = ŵi,

�, if L = stop

⊥, if L ∈ 	 \ {ŵi, stop},

(6)

where qh is a state from Q h , which we are going to define below. For now observe that due to the transitions above, a tree 
T accepted by Ac will have the symbol root in the root and the symbol âi in the i-th successor of the root. Then, each 
of the i-th successors above will have its j-th successor marked with ŵ j whenever ai �K2 w j . Further, each of the j-th 
successors above will have its i-th successor marked with ŵi whenever w j �K2 wi , and so on. Note that at some step, 
when w j �K2 wi , a node in T marked with ŵ j can have its i-th successor marked with stop (instead of ŵi ). This should 
mean that this i-th successor is not inside the finite substructure of U2 to which the homomorphism will map U c

1 , and 
Ac will stop going down T . Note that it is not yet guaranteed that each path in T from the root contains at some point a 
node labeled with stop instead of ŵi . However, if this is not the case, we would have an infinite path in T over which the 
automaton passes infinitely often through states ωi . We rule this out by means of an appropriate acceptance condition of 
the automaton, which we present below.

Let wit(K1) = {u1, . . . , um}, and assume that u0 = c. Now, the set of states Q h is defined as:

Q h = {qh} ∪ {γ�, χ� | 0 ≤ � ≤ m} ∪ {κ i
� | 1 ≤ � ≤ m, 1 ≤ i ≤ na},

and the transitions for theses states are defined as follows, where 1 ≤ � ≤ m and 1 ≤ i ≤ na:

δ(qh, L) =
{

( j, γ0), if L = root and c = a j for some j,

⊥, otherwise;
(7)

for t ∈ {a1, . . . ,ana , w1, . . . , wnw }, δ(χ�, t̂) = (0, γ�) ∨
∨

1≤ j≤nw ,
t�K2

w j

( j,χ�) ∨ (−1,χ�); (8)

δ(χ�, root) =
na∨
j=1

( j,χ�); (9)

δ(κ i
�, L) =

{
(i, γ�), if L = root,

⊥, otherwise;
(10)

for q ∈ Q h, δ(q, stop) = ⊥. (11)

Next, for 0 ≤ � ≤ m and b ∈ {a1, . . . , ana },

δ(γ�, b̂) = τ
u�

b ∧
∧

1≤k≤m,
u� �

uk

(0,χk) ∧
∧

1≤k≤m,
u� �

uk

( ∨
1≤ j≤nw ,
b�K2

w j

(
ρ

u�,uk
b,w j

∧ ( j, γk)
) ∨

na∨
i=1

(
ρ

u�,uk
b,ai

∧ (−1, κ i
k)

)); (12)

and for 1 ≤ � ≤ m and v ∈ {w1, . . . , wnw },

δ(γ�, v̂) = τ
u�
v ∧

∧
1≤k≤m,
u� �

uk

(0,χk) ∧
∧

1≤k≤m,
u� �

uk

( ∨
1≤ j≤nw ,
v�K2

w j

(
ρ

u�,uk
v,w j

∧ ( j, γk)
) ∨ (

η
u�,uk
v ∧ (−1, γk)

))
, (13)

where the relations � and � defined between elements s, s′ ∈ {u0, . . . , um} indicate whether the edge between s and s′
has a nonempty or empty �-role label, respectively:

s s′ if s �K1 s′ and rG1(s, s′) �= ∅, and s s′ if s �K1 s′ and rG1(s, s′) = ∅,
� � � �
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the functions τ s
t and ρs,s′

t,t′ , encoding local homomorphism conditions, return true iff s can be mapped to t , and the edge 
(s, s′) can be mapped to the edge (t, t′), respectively:

τ s
t =

{
�, if tG1

� (s) ⊆ tG2
� (t)

⊥, otherwise
ρs,s′

t,t′ =
{

�, if rG1
� (s, s′) ⊆ rG2

� (t, t′)
⊥, otherwise

and the function ηu,u′
w returns true iff the edge (u, u′) can be “inversely” mapped to the edge (w, s), for the predecessor s

of w:

ηu,u′
w =

{
�, if {R− | R ∈ rG1

� (u, u′)} ⊆ rG2
� (s, w) for some s �K2 w

⊥, otherwise,

for s, s′ as above, t, t′ ∈ {a1, . . . , ana , w1, . . . , wnw }, u, u′ ∈ {u1, . . . , um} and w ∈ {w1, . . . , wnw }. This concludes the definition 
of the transition function.

Observe that for each witness u� ∈ wit(K1) there are two states in Q h: γ� is responsible for checking the existence of 
a homomorphic image for the sub-tree generated by u�, and χ� is the “expecting state”, which is responsible for non-
deterministically finding a homomorphic image of u�; moreover for each witness u� ∈ wit(K1) and constant ai ∈ ind(K2), 
there is a state κ i

� used to move from the current constant in K2 via the root to ai , to which u� is mapped. Intu-
itively, suppose an element cu�1 · · · u�k of �U1 is homomorphically mapped to the element ai1 wi2 · · · wir of �U2 and 
u�k �K1 u�k+1 . If u�k � u�k+1 then the element cu�1 · · · u�k u�k+1 of �U1 has to be mapped to an immediate successor 

or predecessor of the image of cu�1 · · · u�k in U2. For wir �K2 wir+1 , whenever τ
u�k+1
wir+1

= � and ρ
u�k

,u�k+1
wir ,wir+1

= �, it is guar-

anteed that the edge (cu�1 · · · u�k , cu�1 · · · u�k u�k+1 ) of U1 can be mapped to the edge (ai1 wi2 · · · wir , ai1 wi2 · · · wir wir+1 )

of U2. Alternatively, if η
u�k

,u�k+1
wir

= � then the edge (cu�1 · · · u�k , cu�1 · · · u�k u�k+1) can be “inversely” mapped to the edge 
(ai1 wi2 · · · wir , ai1 wi2 · · · wir−1 ). If, however, u�k � u�k+1 then cu�1 . . . u�k u�k+1 can be mapped to any element of U2, which 
is reflected by switching to the state χ� .

For the (Büchi) acceptance condition we take F = {γi | 1 ≤ i ≤ m}. Observe that neither the states ωi of Q f nor χl of Q h
are in F . This implies that a tree is rejected if it has an infinite branch all of whose nodes are labeled with ŵi , or if all 
runs on it are such that the mapping of a “disconnected successor” (such as u�k+1 with u�k � u�k+1 in the example above) 
is “infinitely postponed”. On the other hand, each accepted tree represents a finite substructure of U2 to which U c

1 can be 
�-homomorphically mapped. The number of states of the automaton Ac is quadratic and the overall size of the automaton 
Ac is polynomial in the combined size of the two generating structures G1 and G2.

We prove that verifying whether U1 can be �-homomorphically mapped to U D
2 for some finite D ⊆ �U2 reduces to 

checking the non-emptiness problem of Ac .

Lemma 6.17. Let K1, K2 be KBs and � a signature. There exists a finite subset D of �U2 and a �-homomorphism from U1 to U D
2 if 

and only if

(abox2) rU1
� (a, b) ⊆ rU2

� (a, b), for all a, b ∈ ind(K1), and
(aut) the language of the automaton Ac is non-empty, for each c ∈ ind(K1).

Proof sketch. (⇒) Let D ⊆ �U2 be finite, and h a �-homomorphism from U1 to U D
2 . We construct a labeled tree T =

({1, . . . , n}∗, V ) where n = max(na, nw) and show that T ∈ L(Ac), for each c ∈ ind(K1). The labeling function V is defined 
as follows:

V (ε) = root;
V (i) = âi, for each ai ∈ D ∩ ind(K2);
V (i1i2 · · · ir) = ŵir , for each ai1 wi2 · · · wir ∈ D;
V (x) = stop, for each x ∈ {1, . . . ,n}∗ such that V (x) is not otherwise defined.

To show that T ∈ L(Ac), we construct a run tree (Tr, r) of Ac on T . The idea behind this construction is the following. 
Assume that y ∈ Tr with r(y) = (x, q), x ∈ {1, . . . , n}∗ , and V (x) = L. Observe that the transition function can be viewed 
as a conjunction δ(q, L) = ∧

i �i , where each �i = ∨
j ψ

i
j . To satisfy δ(q, L), we construct exactly one child for each �i , 

and we satisfy �i by choosing exactly one ψ i
j from �i , making use of the given homomorphism h. Thus, for instance, if 

r(y) = (1 · 2, γ1), V (1 · 2) = ŵ2, the current path in U1 is cu1 (this path can be obtained from the path from the root of Tr
to y), h(cu1) = a1 w2, and u1 � u3 and h(cu1u3) = a1 w2 w4, then we satisfy ψ i

j = (4, γ3), so y would have a child y′ with 
r(y′) = (1 · 2 · 4, γ3).
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If, instead, u1 � u3 and h(cu1u3) = a2, we switch to the “expecting” state χ3 and remain in this state while traversing 
the tree {1, . . . , n}∗ from the node 1 · 2 via the root to the node 2. Once node 2 is reached, we switch to the state γ3. 
The choices for satisfying the transition function follow from that. Thus, the run from y continues as: (1 · 2, γ1), (1 ·
2, χ3), (1, χ3), (ε, χ3), (2, χ3), (2, γ3).

For the formal definition of (Tr, r), we refer to the appendix.

(⇐) If the language of Ac is non-empty, then there is a tree T = ({1, . . . , n}∗, V ) ∈L(Ac) and an accepting run (Tr, r) of 
Ac over T . We can construct a finite set Dc ⊆ �U2 by proving that T encodes a finite subset of �U2 , extracting Dc from 
it, and defining a �-homomorphism hc from U c

1 to U D
2 by induction, based on the choices in Tr to satisfy the transition 

function. A �-homomorphism from U1 to U D
2 for D = ⋃

c Dc is defined as the union of hc for each c ∈ ind(K1). �
Example 6.18. Consider M and Ks from Example 5.8, i.e., M = (�, 	, B), where � = {A, R, S}, 	 = {Q }, and B = {R �
Q , S � Q }, and Ks = 〈S, As〉, where As = {A(a), S(a, a)} and S = {A � ∃R, ∃R− � ∃R}.

We construct the automaton Aa for K1, K2 and �, where K1 = 〈S ∪ B, As〉, K2 = K1 and � = 	. Moreover, ind(K2) =
{a1}, wit(K2) = {w1} and wit(K1) = {u1}, where a1 = a, w1 = w[R] , and u1 = w[R] . Thus n = 1, so Aa accepts trees of 
the form ({1}∗, V ), where V (x) ∈ {root, stop, a1, w1}, and the set of accepting states is F = {γ1}. Below we depict a tree 
T ∈L(Aa) with an accepting run over T that starts in εr with r(εr) = (ε, q0).

T

ε
R

1
a1

1 · 1
w1

1 · 1 · 1
S ···

εr

···

···

q0

α1

ω1

ω1

qh

γ0

κ1
1

γ1

κ1
1

γ1

From T we can extract the ABox At = {Q (a, a), Q (a, n)}, which is also a universal solution for Ks under M. �
Summing up, we get:

Theorem 6.19. If extended ABoxes are allowed in universal solutions, then the non-emptiness problem for universal solutions is 
PSpace-hard and in ExpTime.
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7. Complexity results on UCQ-representability

In this section, we develop techniques and complexity results for the problem of UCQ-representability. More precisely, 
we show in Section 7.1 that the membership problem for UCQ-representations is NLogSpace-complete, and then we prove 
in Section 7.2 that the same complexity bound holds also for the non-emptiness problem for UCQ-representations.

7.1. The membership problem

One can immediately notice some similarities between the membership problem for UCQ-representations and the mem-
bership problem for universal UCQ-solutions, which was shown to be ExpTime-complete in [30]. However, the universal 
quantification over ABoxes in the definition of UCQ-representations makes the former problem computationally simpler; in 
fact, we prove in this section that this problem is NLogSpace-complete, which coincides with the complexity of TBox rea-
soning in DL-LiteR [61]. We now list several observations that help to understand this drop in complexity, and also provide 
an intuition for the characterization of UCQ-representations that is stated in Lemma 7.1, and which is used to pinpoint the 
complexity of the membership problem for UCQ-representations. In the following, assume fixed a mapping M = (�, 	, B), 
a source TBox S , and a target TBox T .

1) For simplicity, we assume first that S , B, and T do not contain disjointness axioms. Let As = {A(a)} be a source ABox, 
for an atomic concept A, and assume that S ∪B |= A � B ′ for some basic concept B ′ over 	. Then 〈S ∪B, As〉 |= B ′(a) and, 
thus, q = B ′(a) evaluates to true over 〈S ∪B, As〉. Hence, for T to be a UCQ-representation of S under M, it should be the 
case that 〈T ∪B, As〉 |= q. From Lemma 3.5 it then follows that uni(T ∪B, As) |= B ′(a), thus, T ∪B |= A � B ′ . The converse 
can be shown in the same way but starting with the assumption that T ∪ B |= A � B ′ . It is easy to extend the above 
reasoning to the case As = {B(a)} for a basic concept B over �, or As = {R(a, b)} for a basic role R over �. As we quantify 
over all possible source ABoxes, we are free to choose any such concept B or role R . Hence, if T is a UCQ-representation 
of S under M, then for each basic concept or role X over � and each basic concept or role X ′ over 	, it holds that 
S ∪B |= X � X ′ if and only if T ∪B |= X � X ′ . This is the main intuition behind condition (ii) in Lemma 7.1.

2) For the sake of readability, below we denote by Usb and Utb the canonical models of 〈S ∪ B, As〉 and 〈T ∪ B, As〉, 
respectively. Moreover, for a TBox O, we say that a concept B generates a role R in O, and we write

B �O R

if for every constant a ∈ Na , it holds that a �〈O,{B(a)}〉 w[R] .
Let As = {A(a)} for an atomic concept A ∈ �, and assume that A �S R , S ∪ B |= ∃R− � B ′ and S ∪ B |= R � R ′ , for a 

role R over �, a concept B ′ over 	, and a role R ′ over 	. Then

aw[R] ∈ �Usb , B ′ ∈ tUsb
	 (aw[R]), and R ′ ∈ rUsb

	 (a,aw[R]).
Next, for T to be a UCQ-representation of S under M, by Lemma 3.7, it follows that Usb has to be finitely 
	-homomorphically equivalent to Utb . Let � be the set containing a and all paths of the form aw[Q ] in �Usb , I the sub-
interpretation of Usb induced by �, and h a 	-homomorphism from I to Utb . Then h(a) = a and there exists aw[S] ∈ �Utb , 
for a basic role S over 	, such that

h(aw[R]) = aw[S], B ′ ∈ tUtb
	 (aw[S]), and R ′ ∈ rUtb

	 (a,aw[S]),
since the image of aw[R] cannot be a constant as ind(As) = {a} and there are no loops on a in As . By construction of the 
canonical model and by the fact that B is a set of inclusions from � to 	, it follows that T ∪ B |= A � ∃S , T |= ∃S− � B ′ , 
and T |= S � R ′ . Clearly, given T and B, one can check the existence of such S effectively. On the other hand, if we assume 
that A �S R , S ∪B |= ∃R− � B ′ , and S ∪B �|= R � R ′ for any role R ′ over 	 (i.e., rUsb

	 (a, aw[R]) = ∅), then the homomorphic 
image of aw[R] could be any element y in �Utb with tUsb

	 (aw[R]) ⊆ tUtb
	 (y). This example provides the intuition behind 

condition (iii) in Lemma 7.1.
Observe that it is sufficient to consider only chains of roles of length 1. Thus, for example, if A �S∪B R and ∃R− �S∪B

Q , for some roles R ,Q , then the fact that T is a UCQ-representation for S under M depends on whether T satisfies the 
condition (iii) for two separate cases:

– As = {A(a)} and A �S∪B R ,
– As = {∃R−(a)} and ∃R− �S∪B Q .

Condition (iv) is symmetric to condition (iii) if we start with the assumption A �T ∪B R ′ and T |= ∃R ′− � B ′ for a role 
R ′ over 	 and a concept B ′ over 	.

3) To conclude, we analyze the cases when S , B, and T contain disjointness axioms. First, notice that without loss of 
generality we can assume that there are no disjointness axioms in S as in the definition of UCQ-representations, we 
consider only ABoxes As that are consistent with S . So we will take into account only disjointness axioms in B and T . 
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Then for a source ABox As consistent with S , it is possible that 〈S ∪B, As〉 is inconsistent due to the disjointness axioms 
in the mapping, which will make all possible tuples to be in the answer to every query.

Consider an ABox As = {A(a), C(a)} for atomic concepts A, C over �, and assume that As is consistent with S . Further-
more, assume that the KB 〈S ∪B, {A(b), C(b)}〉, for an arbitrary constant b, is inconsistent. Then 〈S ∪B, As〉 is inconsistent, 
and by definition of certain answers over an inconsistent KB, cert(q, 〈S ∪ B, As〉) = AllTup(q) for each target UCQq. There-
fore, in order for T to be a UCQ-representation of S under M, 〈T ∪B, As〉 has to be inconsistent as well. To ensure that 
this is the case, we need to check that (A, C) is also (T ∪ B)-inconsistent. Similarly but in the opposite direction, if we 
start with the assumption that 〈T ∪ B, {A(b), C(b)}〉 is inconsistent, it should be verified that also {S ∪ B, {A(b), C(b)}} is 
inconsistent, for some arbitrary constant b. This is the intuition behind condition (i) in Lemma 7.1.

Finally, we are ready to characterize UCQ-representations. To capture the above intuitions, in the following, for a TBox O, 
we say that a pair (B, B ′) of basic concepts is O-consistent, if the KB 〈O, {B(a), B ′(a)}〉 is consistent, where a is an arbi-
trary constant, and (B, B ′) is O-inconsistent otherwise. Similarly, a pair (R, R ′) of basic roles is O-consistent, if the KB 
〈O, {R(a, b), R ′(a, b)}〉 is consistent, where a, b are arbitrary distinct constants, and (R, R ′) is O-inconsistent otherwise. 
Moreover, a concept or role X is O-consistent if (X, X) is O-consistent, and O-inconsistent otherwise. Below, we abuse 
notation and write gen(O, B(o)) instead of gen(〈O, {B(o)}〉), and uni(O, B(o)) instead of uni(〈O, {B(o)}〉), for a TBox O, a 
concept B and o ∈ Na .

Lemma 7.1. Given a mapping M = (�, 	, B), a TBox T over 	 is a UCQ-representation of a TBox S over � under M if and only if 
the following conditions hold:

(i) for each pair of S-consistent concepts or roles X, X ′ over �, (X, X ′) is (S ∪B)-consistent iff (X, X ′) is (T ∪B)-consistent;
(ii) for each (S ∪B)-consistent concept or role X over � and each X ′ over 	, S ∪B |= X � X ′ iff T ∪B |= X � X ′;

(iii) for each (S ∪B)-consistent concept B over � and each role R such that B �S∪B R, there exists y ∈ �gen(T ∪B,B(o)) , where o is 
an arbitrary constant, such that

tgen(S∪B,B(o))

	 (w[R]) ⊆ tgen(T ∪B,B(o))

	 (y), and rgen(S∪B,B(o))

	 (o, w[R]) ⊆ rgen(T ∪B,B(o))

	 (o, y);
(iv) for each (S ∪B)-consistent concept B over � and each role R such that B �T ∪B R, there exists y ∈ �gen(S∪B,B(o)) , where o is 

an arbitrary constant, such that

tgen(T ∪B,B(o))

	 (w[R]) ⊆ tgen(S∪B,B(o))

	 (y), and rgen(T ∪B,B(o))

	 (o, w[R]) ⊆ rgen(S∪B,B(o))

	 (o, y).

Proof. (⇐) Let the conditions above hold for S , T and B, and let As be an ABox over � such that 〈S, As〉 is consistent. 
Moreover, denote by Ksb the KB 〈S ∪B, As〉, and by Ktb the KB 〈T ∪B, As〉, and let Usb and Utb be the canonical models 
of Ksb and Ktb , respectively. Next we show that Ksb and Ktb are 	-query inseparable.

Observe that condition (i) ensures that for every ABox As over � that is consistent with S , Ksb is consistent iff Ktb

is consistent. Indeed, if Ksb is consistent, then for each pair of basic concepts B, B ′ over � such that As |= B(a) and 
As |= B ′(a) for some a ∈ ind(As), the KB K′

sb = 〈S ∪ B, As ∪ {B(a), B ′(a)}〉 is consistent, and by monotonicity of first-order 
logic we obtain that the KB 〈S ∪ B, {B(a), B ′(a)}〉 is also consistent, and thus (B, B ′) is S ∪ B-consistent. And similarly, for 
each pair of basic roles R, R ′ over � such that As |= R(b, c) and As |= R ′(b, c) for some b, c ∈ ind(As), we can derive that 
(R, R ′) is S ∪ B-consistent. Then, by (i) for each pair B , B ′ as above, (B, B ′) is T ∪ B-consistent, and likewise for each 
pair R , R ′ as above. To see that Ktb is consistent, it suffices to observe that the interpretation I defined as the union of 
the canonical models uni(T ∪ B, {B(a), B ′(a)}) and uni(T ∪ B, {R(b, c), R ′(b, c)}) for B , B ′ , R , R ′ , and a, b, c as above, is a 
model Ktb . Note that in this paragraph, B and B ′ can denote the same concept, and R and R ′ can denote the same role. The 
proof can be inverted to show that consistency of Ktb implies consistency of Ksb .

First, assume Ksb is inconsistent, it follows that cert(q, Ksb) = AllTup(q) for each UCQ q over 	. By the argument above, 
Ktb is inconsistent, so cert(q, Ktb) = AllTup(q) for each UCQ q over 	 as well, hence Ksb and Ktb are 	-query inseparable.

Now assume Ksb is consistent. One can show that from (ii) and (iii) it follows that Usb is 	-homomorphically embed-
dable into Utb (see Proposition C.1). Since Ktb is consistent, we can apply Lemma 3.7 to obtain that Ktb 	-query entails Ksb . 
On the other hand, one can show that (ii) and (iv) imply that Utb is 	-homomorphically embeddable into Usb (see Proposi-
tion C.2), hence Ksb 	-query entails Ktb by Lemma 3.7. We obtain again that Ksb and Ktb are 	-query inseparable.

(⇒) Assume, by contradiction, that one of the conditions (i)–(iv) is not satisfied. We produce an S-consistent ABox As

over � and a Boolean CQ q over 	 such that it is not the case that Ksb |= q iff Ktb |= q.
Assume, first, that condition (i) is violated. Then we take As = {B1(o), B2(o)} for concepts B1 and B2 violating it and 

q = B1(a) for some constant a distinct from o. If (B1, B2) are S ∪ B-consistent, but T ∪ B-inconsistent, it follows that 
Ksb �|= q and Ktb |= q, and the opposite holds if (B1, B2) are T ∪ B-consistent, but S ∪ B-inconsistent. If (ii) is violated for 
roles, the proof is analogous.

Let now condition (ii) be violated for some S ∪ B-consistent concept B over �. Assume there is B ′ such that S ∪ B |=
B � B ′ and T ∪ B �|= B � B ′ , and consider As = {B(o)} and q = B ′(o). Then B ′ ∈ tUsb

	 (o) and B ′ /∈ tUtb
	 (o), so it follows 

that Usb |= q and Utb �|= q; finally by Lemma 3.5 it follows Ksb |= q and Ktb �|= q. The opposite follows if we assume that 
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S ∪B �|= B � B ′ and T ∪B |= B � B ′ , which completes the proof for this case. If condition (ii) is violated for some role, the 
proof is analogous.

Next, assume condition (iii) is violated, so there exists an S ∪ B-consistent concept B over � and a role R

such that B �S∪B R , and for As = {B(o)} there is no y ∈ �gen(Ktb) such that both tgen(Ksb)

	 (w[R]) ⊆ tgen(Ktb)

	 (y) and 
rgen(Ksb)

	 (o, w[R]) ⊆ rgen(Ktb)

	 (o, y). Let B = tgen(Ksb)

	 (w[R]), R = rgen(Ksb)

	 (o, w[R]), and consider

q = ∃x

( ∧
R ′∈R

R ′(o, x) ∧
∧
B ′∈B

B ′(x)

)
,

where B ′(x) denotes atom A(x) if B ′ = A for an atomic concept A, and B ′(x) denotes formula ∃x′.S(x, x′) if B ′ = ∃S for a 
role S . Then Usb |= q by mapping the existentially quantified variable x to ow[R] . On the other hand, Utb �|= q as there is no 
element of �Utb to which x could be mapped. Using Lemma 3.5 we obtain that Ksb |= q and Ktb �|= q.

The case when condition (iv) is violated is analogous to the case above. This completes the proof. �
Having devised a characterization of UCQ-representations, we discuss several examples of (non-)UCQ-representations.

Example 7.2. Assume that M = (�, 	, B), where � = {A, R}, 	 = {A′, R ′, B ′}, and B = {A � A′, ∃R− � B ′}. Moreover, let 
S = {A � ∃R}.

(a) In Example 5.18 we showed that T = {A′ � B ′} is not a UCQ-representation of S under M. In fact, in this case, 
condition (ii) is not satisfied, as T ∪B |= A � B ′ while S ∪B �|= A � B ′ .

(b) In the same example we showed that also T = {A′ � ∃R ′, ∃R ′− � B ′} is not a UCQ-representation of S under M. In 
this case, condition (iv) is not satisfied, as A �T ∪B R ′ , but there exists no y ∈ �gen(S∪B,A(o)) such that

tgen(T ∪B,A(o))

	 (w[R ′]) ⊆ tgen(S∪B,A(o))

	 (y) and rgen(T ∪B,A(o))

	 (o, w[R ′]) ⊆ rgen(S∪B,A(o))

	 (o, y),

since neither y = o, nor y = w[R] in �gen(S∪B,A(o)) satisfy R ′ ∈ rgen(S∪B,A(o))

	 (o, y). �
Example 7.3. Assume that M = (�, 	, B), where

� = {A, R, S, Q }
	 = {A′, B ′, S ′, Q ′}
B = {A � A′,∃R− � B ′, S � S ′, Q � Q ′,∃Q − � B ′}

and let S = {A � ∃R, A � ∃S,∃S− � ∃Q }
T = {A′ � ∃S ′,∃S ′ − � ∃Q ′,∃Q ′ − � B ′}

Then T is a UCQ-representation of S under M. We verify that conditions (iii) and (iv) are satisfied. First, A �S∪B R: we 
take w[Q ′] ∈ �gen(T ∪B,A(o)) and it is easy to see that the following is satisfied:

tgen(S∪B,A(o))

	 (w[R]) ⊆ tgen(T ∪B,A(o))

	 (w[Q ′]) and rgen(S∪B,A(o))

	 (o, w[R]) ⊆ rgen(T ∪B,A(o))

	 (o, w[Q ′]),

as rgen(S∪B,A(o))

	 (o, w[R]) = ∅. Next, A �S∪B S and ∃S− �S∪B Q . It should be clear that we take w[S ′] and w[Q ′] in 
�gen(T ∪B,A(o)) and �gen(T ∪B,∃S−(o)) respectively to satisfy condition (iii). As for the opposite direction, now differently 
from Example 7.2, for both w[S ′] and w[Q ′] in �gen(T ∪B,A(o)) and �gen(T ∪B,∃S−(o)) respectively, there exist w[S] and w[Q ]
in �gen(S∪B,A(o)) and �gen(S∪B,∃S−(o)) that satisfy condition (iv). Below we provide the graphical representation of S , B
and T , and we illustrate the projections of gen(Ksb) and gen(Ktb) on 	, for Ksb = 〈S ∪ B, A(o)〉 and Ktb = 〈T ∪ B, A(o)〉
(concept labels of the form ∃P , ∃P− for a role P are not shown). Notice that the dashed edge (o, w[R]) represents the fact 
that the role type rgen(Ksb)

	 (o, w[R]) is empty.

gen(Ksb)

o
A′

w[R]
B ′

w[S]

w[Q ]
B ′

S ′

Q ′

gen(Ktb)

o
A′

w[S ′ ]

w[Q ′ ]
B ′

S ′

Q ′

S

A

∃R

∃R−

∃S

∃S−

∃Q

∃Q −R

S

Q

T

A′

∃S ′
∃S ′ −
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B ′

S ′

Q ′

B

�
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Example 7.4. Assume that M = ({A, B, C, D}, {A′, B ′}, B), where B = {A � A′, B � B ′, C � ¬A′, D � B ′}, and let S = {D � C}. 
Then T = {A′ � ¬B ′} is not a UCQ-representation of S under M. To see that, consider source ABox As = {A(a), B(a)}: it is 
consistent with S ∪B, but inconsistent with T ∪B. So for q = A′(b) where b is a constant distinct from a, 〈S ∪B, As〉 �|= q, 
and 〈T ∪ B, As〉 |= q. Let us verify that using the characterization. In fact, although, T satisfies condition (i) for the pair 
of concepts (A, D), which is both S ∪ B-inconsistent and T ∪ B-inconsistent, T violates this condition for the pair (A, B), 
which is clearly S ∪ B-consistent, however T ∪ B-inconsistent as T ∪ B entails both A � ¬B ′ and B � B ′ . We note that in 
general, S is not UCQ-representable under M. �

Note that the proof of Lemma 7.1 implies an alternative characterization of UCQ-representations in terms of homomor-
phisms.

Lemma 7.5. A TBox T over 	 is a UCQ-representation of a TBox S over � under a mapping M = (�, 	, B) if and only if the 
following conditions hold:

– for each ABox As consistent with S , 〈S ∪B, As〉 is consistent iff 〈T ∪B, As〉 is consistent;
– for each ABox As consistent with S ∪B, uni(S ∪B, As) is 	-homomorphically equivalent to uni(T ∪B, As).

We can devise an efficient algorithm for checking the membership problem for UCQ-representations from the conditions 
in Lemma 7.1. Combining it with the complexity of reasoning in DL-LiteR, we obtain the following complexity bound, which 
provides the main result of this section.

Theorem 7.6. The membership problem for UCQ-representations is NLogSpace-complete.

Proof. The lower bound can be obtained by the following reduction from the directed graph reachability problem, which 
is known to be NLogSpace-hard: given a graph G = (V, E) and a pair of vertices vk, vm ∈ V, decide if there is a directed 
path from vk to vm . To encode the problem, we need a source signature � of concept names {V i | vi ∈ V} and a target 
signature 	 of concept names {V ′

i | vi ∈ V}. Consider S = {Vk � Vm} ∪ {V i � V j | (vi, v j) ∈ E}, B = {V i � V ′
i | vi ∈ V}, and 

T = {V ′
i � V ′

j | (vi, v j) ∈ E}. One can easily verify that the condition (ii) of Lemma 7.1 is satisfied iff there is a directed path 
from vk to vm in G, whereas the other conditions of Lemma 7.1 are satisfied trivially. Therefore, there is a directed path 
from vk to vm in G iff T is a UCQ-representation of S under M = (�, 	, B). This concludes the proof of the lower bound.

For the upper bound, we show that conditions (i)–(iv) of Lemma 7.1 can be verified in NLogSpace. It is well known 
(see, e.g., [61]), that given a pair B , B ′ of DL-LiteR concepts, and a TBox O, it can be verified in NLogSpace, if (B, B ′) is 
O-consistent (using an algorithm for directed graph reachability); the same holds for a pair R , R ′ of DL-LiteR roles. The 
same algorithm can be straightforwardly adopted to check, if O |= B � B ′ or O |= R � R ′ . Therefore, clearly, conditions (i)
and (ii) can be verified in NLogSpace. Conditions (iii) and (iv) can be checked similarly to the proof of Proposition 6.3. �
7.2. The non-emptiness problem

We start with examples that provide some intuition on how the non-emptiness problem is solved.

Example 7.7. Consider M and the UCQ-representable TBox S from Example 5.17-(3): M = (�, 	, B), where � = {A, B, C}, 
	 = {A′, B ′, C ′}, and B = {A � A′, B � B ′, A � C ′}, and S = {A � B}. It follows that S ∪ B |= A � B ′ . A first and obvious 
requirement for a UCQ-representation T is that T should entail an axiom of the form D ′ � B ′ so that T ∪ B |= A � B ′
(hence, B |= A � D ′). On the other hand, it could be that B |= D � D ′ for some D distinct from A, in which case it 
follows also T ∪ B |= D � B ′ . Since we want T to be a UCQ-representation, it should be the case that S ∪ B |= D � B ′ . 
In our case, we can take D ′ equal to A′ or C ′ , and there exists no such concept D (distinct from A). Hence, there are two 
UCQ-representations of S under M, namely {A′ � B ′} and {C ′ � B ′}.

Consider now the slightly different B = {A � A′, B � B ′, C � A′} from Example 5.17-(4), where we showed that S is not 
UCQ-representable. As before, S ∪B |= A � B ′ . However now, the only candidate for D ′ is A′ , and there exists a concept D
distinct from A, namely C , such that B |= D � A′ . So on the one hand, the only way to have a UCQ-representation T is to 
include axiom A′ � B ′ in T , but on the other hand since S ∪B �|= C � B ′ , this axiom cannot be in T . In general, there is no 
way to “represent” the inclusion A � B ′ in the target, so in this case S is not UCQ-representable under M. �
Example 7.8. Consider M, S and B from Example 7.4 such that S is not UCQ-representable under M. It follows that the 
pair of concepts (A, D) is S ∪B-inconsistent as S ∪B |= A � A′ and S ∪B |= D � ¬A′ . So a candidate UCQ-representation 
T should be such that (A, D) is T ∪ B-inconsistent. One possible way to achieve that is by having T ∪ B |= D � ¬A′ , and 
since D is transferred only to B ′ through the mapping, it means that T should entail B ′ � ¬A′ , or B ′ � ¬B ′ , or A′ � ¬A′ . 
In the first case, however, the pair (A, B) would be T ∪B-inconsistent as well, since A � A′ and B � B ′ are in B. Then, for 
T to be a UCQ-representation of S under M, (A, B) should be S ∪ B-inconsistent, which is not the case. In the second 
case, the pair (B, B) would be T ∪ B-inconsistent, while it is S ∪ B-consistent. Similarly, we obtain that it cannot be the 
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case that T |= A′ � ¬A′ . In general, it is impossible to have a target TBox T such that (A, D) is T ∪ B-inconsistent and T
is a UCQ-representation of S under M, i.e., it is impossible to enforce that concepts A and D “contradict” each other in 
the target. �

We illustrated in the examples above that in order to check whether S is UCQ-representable under M one needs to 
verify whether the axioms implied by S ∪ B are “representable”, and whether S ∪ B-inconsistent pairs are “target contra-
dictable”. To formally define these notions, which are required for the characterization in Lemma 7.13, we first introduce 
the following notion. We say that a target TBox T is a parsimonious UCQ-representation of S under M, if for every ABox 
As over � that is consistent with S , 〈S ∪ B, As〉 	-query entails 〈T ∪ B, As〉. Observe that the empty TBox is a parsimo-
nious UCQ-representation. In the definitions below, X and Y denote basic concepts or roles over �, and X ′ denotes a basic 
concept or role over 	.

Definition 7.9. Inclusion X � X ′ is representable in S and M, if there exists a (possibly trivial) target axiom α such that, 
whenever T is a parsimonious UCQ-representation of S under M, it holds that T ′ = T ∪ {α} is also a parsimonious 
UCQ-representation of S under M, and moreover T ′ ∪B |= X � X ′ .

In this case, we say that X � X ′ is representable via α.

Definition 7.10. Pair (X, Y ) is target contradictable in S and M, if there exists a (possibly trivial) target axiom α such 
that, whenever T is a parsimonious UCQ-representation of S under M, it holds that T ′ = T ∪ {α} is also a parsimonious 
UCQ-representation of S under M, and moreover (X, Y ) is T ′ ∪B-inconsistent.

In this case, we say that (X, Y ) is target contradictable via α.

Our last definition before we present a characterization of the cases when S is UCQ-representable under M is the 
notion of a generating path. In the case a concept B generates a role R in S ∪ B, B �S∪B R , existence of a generating 
path for (B, R) ensures that there exists a parsimonious UCQ-representation T satisfying condition (iii) of Lemma 7.1 for B
and R . For a TBox O and a concept B (resp., role R), denote by supO

� (B) (resp., supO
� (R)) the set of all concepts B ′ (resp., 

roles R ′) over � such that O |= B � B ′ (resp., O |= R � R ′).

Definition 7.11. Let B be a concept over � and R a role. A generating path for (B, R) in S and M is a sequence 〈C0, C1, . . . Cn〉
of concepts, with n ≥ 0, such that C0 = B , and such that for 1 ≤ i ≤ n and 0 ≤ j ≤ n the following holds:

(A) Ci = ∃Q −
i for some role Q i such that S ∪B |= Ci−1 � ∃Q i and supS∪B

	 (Q i) �= ∅;
(B) for each D j ∈ supS∪B

	 (C j), inclusion C j � D j is representable in S and M;
(C) for each Si ∈ supS∪B

	 (Q i), inclusion Q i � Si is representable in S and M;
(D) supS∪B

	 (∃R−) ⊆ supS∪B
	 (Cn), and if supS∪B

	 (R) �= ∅, then n = 1 and supS∪B
	 (R) ⊆ supS∪B

	 (Q 1).

Example 7.12. Consider M and S from Example 7.3. Then 〈A, ∃S−, ∃Q −〉 is a generating path for (A, R) in S and M. Below 
we represent it graphically, where the supS∪B

	 labels are shown to the right.

�

A

∃S−

∃Q −

S

Q

	

A′,∃S ′

∃S ′ −,∃Q ′

∃Q ′ −, B ′

S ′

Q ′

To the contrary, for M and S from Example 7.2, there exists no generating path for (A, R) in S and M. �
Having defined all notions above, we provide a characterization of the cases when S is UCQ-representable under M, 

which has a similar structure to the characterization of UCQ-representations in Lemma 7.1.

Lemma 7.13. Given a mapping M = (�, 	, B) and a TBox S over �, S is UCQ-representable under M, if and only if the following 
conditions are satisfied:
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(I) For each S-consistent pair of concepts or roles X, Y over �, such that (X, Y ) is S ∪B-inconsistent, (X, Y ) is target contradictable 
in S and M.

(II) For each S ∪ B-consistent concept or role X over � and each X ′ over 	 such that S ∪ B |= X � X ′ , inclusion X � X ′ is repre-
sentable in S and M.

(III) For each S ∪B-consistent concept B over � and each role R such that B �S∪B R, there exists a generating path for (B, R) in S
and M.

Proof. (⇐) Assume that conditions (I)–(III) are satisfied, we construct a TBox T over 	 and prove that it is a 
UCQ-representation for S under M. The required T will be given as the union of the three sets of axioms presented 
below. First, let (B, C) be an S-consistent and S ∪ B-inconsistent pair of concepts over �, then (B, C) is target contra-
dictable by condition (I): assume that (B, C) is target contradictable via α, then define set axi(B, C) to be equal to {α}. 
Similarly, we define axi(R, Q ) = {α} for an S-consistent and S ∪ B-inconsistent pair of roles R, Q over �. Next, take an 
S ∪B-consistent concept B over �, and assume that S ∪B |= B � C ′ for C ′ over 	, then by condition (II), B � C ′ is repre-
sentable in S and M: let axii(B, C ′) = {α} such that B � C ′ is representable via α. Similarly, for an S ∪ B-consistent role 
R over � and Q ′ over 	, such that S ∪ B |= R � Q ′ . Finally, for each S ∪ B-consistent concept B over � and each role 
R such that B �S∪B R , define the set axiii(B, R) from the generating path 〈C0, . . . , Cn〉 for (B, R) in S and M given by 
condition (III). Take axiii(B, R) equal to the set of all axioms α, where Ci � Di is representable via α in (B), or Q i � Si is 
representable via α in (C). Finally we have:

T =
⋃

X,Y conc. or roles over �,
S-consistent and
S∪B-inconsistent

axi(X, Y ) ∪
⋃

X conc. or role over �,
S∪B-consistent ,

X ′ over 	,S∪B|=X�X ′

axii(X, X ′) ∪
⋃

S∪B-cons. B over �,
B�S∪BR

axiii(B, R)

Then it immediately follows that T is a UCQ-representation of S under M: On the one hand, by construction, T is 
a parsimonious UCQ-representation. On the other hand, the ⇒ directions of conditions (i) and (ii), and condition (iii) of 
Lemma 7.1 are satisfied by construction of T and by definition of axi, axii, axiii . From this it follows that for each ABox As

consistent with S , 〈T ∪B, As〉 	-query entails 〈S ∪B, As〉. Hence, indeed, T is a UCQ-representation of S under M.

(⇒) Let T be a UCQ-representation for S under M. It is easy to see that conditions (I) and (II) are satisfied.
We show that condition (III) is satisfied; assume that B is an S ∪ B-consistent concept over � and B �S∪B R for 

some role R . By condition (iii) of Lemma 7.1 it follows that there exists y ∈ �gen(T ∪B,B(o)) such that tgen(S∪B,B(o))

	 (w[R]) ⊆
tgen(T ∪B,B(o))

	 (y), and rgen(S∪B,B(o))

	 (o, w[R]) ⊆ rgen(T ∪B,B(o))

	 (o, y). Assume that y = w[Q n] for n ≥ 0, where o �〈T ∪B,B(o)〉
w[Q 1] � · · · � w[Q n] . Then T ∪ B |= {B � ∃Q 1} ∪ ⋃n−1

i=1 {∃Q −
i � ∃Q i+1} ∪ {∃Q −

n � B ′}, for all B ′ ∈ tgen(S∪B,B(o))

	 (w[R]), and 
rgen(S∪B,B(o))

	 (o, w[R]) �= ∅ implies n = 1 and T ∪B |= Q 1 � R ′ for all R ′ ∈ rgen(S∪B,B(o))

	 (o, w[R]). One can show by induction 
on n that for each i, 1 ≤ i ≤ n, there exist Si over � such that S ∪ B |= Si � Q i and S ∪ B |= {B � ∃S1} ∪ ⋃n−1

i=1 {∃S−
i �

∃Si+1} ∪ {∃S−
n � B ′}, for all B ′ ∈ tgen(S∪B,B(o))

	 (w[R]). We define the sequence 〈C0, . . . , Cn〉 as C0 = B , and Ci = ∃S−
i , for 

1 ≤ i ≤ n: it can be straightforwardly verified that 〈C0, . . . , Cn〉 is a generating path for (B, R) in S and M. �
We now use the above characterization to verify UCQ-representability in the following examples.

Example 7.14. Consider M and S from Example 7.3, that is, M = (�, 	, B), where

� = {A, R, S, Q }
	 = {A′, B ′, S ′, Q ′}

B = {A � A′,∃R− � B ′, S � S ′, Q � Q ′,∃Q − � B ′}
S = {A � ∃R, A � ∃S,∃S− � ∃Q }

Then one can see that conditions (II)–(III) are satisfied. Thus, for instance, S ∪ B |= A � ∃S ′ and S ∪ B |= ∃S− � ∃Q ′: 
clearly both inclusions are representable in S and M. Then, A �S∪B R and A �S∪B S , and in both cases there exist 
generating paths: 〈A, ∃S−, ∃Q −〉 from Example 7.12 and 〈A, ∃S−〉, respectively. This confirms that S is UCQ-representable 
under M. �
Example 7.15. Consider M and S from Example 7.2, that is, M = (�, 	, B), where � = {A, R}, 	 = {A′, R ′, B ′}, 
B = {A � A′,∃R− � B ′}, and S = {A � ∃R}.

In contrast with the previous example, condition (III) is not satisfied. In fact, A �S∪B R , however there exists no gener-
ating path for (A, R) in S and M as we mentioned in Example 7.12. So indeed, S is not UCQ-representable under M. �
Example 7.16. Consider M and S from Example 5.19–(3), that is, M = (�, 	, B), where � = {A, B, C}, 	 = {A′, B ′}, 
B = {A � A′, B � B ′, C � ¬A′}, and S = {B � C}. We show that condition (I) is satisfied: the pairs (A, C) and (A, B) are 
S ∪ B-inconsistent. As the former pair is already B-inconsistent, this case is not interesting. For the latter pair, one can 
easily verify that (A, B) is target contradictable in S and M via B ′ � ¬A′: in particular, T = {B ′ � ¬A′} is a parsimonious 
UCQ-representation, and (A, B) is T ∪B-inconsistent. �
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Finally, we obtain the complexity bound of the non-emptiness problem for UCQ-representations.

Theorem 7.17. The non-emptiness problem for UCQ-representations is NLogSpace-complete.

Proof. As in the case of Theorem 7.6, the lower bound is shown by a reduction from the directed graph reacha-
bility problem, however, we need a slightly more involved encoding. To encode the graph G = (V, E), we use a set 
{V i | vi ∈ V} ∪ {S1, F1, S2, F2} of �-concept names and a set {V ′

i | vi ∈ V} ∪ {S ′, F ′} of 	-concept names. Consider the TBox

S = {V i � V j | (vi, v j) ∈ E} ∪ {S1 � Vk, Vm � F1, S2 � F2},
where vk and vm are, respectively, the initial and final vertices. Then, let

B = {V i � V ′
i | vi ∈ V} ∪ {S j � S ′, F j � F ′ | j = 1,2};

we show:

– there is a directed path from vk to vm in G iff there exists a UCQ-representation for S under M = (�, 	, B).

Indeed, using Lemma 7.13, there exists a representation iff condition (II) is satisfied. By the structure of S ∪ B one can 
see that this is the case iff inclusion S2 � F ′ is representable in S and M via S ′ � F ′ , i.e., iff S ∪ B |= S1 � S ′ implies 
S ∪ B |= S1 � F ′ , and this holds iff S |= S1 � F1. The latter is the case iff there exists a path from vk to vm in G. This 
completes the proof of the lower bound.

To show the upper bound, we prove that conditions (I)–(III) of Lemma 7.13 can be checked in NLogSpace. First, one can 
derive syntactic conditions that allow one to check whether an inclusion is representable in S and M, and whether a pair 
is target contradictable in S and M (see Propositions D.1, D.2, D.3 and D.4). In fact, these conditions can be checked using 
a directed graph reachability algorithm, similar to what is done in the proof of Theorem 7.6. The new case is condition (III); 
to verify for an S ∪ B-consistent concept B over � and a role R such that B �S∪B R , that there exists a generating path 
π = 〈C0, . . . Cn〉 for (B, R) in S and M, we can use the following procedure, which runs in NLogSpace. First, we take C0 = B
and guess whether the path should end here (i.e., n = 0). If we guessed so, it only remains to verify condition (D). This 
verification can be performed in NLogSpace, similarly to the method described in the proof of Theorem 7.6. If, on the other 
hand, we guessed that the path should continue, we guess C1 = ∃Q − for some role Q , and verify that conditions (A), (B)
and (C) are satisfied. Now, if we guess that the path should stop, it remains to verify condition (D). If, on the contrary, 
we guess that the path should continue, we can forget C0, guess C2, and proceed with it in the same way as we did 
with C1. Finally, when we reach the concept Cn , such that the algorithm guesses to stop, it remains to verify condition (D). 
It should be clear that whenever a generating path π = 〈C0, . . . Cn〉 for (B, R) in S and M exists, we can find it by the 
above non-deterministic procedure. Note that n is bounded by the number of roles in S ∪B, since every generating path in 
which a role appears more than once can be shortened to one in which the subpath between the first and last occurrence 
of the role is removed (in fact, if 〈C0, . . . , Ci, . . . , C j, . . . , Cn〉 is a generating path for (B, R) in S and M, for 0 ≤ i < j and 
Ci = C j , then it is easy to see that 〈C0, . . . , Ci−1, C j, . . . , Cn〉 is also a generating path for (B, R) in S and M). �

We conclude this section by observing that the proof of Lemma 7.13 contained an algorithm for computing a 
UCQ-representation in the case S is UCQ-representable under M.

8. Concluding remarks and future work

In this article, we have defined the problem of exchanging knowledge between a source and a target KB connected 
through a mapping. In particular, we have considered source KBs, target KBs, and mappings specified in the Description 
Logic DL-LiteR, which is the logic underlying OWL 2 QL (one of the three profiles of the standard Web Ontology Language 
OWL 2), and we have studied some fundamental problems related to the exchange of knowledge in this context. We have 
developed novel game- and automata-theoretic techniques, and have provided complexity results for these problems that 
range from NLogSpace to ExpTime.

As future work, we first note that the complexity of the non-emptiness problem has not been pinpointed in all cases 
(see Table 1). In particular, it would be interesting to close the gap between the lower and upper bounds for the complex-
ity of this problem for universal solutions and extended ABoxes, as we currently know it to be PSpace-hard and included 
in ExpTime. Moreover, it would also be interesting to establish a lower bound for this problem for the case of universal 
UCQ-solutions and simple ABoxes, and to prove it to be decidable for the case of universal UCQ-solutions and extended 
ABoxes. Second, the target signature in the non-emptiness problem is allowed to include new concepts or roles neither 
in universal solutions nor in universal UCQ-solutions nor in UCQ-representations. The problem of allowing such addi-
tional symbols in these constructions is certainly interesting and worth investigating in the future. Third, it is interesting 
to study the problem of knowledge exchange for richer ontology formalisms, such as the DLs of the ALC-family, DLs with 
number restrictions or functionality, or existential rule languages/Datalog± [66–68]. The aim would be to understand for 
which variants of such formalisms the existing techniques can be extended, and which variants instead would require a 
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novel approach. For example, the techniques based on reachability games and two-way alternating tree automata, both of 
which heavily rely on the canonical model property, can be extended to other Horn DLs, such as DL-LiteHhorn , ELH, and 
Horn-ALCHI , similarly to the approach in [30]. Finally, in this work we have not dealt with other standard data exchange 
reasoning tasks, such as composition and inversion of mappings [69,70,31,20,21]. These problems are certainly of interest in 
the KB exchange framework, and will be the subject of further investigation.
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Appendix A. Proofs in Section 5

A.1. Proof of Proposition 5.3

Proof. For the sake of contradiction, assume that T is not trivial, that is, there exists an interpretation J � = 〈�J �
, ·J � 〉 of 

	 such that J � �|= T .
Given that 〈S ∪B, As〉 is consistent, there exists an interpretation I� = 〈�I�

, ·I� 〉 of (� ∪	) such that I� |= 〈S ∪B, As〉. 
Then define interpretations I = 〈�I , ·I〉 of � and J = 〈�J , ·J 〉 of 	 as follows: (1) �I = �J = �I�

; (2) aI = aJ = aI
�
, 

for every constant a ∈ Na; (3) AI
1 = AI�

1 and AJ
2 = AI�

2 , for every pair of concept names A1 ∈ � and A2 ∈ 	; and (4) PI
1 =

PI�

1 and PJ
2 = PI�

2 , for every pair of role names P1 ∈ � and P2 ∈ 	. By definition of I , J and given that I� |= 〈S ∪B, As〉, 
we conclude that I ∈ Mod(Ks) and (I, J ) |= B.

Without loss of generality, we assume that �I� ∩ �J � = ∅. Then define an interpretation J ′ of 	 as follows: (1) �J ′ =
�I� ∪ �J �

; (2) aJ ′ = aI
�
, for every constant a ∈ Na; (3) AJ ′ = AI� ∪ AJ �

, for every concept name A ∈ 	; and (4) PJ ′ =
PI� ∪ PJ �

, for every role name P ∈ 	. Given that (I, J ) |= B, we conclude that (I, J ′) |= B. In fact, for every concept 
inclusion B1 � B2 ∈ B, where B1, B2 are basic concepts, we have that BI

1 ⊆ BJ ′
2 given that BI

1 ⊆ BJ
2 , BJ

2 = BI�

2 and 
BJ ′

2 = BI�

2 ∪ BJ �

2 . Moreover, for every concept inclusion B1 � ¬B2 ∈ B, where B1, B2 are basic concepts, we have that 
BI

1 ⊆ (¬B2)
J ′

given that BI
1 ⊆ (¬B2)

J , (¬B2)
J = (¬B2)

I�
and (¬B2)

J ′ = (¬B2)
I� ∪ (¬B2)

J �
(since BJ ′

2 = BI�

2 ∪ BJ �

2
and �I� ∩ �J � = ∅). Finally, for role inclusions R1 � R2 and R1 � ¬R2 in B, where R1, R2 are basic roles, we conclude 
that RI

1 ⊆ RJ ′
2 and RI

1 ⊆ (¬R2)
J ′

as in the previous two cases.
From the results in the previous paragraph, we conclude that J ′ ∈ SatM(Mod(Ks)) (since J ′ ∈ SatM(I) and I ∈

Mod(Ks)). On the other hand, we have that J ′ �|= T , by definition of J ′ and given that J � �|= T . Thus, we have that 
J ′ �|=Kt and, thus, J ′ /∈ Mod(Kt). Therefore, we conclude that SatM(Mod(Ks)) �= Mod(Kt), which contradicts the fact that 
Kt is a universal solution for Ks under M. This concludes the proof of the proposition. �
Appendix B. Proofs in Section 6

B.1. Proof of Lemma 6.2

Proof. In this proof we assume that Ks = 〈S, As〉 and we denote by Ksb the KB 〈S ∪B, As〉.
(⇒) Let At be a universal solution for Ks under M. Then uni(At) is 	-homomorphically equivalent to uni(Ksb): since At

is a solution, there exists I , a model of Ks , such that (I, uni(At)) |= B. Then I∪uni(At) is a model of Ksb , therefore there is 
a homomorphism h from uni(Ksb) to I∪uni(At). As � and 	 are disjoint signatures it follows that h is a 	-homomorphism 
from uni(Ksb) to uni(At). On the other hand, as At is a universal solution, J , the interpretation of 	 obtained from uni(Ksb)

is a model of At with a substitution h′ . This h′ is exactly a homomorphism from uni(At) to uni(Ksb). Thus, we showed
(hom).

For the sake of contradiction, assume that (safe) does not hold, i.e., Ks is not 	-safe with respect to M, and e.g., (cs)
does not hold, i.e., there is a disjointness axiom in S of the form B � ¬C , such that (B, C) is not safe. Then both B and C
are not safe in uni(Ksb): for some b ∈ Buni(Ksb) and c ∈ Cuni(Ksb) ,

tuni(Ksb)
	 (b) �= ∅ or b ∈ Na, and tuni(Ksb)

	 (c) �= ∅ or c ∈ Na.

Let h be a 	-homomorphism from uni(Ksb) to uni(At) (it exists by (hom)), and h(b) = t and h(c) = s. Then it follows that

tuni(At)
	 (t) �= ∅ or b ∈ Na, and tuni(At)

	 (s) �= ∅ or c ∈ Na.

Take a model J of At with a substitution hJ such that �J = {d} (hence, tJ = sJ ). Such a model exists because At does 
not assert any negative information and the UNA does not hold. First, assume that both b and c are constants (i.e., bJ = cJ ). 
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Then, obviously there exists no model I of � such that I |= Ks and (I, J ) |= B: in every such I , bI must be equal to cI

which contradicts B � ¬C , and bI ∈ BI and cI ∈ CI . Now, assume that at least b is not a constant and tail(b) = w[R] for 
some role R over � (hence, b ∈ (∃R−)uni(Ksb) and S |= ∃R− � B). Let B ′ ∈ tuni(Ksb)

	 (b), then by construction of the canonical 
model, S ∪B |= ∃R− � B ′ , by homomorphism, B ′(t) ∈At , and by construction of J , B ′J = {d}. As At is a universal solution, 
let I be a model of Ks such that (I, J ) |= B. Then (∃R−)I is non-empty and (∃R−)I ⊆ B ′J . It immediately follows that 
d ∈ (∃R−)I , hence d ∈ BI . By a similar argument, it can be shown that d must be in CI , which contradicts that I is a 
model of B � ¬C . Contradiction with At being a universal solution.

Similar to (cs) we can derive a contradiction if assume that (rs) does not hold.
Now, assume (re) does not hold, i.e., B � ¬B ′ ∈ B and Buni(Ksb) �= ∅. Note that At is an extended ABox, i.e., it contains 

only assertions of the form A(u), P (u, v) for u, v ∈ Na ∪ Nl . Take a model J of At such that B ′J = �J . Such J exists as 
At contains only positive facts. Since At is a universal solution, there exist a model I of Ks such that (I, J ) |= B. Then, 
BI �= ∅, and it is easy to see that (I, J ) �|= B � ¬B ′ because �J \ B ′J = ∅ and BI ��J \ B ′J .

Similar to (ce) we can derive a contradiction if assume that (re) does not hold.
In every case we derive a contradiction, hence Ks is 	-safe with respect to M.

(⇐) Assume (hom) and (safe) hold. We show that At is a universal solution for Ks under M.
First, At is a solution for Ks under M. Let J be a model of At , and h1 a homomorphism from uni(At) to J . Further-

more, let h be a 	-homomorphism from uni(Ksb) to uni(At). Then h2(x) = h1(h(x)) is a 	-homomorphism from uni(Ksb)

to J . Let I be the interpretation of � defined as the image of h2 applied to uni(Ks), i.e., I = h2(uni(Ks)). Next, define a 
new function h′ : �uni(Ks) → � ∪ �I , where � is an infinite set of domain elements disjoint from �I , as follows:

– h′(x) = h2(x) if tuni(Ksb)
	 (x) �= ∅ or x ∈ Na .

– h′(x) = dx , a fresh domain element from �, otherwise.

We show that interpretation I ′ defined as the image of h′ applied to uni(Ksb), is a model of Ks and (I ′, J ) |= M. It is 
straightforward to verify that I ′ is a model of the positive inclusions in S and (I ′, J ) satisfy the positive inclusions from B. 
In what follows we prove that I ′ is a model of the disjointness axioms in S .

Let S |= B � ¬C for basic concepts B, C . By contradiction, assume I ′ �|= B � ¬C , i.e., for some d ∈ �I ′
, d ∈ BI ′ ∩ CI ′

. 
We defined I ′ as the image of h′ on uni(Ks), hence there must exist b, c ∈ �uni(Ks) such that b ∈ Buni(Ks) , c ∈ Cuni(Ks) , and 
h′(b) = h′(c) = d. Then, since Ks is 	-safe with respect to M, it follows that (B, C) is safe and it cannot be the case that

tuni(Ksb)
	 (b) �= ∅ or b ∈ Na, and tuni(Ksb)

	 (c) �= ∅ or c ∈ Na.

Assume b is a null and tuni(Ksb)
	 (b) = ∅. Then by definition of h′ , h′(b) = db ∈ � (hence d = db). In either case c is a con-

stant, or tuni(Ksb)
	 (c) �= ∅, or tuni(Ksb)

	 (c) = ∅, we obtain contradiction with h′(b) = db = h′(c) (recall, � and �I are disjoint). 
Contradiction rises from the assumption I �|= B � ¬C .

Next, assume S |= R � ¬Q for roles R, Q , and I ′ �|= R � ¬Q , i.e., for some d1, d2 ∈ �I ′
, (d1, d2) ∈ RI ′ ∩ Q I ′

. We 
defined I ′ as the image of h′ on uni(Ks), hence there must exist b1, b2, c1, c2 ∈ �uni(Ks) such that (b1, b2) ∈ Runi(Ks) , 
(c1, c2) ∈ Q uni(Ks) , and h′(bi) = h′(ci) = di for i = 1, 2. Then, since Ks is 	-safe with respect to M, it follows that (R, Q ) is 
safe and it cannot be the case that 1) R and Q are not safe, i.e.,

tuni(Ksb)
	 (bi) �= ∅ or bi ∈ Na, and tuni(Ksb)

	 (ci) �= ∅ or ci ∈ Na,

or 2) tuni(Ksb)
	 (b2) �= ∅ and tuni(Ksb)

	 (c2) �= ∅ if b1 = c1. Consider the following possible cases:

– b1 is a null and tuni(Ksb)
	 (b1) = ∅. Then by definition of h′ , h′(b1) = db1 ∈ � (and d1 = db1 ).

– c1 is a null and tuni(Ksb)
	 (c1) = ∅, then h′(c1) = dc1 = d1, hence c1 = b1 and (b1, b2) ∈ Runi(Ks) , (b1, c2) ∈ Q uni(Ks) . 

Assume b2 is a null and tuni(Ksb)
	 (b2) = ∅. Then h′(b2) = db2 ∈ � and in either case c2 is a constant, or tuni(Ksb)

	 (c2) �= ∅, 
or tuni(Ksb)

	 (c2) = ∅, we obtain contradiction with h′(b2) = db2 = h′(c2).
– Otherwise we obtain contradiction with h′(b1) = db1 = h′(c1).

The cases b2 or ci are nulls with the empty 	-type are covered by swapping R and Q or by taking their inverses.
Finally, assume B � ¬B ′ ∈ B and (I ′, J ) �|= B � ¬B ′ , i.e., for some d ∈ BI ′

, d /∈ �J \ CJ . Then there must exist b ∈
Buni(Ks) such that h′(b) = d. Contradiction with (ce). Similarly, we derive a contradiction with (re) if assume that R � ¬R ′ ∈
B and (I ′, J ) �|= R � ¬R ′ .

Therefore, indeed, I is a model of Ks and (I, J ) |= B. This concludes the proof At is a solution for Ks under M.
Second, At is a universal solution. Let I be a model of Ks and J an interpretation of 	 such that (I, J ) |= M. Then, 

since uni(Ksb) is the canonical model of Ksb , there exists a homomorphism h from uni(Ksb) to I ∪ J (I ∪ J is a model 
of Ksb). In turn, there is a homomorphism h1 from uni(At) to uni(Ksb), therefore h′ = h ◦ h1 is a homomorphism from 
uni(At) to I ∪ J , and a 	-homomorphism from uni(At) to J . Hence, J is a model of At: take h′ as the substitution for 
the labeled nulls. By definition of universal solution, At is a universal solution for Ks under M. �
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B.2. Proof of Lemma 6.8

Proof. The proof is inspired by one in [30], but makes use of a reduction from the Circuit Value problem, known to be
PTime-complete [63, Theorem 8.1], instead of a reduction from the Horn Satisfiability problem. Given a monotone Boolean 
circuit C consisting of a finite set of assignments to Boolean variables P1, . . . , Pn of the form Pi = 0, Pi = 1, Pi = P j ∧ Pk , 
j, k < i, or Pi = P j ∨ Pk , j, k < i, where each Pi appears on the left-hand side of exactly one assignment, check whether the 
value Pn is 1 in C .

We fix signatures � = {P , L, R} and 	 = {L′, R ′}. Let a1, . . . , an ∈ Na , and consider

As = {P (an)} ∪ {L(ai,ai), R(ai,ai) | Pi = 1 in C} ∪ {L(ai,a j), R(ai,ak) | Pi = P j ∧ Pk in C}
∪ {L(ai,a j), R(ai,a j), L(ai,ak), R(ai,ak) | Pi = P j ∨ Pk in C}

S = {P � ∃L, P � ∃R, ∃L− � P , ∃R− � P }, B = {L � L′, R � R ′}
At = {L′(ai,a j) | L(ai,a j) ∈ As} ∪ {R ′(ai,a j) | R(ai,a j) ∈ As}

Note that �, 	, S , and B do not depend on C , hence the reduction provides a lower bound for data complexity. We show 
that the value of Pn in C is 1 if and only if At is a universal solution for Ks = 〈S, As〉 under M = (�, 	, B). Denote by 
Ksb the KB 〈S ∪B, As〉. Clearly, uni(At) ⊆ uni(Ksb) (independently of the value of Pn in C ). So, it suffices to show that the 
value of Pn in C is 1 if and only if uni(Ksb) is 	-homomorphically embeddable into uni(At).

(⇒) Suppose Pn evaluates to 1 in C . Observe that the projection of uni(Ksb) over 	 contains an infinite binary tree 
whose root is an , and in which each left edge is labeled with L′ and each right edge is labeled with R ′ . We define a 
	-homomorphism h from uni(Ksb)

an to uni(At) by induction on the length of σ ∈ �uni(Ksb)an . Note that, since 	 contains 
only role names, the local homomorphism condition is trivially satisfied.

For the base case, we set h(an) = an . For the inductive step, assume the value of Pi is 1 and we already defined h(σ ) = ai
for σ ∈ �uni(Ksb)an . Consider the following three cases. First, if Pi = P j ∧ Pk in C , then At contains assertions L′(ai, a j) and 
R ′(ai, ak), moreover, P j and Pk both evaluate to 1: we set h(σ w[L]) = a j and h(σ w[R]) = ak . Second, if Pi = P j ∨ Pk in C , 
then At contains assertions L′(ai, a j), R ′(ai, a j) and L′(ai, ak), R ′(ai, ak), and at least one of P j and Pk evaluates to 1, assume 
it is P j : we set h(σ w[L]) = a j and h(σ w[R]) = a j . Finally, if Pi = 1 in C , then At contains assertions L′(ai, ai) and R ′(ai, ai): 
we set h(σ w[L]) = ai and h(σ w[R]) = ai . Hence, by construction, h is a 	-homomorphism.

(⇐) Suppose At is a universal solution for Ks under M. Then uni(S ∪ B, As) is 	-homomorphically embeddable in 
uni(At). We prove that the value of Pn is 1 in C .

Let h be a 	-homomorphism from uni(Ksb) to uni(At). Since uni(Ksb)
an is an infinite tree, and the only role cycles that 

At contains are loops of the form L′(ai, ai) and R ′(ai, ai), there exists a bound m such that for each σ = an w[S1] · · · w[Sm] ∈
�uni(Ksb)an with S j ∈ {L, R}, it holds h(σ ) = ai for some i such that Pi = 1 in C .

Assume 1 ≤ � ≤ m and for each σ = an w[S1] · · · w[S�] with S j ∈ {L, R} and each 1 ≤ i ≤ n, the value of Pi is 1 in C
whenever h(σ ) = ai . We verify by induction on � that for each δ = an w[S1] · · · w[S�−1] and each 1 ≤ i ≤ n, the value of Pi
is 1 in C whenever h(δ) = ai . Assume that h(δw[L]) = a j , h(δw[R]) = ak and the values of P j and Pk are 1 in C , moreover 
h(δ) = ai . If i = j = k, then obviously the value of Pi is 1 in C . Otherwise i �= j and i �= k. If j = k, then given that h is a 
	-homomorphism, At contains assertions L′(ai, a j) and R ′(ai, a j) (hence, As contains assertions L(ai, a j) and R(ai, a j)). By 
construction of As , it follows that there is an assignment Pi = P j ∨ P j′ in C for some j′ . As P j is 1, we obtain that also Pi
evaluates to 1. If j �= k, then At contains assertions L′(ai, a j) and R ′(ai, ak), so by construction of As there is an assignment 
Pi = P j ∧ Pk or Pi = P j ∨ Pk in C . Again it follows that Pi evaluates to 1 in C . By induction, Pn evaluates to 1 in C . �
B.3. Proof of Lemma 6.12

Proof. The proof is by reduction from 3-colorability of undirected graphs known to be NP-hard. Consider an undirected 
graph G = (V,E), which we view as a symmetric directed graph, and fix signatures � = {E(·, ·)} and 	 = {E ′(·, ·)}. Further, 
let r, g, b ∈ Na , V ⊆ Nl and

As = {E(r, g), E(g, r), E(r,b), E(b, r), E(g,b), E(b, g)},
S = {},
B = {E � E ′},
At = {E ′(r, g), E ′(g, r), E ′(r,b), E ′(b, r), E ′(g,b), E ′(b, g)} ∪

{E ′(x, y) | (x, y) ∈ E}.
Note that the nodes in G become labeled nulls in At . We show that G is 3-colorable if and only if At is a universal solution 
for Ks = 〈S, As〉 under M = (�, 	, B).

(⇒) Suppose G is 3-colorable. Then it follows that there exists a function h that assigns to each vertex from V one of 
the colors {r, g, b} such that if (x, y) ∈ E, then h(x) �= h(y). Hence h is a homomorphism from G to the undirected graph ({r, g, b}, {(r, g), (g, b), (b, r)}).
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We prove that At is a universal solution for Ks under M by employing Lemma 6.2. Obviously, Ks is 	-safe with respect 
to M. Thus, it remains to verify that uni(At) is 	-homomorphically equivalent to uni(S ∪ B, As). First, it is easy to see 
that uni(S ∪ B, As) is 	-homomorphically embeddable into uni(At). Second, h is also a homomorphism from uni(At) to 
uni(S ∪B, As). Thus At is indeed a universal solution for Ks under M.

(⇐) Suppose now At is a universal solution for Ks under M. Then by Lemma 6.2 it follows that uni(At) is 
	-homomorphically equivalent to uni(S ∪ B, As). Let h be a homomorphism from uni(At) to uni(S ∪ B, As). Notice that 
�uni(S∪B,As) = ind(As), hence h assigns to each labeled null x ∈ �uni(At) some constant a ∈ ind(As), and it is easy to see 
that h is an assignment for the vertices in V that is a 3-coloring of G. �
B.4. Proof of Lemma 6.15

Proof. The proof is by reduction from the validity problem for Quantified Boolean Formulas (QBF), known to be 
PSpace-complete. Consider a QBF

ϕ = Q1 X1 · · ·Qn Xn

m∧
j=1

C j

where Qi ∈ {∀, ∃} and C j , 1 ≤ j ≤ m, are clauses over the variables Xi , 1 ≤ i ≤ n.
Let � = {A, Q 0, Q i, Q k

i , R j, P0, Pi, Pk
i , R

0
j , R

i
j | j ∈ {1, . . . , m}, i ∈ {1, . . . , n}, k ∈ {0, 1}} where A is a concept name and 

the rest are role names. Let S be the following TBox over � for j ∈ {1, . . . , m}, i ∈ {1, . . . , n} and k ∈ {0, 1}:

A � ∃Q −
0 ∃Q −

i−1 � ∃Q k
i , if Qi = ∀ Q k

i � Q i ∃Q −
n � ∃R j ∃R−

j � ∃R j

∃Q −
i−1 � ∃Q i, if Qi = ∃ (B.1)

A � ∃P−
0 ∃P−

i−1 � ∃Pk
i Pk

i � Pi ∃(P 0
i )− � ∃Ri

j, if ¬Xi ∈ C j ∃(Ri
j)

− � ∃Ri−1
j

∃(P 1
i )− � ∃Ri

j, if Xi ∈ C j
(B.2)

and As = {A(a)}.
Further, let 	 = {X0

i , X1
i , T , S j} where X0

i , X1
i are concept names and T , S j are role names, M = (�, 	, B), and B the 

following set of inclusions:

Q i � T ∃(Q k
i )− � Xk

i R j � S j Ri
j � S j

P i � T ∃(Pk
i )

− � Xk
i P i � S−

j R0
j � S−

j

Then, |= ϕ if and only if uni(S ∪B, As) is 	-homomorphically embeddable into a finite subset of itself, i.e., if and only if a 
universal solution for Ks = 〈S, As〉 under M exists. We show this following the line of the proof of Theorem 11 in the full 
version of [55].

(⇒) Suppose |= ϕ . We show that the canonical model uni(S ∪ B, As) is 	-homomorphically embeddable into a finite 
subset of itself. More precisely, let us denote with S inf the subset of S consisting of the first 6 axioms (B.1), and Sfin the 
subset of S consisting of the last 6 axioms (B.2). Then uni(S ∪B, As) = uni(S inf ∪B, As) ∪ uni(Sfin ∪B, As). In the following 
we use Uinf to denote uni(S inf ∪B, As), and Ufin to denote uni(Sfin ∪B, As), and show how to construct a 	-homomorphism 
h : Uinf → Ufin .

We begin by setting h(a) = a. Then we define h in such a way that, for each path π in Uinf of length i + 1 ≤ n, h(π)

is a path of the form aw[P
k1
1 ] · · · w[P

ki
i ] in Ufin and it defines an assignment αh(π) to the variables X1, . . . , Xi by taking 

αh(π)(Xi′ ) = � if ki′ = 1 and αh(π)(Xi′ ) = ⊥ if ki′ = 0, for all 1 ≤ i′ ≤ i. Such assignments αh(π) will satisfy the following:

the QBF obtained from ϕ by removing Q1 X1 . . .Qi Xi from its prefix is true under αh(π). (α)

For the paths of length 1 the 	-homomorphism h has been defined and (α) trivially holds. Suppose that we have defined h
for all paths in Uinf of length i + 1 ≤ n. We extend h to all paths of length i + 2 in Uinf such that (α) holds. Let π be a path 
of length i + 1. Observe that h(π) has two successors in Ufin: h(π) · w[P 0

i+1] and h(π) · w[P 1
i+1] . Now,

– if Qi = ∀ then π has two successors in Uinf : π · w[Q 0
i+1] and π · w[Q 1

i+1] . Thus, we set h(π · w[Q k
i+1]) = h(π) · w[Pk

i+1] , for 
k = 0, 1. Clearly, (α) holds.

– if Qi = ∃ then π has one successor in Uinf : π · w[Q i+1] . Since ϕ is valid, by (α) the QBF obtained from ϕ by removing 
Q1 X1 . . .Qi Xi is true under either αh(π) ∪ {Xi �→ �} or αh(π) ∪ {Xi �→ ⊥}. We set h(π · w[Q i+1]) = h(π) · w[Pk

i+1] where 
k = 1 in the former case, and k = 0 in the latter case. Either way, (α) holds.

Let now π be a path of length n + 1 in Uinf . By construction, we have that h(π) = a · w[P
k1
1 ] · · · w[Pkn

n ] . Next, on the one 
hand, in Uinf the path π has m infinite extensions of the form π · w[R j ] · w[R j ] · · · , for 1 ≤ j ≤ m. On the other hand, by (α), 
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Fig. 6. The projection of uni(S ∪B,As) over 	 for φ = ∃X1∀X2∃X3(X1 ∧ (X2 ∨ ¬X3)).

αh(π) |= C j for each clause C j , i.e., there is some 1 ≤ i ≤ n such that ki = 1 if Xi ∈ C j , or ki = 0 if ¬Xi ∈ C j . For l ≥ 1, denote 
by πl the path π · w[R j ] · . . . · w[R j ] where w[R j ] is repeated l times. We now set

h(πl) = a · w[P
k1
1 ] · . . . · w[P

kn−l
n−l ], for 1 ≤ l ≤ n − i,

h(πl) = a · w[P
k1
1 ] · . . . · w[P

ki
i ] · w[Ri

j ] · . . . · w[Rn−l+1
j ], for n − i < l ≤ n + 1,

h(πl) = a · w[P
k1
1 ] · . . . · w[P

ki
i ] · w[Ri

j ] · w[Ri−1
j ] · . . . · w[Ri�

j ], for n + 1 < l and i� = (n − l + 1) mod 2.

It is immediate to verify that h is a 	-homomorphism from Uinf to Ufin . Since K1 is 	-safe with respect to M, by Lemma 6.4
we obtain that a universal solution for K1 under M exists.

(⇐) Let h be a 	-homomorphism from Uinf to Ufin . We show that |= ϕ .
Let π = a · w1 · · · wn be a path of length n + 1 in Uinf . Then its homomorphic image h(π) must be of the form a ·

w[P
k1
1 ] · · · w[Pkn

n ] . This implies a variable assignment απ : απ(Xi) = � if ki = 1 and απ (Xi) = ⊥ if ki = 0, for 1 ≤ i ≤ n. It 
is sufficient to show that απ |= C j for every 1 ≤ j ≤ m, i.e, the clause C j contains at least one of the literals Xi with 
απ(Xi) = �, or ¬Xi with απ (Xi) = ⊥.

Consider a path π · w[R j ] · . . . · w[R j ] of length 2n + 2 in Uinf (i.e., w[R j ] is repeated n + 1 times). Then its h-image in Ufin
must be of the form a · w[P

k1
1 ] · . . . · w[P

ki
i ] · w[Ri

j ] · w[Ri−1
j ] · . . . · w[R0

j ] for some 1 ≤ i ≤ n. Now, by construction of S , if ki = 0

(hence, απ(Xi) = ⊥), then C j must contain ¬Xi , otherwise C j must contain Xi . �
We illustrate the above reduction with the following example.

Example B.1. Let us consider the QBF φ = ∃X1∀X2∃X3(X1 ∧ (X2 ∨ ¬X3)), which is valid. A finite portion of the projection of 
uni(S ∪B, As) over 	 is depicted in Fig. 6, where each edge is labeled with T , each edge is labeled with T , S−

1 , 
S−

2 , and the labels of edges are shown to the left of each infinite and finite path. The concept labels of the individuals 
(if any) are shown next to them.

Let Uinf be the projection over 	 of the part of uni(S ∪B, As) generated using the axiom templates (B.1) of S; similarly, 
for Ufin and the axiom templates (B.2). Note that Uinf is infinite, while Ufin is finite. Intuitively, in Ufin , the dashed part 
is a full binary tree representing all possible assignments to the variables X1, X2, X3, where edges whose target node is 
labeled with X0

i (resp., X1
i ) represent the assignment of 0 (resp., 1) to variable Xi . Moreover, each solid part (ending in a 

loop) starting at a node labeled X0
i (resp., X1

i ) and labeled with S1 represents the fact that literal ¬Xi (resp., Xi) appears 
in clause C1; analogously for S2 and C2. As for Uinf , the dash-dotted part represents the quantifier prefix of φ: if quantifier 
Qi is ∃, then there is a single edge at level i (counting from individual a); instead, if quantifier Qi is ∀, then there are two 
distinct edges at level i, one whose target node is labeled with X0

i and one whose target node is labeled with X1
i . For each 

clause C j , each node at level 3 is the origin of an infinite chain, all of whose edges are labeled with S j .
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The QBF φ is valid, and we show that there is indeed a 	-homomorphism h from Uinf to Ufin (hence, uni(S ∪ B, As) is 
	-homomorphically embeddable into Ufin). Therefore, the ABox obtained from Ufin is a universal solution for Ks under M. 
First, by considering the assignment of 1 to X1, we obtain the formula ∀X2∃X3(1 ∧ (X2 ∨ ¬X3)), which is valid. Hence 
h maps x = aw[Q 1] to the node in Ufin labeled with X1

1 . Then, for assignment of 0 to X2 we obtain ∃X3(0 ∨ ¬X3), and 
for assignment of 1 to X2 we obtain ∃X3(1 ∨ ¬X3), which are both valid. Hence h maps y = xw[Q 0

2 ] to the successor of 
h(x) labeled with X0

2 and z = xw[Q 1
2 ] to the successor of h(x) labeled with X1

2 . Finally, in the case where X2 = 0, for the 
assignment of 0 to X3, we obtain 0 ∨ ¬0, which is valid; instead, in the case where X2 = 1, any assignment to X3, e.g., 1
can be used. Hence h maps u = yw[Q 3] to the successor of h(y) labeled with X0

3 and v = zw[Q 3] to the successor of h(z)
labeled with X1

3 . Since for all considered assignments the clauses of φ are satisfied, h can indeed map each infinite chain 
starting from u and v , to a chain in Ufin ending in a loop. For example, the infinite chain starting from v and labeled with 
S1 is mapped to the path in Ufin that starts with the dashed edges connecting h(v) to h(z) and h(x), and continues with 
the edge and loop labeled with S1. �
B.5. Proof of Lemma 6.16

Proof. Let M = (�, 	, B) be a mapping, and Ks = 〈S, As〉 a KB over �. We construct K′
s and M′ such that there exists a 

universal solution for Ks under M iff there exists a universal UCQ-solution for K′
s under M′ .

Define M′ to be equal to (�′, 	′, B′), where �′ extends � with fresh concept and roles names {X1 | X ∈ 	} and fresh 
role names Q 1, Q 2, 	′ extends 	 with a fresh role name Q , and B′ = B ∪ {X1 � X | X ∈ 	} ∪ {Q 1 � Q , Q 2 � Q }. Let 
K′

s = 〈S ′, A′
s〉, where A′

s is the union of As , assertions

{X1(aX ) | X ∈ 	 is a concept name} ∪ {X1(aX ,bX ) | X ∈ 	 is a role name},
for fresh constants aX , bX for each symbol X , and assertions {∃Q 1(aQ ), Q 2(aQ , bQ )}, for fresh constants aQ , bQ . If Ks is 
not 	-safe with respect to M, then S ′ = S ∪ {∃Q −

1 � ∃Q 1}, otherwise S ′ = S . We prove K′
s and M′ are as required.

Assume Ks and M are inconsistent, that is, the KB 〈S ∪ B, As〉 is inconsistent. Then each inconsistent target KB is a 
universal solution for Ks under M. On the other hand, K′

s and M′ are inconsistent, and, again, each inconsistent target KB 
is a universal UCQ-solution for K′

s under M′ . In what follows, we assume Ks and M are consistent, and K′
s and M′ are 

consistent.
Assume there exists a universal solution At for Ks under M. Then Ks is 	-safe with respect to M, and it is easy to see 

that At ∪ {X(aX ) | X ∈ 	 is a concept name} ∪ {X(aX , bX ) | X ∈ 	 is a role name} ∪ {Q (aQ , bQ )} is a universal UCQ-solution 
for K′

s under M′ .
Now, assume there exists a universal UCQ-solution Kt = 〈T , At〉 for K′

s under M′ . First, it follows that uni(S ′ ∪B′, A′
s)

does not contain an infinite Q -chain starting from aQ , hence S ′ does not contain the axiom ∃Q −
1 � ∃Q 1 and Ks is 	-safe 

with respect to M. Second, without loss of generality, we may assume that T does not contain disjointness axioms and At

is closed with respect to T . Finally, uni(Kt) is finitely 	-homomorphically equivalent to uni(S ′ ∪B′, A′
s), so for each concept 

name A ∈ 	, A(aA) ∈ At and for each role name P ∈ 	, P (aP , bP ) ∈ At . We show that T is a trivial TBox. By contradiction, 
assume α ∈ T is a non-trivial axiom. Consider various cases of α:

α = A � B, for concept name B distinct from concept name A. Then Kt |= B(aA), however 〈S ′ ∪ B′, A′
s〉 �|= B(aA), hence it 

is not the case uni(Kt) is finitely 	-homomorphically equivalent to uni(S ∪B′, A′
s). Contradiction.

α = ∃P � A, for role name P . Then Kt |= A(aP ), however 〈S ′ ∪B′, A′
s〉 �|= A(aP ), hence it is not the case uni(Kt) is finitely 

	-homomorphically equivalent to uni(S ′ ∪B′, A′
s). Contradiction.

α = ∃P− � A, for role name P . As above, but in this case Kt |= A(bP ) and 〈S ′ ∪B′, A′
s〉 �|= A(bP ).

α = P � R, for role R distinct from role name P . Then Kt |= R(aP , bP ), however 〈S ′ ∪ B′, A′
s〉 �|= R(aP , bP ), hence it is not 

the case uni(Kt) is finitely 	-homomorphically equivalent to uni(S ′ ∪B′, A′
s). Contradiction.

α = A � ∃R, for role R . Then there exists σ ∈ �uni(Kt) distinct from aA such that R ∈ runi(Kt)(aA, σ). Since in uni(S ′ ∪
B′, A′

s), aA is not connected to anything, uni(Kt) is not finitely 	-homomorphically embeddable into uni(S ′ ∪
B′, A′

s). Contradiction.
α = ∃P � ∃R, for role R distinct from role name P . Then there exists σ ∈ �uni(Kt) distinct from aP such that R ∈

runi(Kt)(aP , σ). If σ = bP then we get a contradiction similar to the case α = P � R . If σ �= bP then we get a 
contradiction as above.

α = ∃P− � ∃R, for role R distinct from P− . As above.
α = ∃P− � ∃P , for role name P . Then in uni(Kt) there exists an infinite P -chain starting from bP , and obviously, it is not 

finitely 	-homomorphically embeddable into uni(S ′ ∪B′, A′
s). Contradiction.

Therefore, T is a trivial TBox, so we obtain that uni(At) is finitely 	-homomorphically equivalent to uni(S ′ ∪B′, A′
s). Since 

uni(At) is finite, it follows uni(At) is 	-homomorphically equivalent to uni(S ′ ∪ B′, A′
s). Let A−

t be the subset of At such 
that ind(A′

t) = ind(As). It is easy to see that uni(A−
t ) is 	-homomorphically equivalent to uni(S ∪ B, As), and as Ks is 

	-safe with respect to M, we conclude that A−
t is a universal solution for Ks under M. �
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B.6. Reachability games on graphs

Reachability games are two-person infinite games. Here we employ the “Spoiler vs. Duplicator” terminology instead of 
the standard “Player 0 vs. Player 1” terminology used for instance in [62], as we find it more intuitive.

A game is played by two players: Spoiler and Duplicator, and defined by a game arena (or playground) and a winning 
condition. A (game) arena is a triple A = (S, D, T), where P = S ∪ D is a finite set of states, S ∩ D = ∅, and T ⊆ P × P is a 
transition relation. The game starts in some state s0 ∈ P, and it is played in turns. In each turn, if the current state s is 
in S, then Spoiler chooses some state s′ ∈ P such that (s, s′) ∈ T, and if the current state s is in D, then Duplicator chooses 
some state s′ ∈ P such that (s, s′) ∈ T. Thus, each play in the game is viewed as a path π , which can be infinite (i.e., 
π = s0 · s1 · s2 · · · , where si ∈ P and (si, si+1) ∈ T for every i ≥ 0) or finite (i.e., π = s0 · s1 · s2 · · · sk ∈ Pk+1, where (si, si+1) ∈ T
for every i ∈ {0, . . . , k − 1} and {s | (sk, s) ∈ T} = ∅).

The winning condition characterizes the plays won by Spoiler. We consider a reachability condition specified as a set 
F ⊆ P of accepting states. Given a winning condition F , a play π is a win for Spoiler iff some state from F occurs in π . 
Finally, a reachability game is a pair G = (G, F ) where G is a game arena and F is a reachability condition.

A strategy for Spoiler from state s is a (partial) function f S : P∗S → P that assigns to each finite sequence of states 
s0 · s1 · · · sk with s0 = s and sk ∈ S, a successor state sk+1 such that (sk, sk+1) ∈ T. A play π = s0 · s1 · · · is said to conform
with strategy f S if si+1 = f0(s0s1 . . . si) for every i ≥ 0 such that si ∈ S. Then, a strategy f S is a winning strategy for Spoiler 
from s ∈ P, if every play that conforms with f S and starts in s is a win for Spoiler. The corresponding notions for Duplicator 
are defined analogously.

Proposition B.2 ([62,71]). Given a reachability game G = (A, F ) and a state s in A, it can be checked in PTime whether Spoiler (or 
Duplicator) has a winning strategy from s.

B.7. Two-way alternating automata

Infinite trees are represented as prefix closed (infinite) sets of words over N (the set of positive natural numbers). 
Formally, an infinite tree is a set of words T ⊆ N∗ , such that if x · c ∈ T , where x ∈ N∗ and c ∈ N, then also x ∈ T . The 
elements of T are called nodes, the empty word ε is the root of T , and for every x ∈ T , the nodes x · c, with c ∈ N, are 
the successors of x. By convention we take x · 0 = x, and x · i · −1 = x. The branching degree d(x) of a node x denotes the 
number of successors of x. If the branching degree of all nodes of a tree is bounded by k, we say that the tree has branching 
degree k. An infinite path P of T is a prefix closed set P ⊆ T such that for every i ≥ 0 there exists a unique node x ∈ P
with |x| = i. A labeled tree over an alphabet � is a pair (T , V ), where T is a tree and V : T → � maps each node of T to 
an element of �.

Alternating automata on infinite trees are a generalization of nondeterministic automata on infinite trees, introduced in [72]. 
They allow for an elegant reduction of decision problems for temporal and program logics [73,74]. Let B(I) be the set of 
positive boolean formulae over I , built inductively by applying ∧ and ∨ starting from � (denoting true), ⊥ (denoting false), 
and elements of I . For a set J ⊆ I and a formula φ ∈ B(I), we say that J satisfies φ if and only if, assigning true to the 
elements in J and false to those in I \ J , makes φ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}. A two-way 
alternating tree automaton (2ATA) running over infinite trees with branching degree k, is a tuple A = 〈�, Q , δ, q0, F 〉, where 
� is the input alphabet, Q is a finite set of states, δ : Q × � → B([k] × Q ) is the transition function, q0 ∈ Q is the initial 
state, and F specifies the acceptance condition.

The transition function maps a state q ∈ Q and an input letter σ ∈ � to a positive boolean formula over [k] × Q . 
Intuitively, if δ(q, σ) = φ, then each pair (c, q′) appearing in φ corresponds to a new copy of the automaton going to the 
direction suggested by c and starting in state q′ . For example, if k = 2 and δ(q1, σ) = ((1, q2) ∧ (1, q3)) ∨ ((−1, q1) ∧ (0, q3)), 
when the automaton is in the state q1 and is reading the node x labeled by the letter σ , it proceeds either by sending off 
two copies, in the states q2 and q3 respectively, to the first successor of x (i.e., x · 1), or by sending off one copy in the state 
q1 to the predecessor of x (i.e., x · −1) and one copy in the state q3 to x itself (i.e., x · 0).

A run of a 2ATA A over a labeled tree (T , V ) is a labeled tree (Tr, r) in which every node is labeled by an element of 
T × Q . A node in Tr labeled by (x, q) describes a copy of A that is in the state q and reads the node x of T . The labels of 
adjacent nodes have to satisfy the transition function of A. Formally, a run (Tr, r) is a T × Q -labeled tree satisfying:

– ε ∈ Tr and r(ε) = (ε, q0).
– Let y ∈ Tr , with r(y) = (x, q) and δ(q, V (x)) = φ. Then there is a (possibly empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k] × Q

such that:
– S satisfies φ and
– for all 1 ≤ i ≤ n, we have that y · i ∈ Tr , x · ci is defined (x · ci ∈ T ), and r(y · i) = (x · ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy the acceptance condition. Given an infinite path P ∈ Tr , let inf (P ) ⊆ Q
be the set of states that appear infinitely often in P (as second components of node labels). We consider here Büchi 
acceptance conditions. A Büchi condition over a state set Q is a subset F of Q , and an infinite path P satisfies F if 
inf (P ) ∩ F �= ∅.
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The non-emptiness problem for 2ATAs consists in determining, for a given 2ATA, whether the set of trees it accepts is 
nonempty. It is known that this problem can be solved in exponential time in the number of states of the input automa-
ton A, but in linear time in the size of the alphabet as well as in the size of the transition function of A.

B.8. Proof of Lemma 6.17

Proof. (⇒) Let D ⊆ �U2 be a finite set, and h a �-homomorphism from Ub
1 to U D

2 . We construct a labeled tree T =
({1, . . . , n}∗, V ) where n = max(na, nw) and show that T ∈ L(Ab). The labeling function V is defined as follows: V (ε) = R
and

V (i) = âi, for each ai ∈ D ∩ ind(K2)

V (i1i2 · · · ir) = ŵir , for each ai1 wi2 · · · wir ∈ D
V (x) = S, for each x ∈ {1, . . . ,n}∗ such that V (x) was not defined above.

To show that T ∈ L(Ab), we construct a run tree (Tr, r) of A on T . The tree structure Tr and the labeling function r
are defined inductively as follows, where for (x, q) ∈ {1, . . . , n}∗ × Q , f ((x, q)) denotes x, and (z)q denotes z · · · z, where z is 
repeated q times:

– ε ∈ Tr is the root of Tr and r(ε) = (ε, q0),
– ε has two children 0 f and 0h such that r(0 f ) = (ε, q f ) and r(0h) = (ε, qh),
– 0 f has children c1, . . . , cna such that r(ci) = (i, αi),
– for i ∈ {1, . . . , na} and each w j such that ai �K2 w j , ci has a child ci · w j with r(ci · w j) = (i · j, ω j),
– for each node in Tr of the form x = ci1 wi2 · · · wir , such that r ≥ 2 and ai1 wi2 · · · wir ∈ D , and each w j such that 

wir �K2 w j , x has a child x · w j with r(x · w j) = (i1i2 · · · ir j, ω j),
– 0h has one child y0 with r(y0) = (i, γ0) where i ∈ {1, . . . , na} is such that b = ai ,
– for each node of the form x = y0 · (zl1 )

q1 · yl1 · (zl2 )
q2 · yl2 · · · (zlk )

qk · ylk , where k ≥ 0, qi ≥ 0, zli denotes xli or k j
li

, and 
f (r(x)) = j1 · · · js with s ≥ 1, and for each vl such that vlk � vl and h(bvl1 · · · vlk vl) = ai1 wi2 · · · wir ,
– x has a child x · xl with r(x · xl) = ( j1 · · · js, χl);
– if j1 = i1, let t be the number such that j1 = i1, . . . , jt = it , and

if j1 �= i1, let t = 0, then
∗ every node of the form x′ = x(xl)

q , 1 ≤ q ≤ s − t , has one child x′ · xl with r(x′ · xl) = ( j1 · · · js−q, χl),
∗ every node of the form x′ = x(xl)

q , s − t + 1 ≤ q ≤ s − t + r − t has one child x′ · xl with r(x′ · xl) =
( j1 · · · jt it+1 · · · it+q−(s−t), γl), and

∗ node x′ = x(xl)
s−t+r−t+1 has one child x′ · yl with r(x′ · yl) = (i1 · · · ir, γl).

– for each node of the form x = y0 · (zl1 )
q1 · yl1 · (zl2 )

q2 · yl2 · · · (zlk )
qk · ylk , where k ≥ 0, qi ≥ 0, zli denotes xli or k j

li
, and 

f (r(x)) = i, and for each vl such that vlk � vl , x has a child
– x · yl with r(x · yl) = (i · j, γl), if h(bvl1 · · · vlk vl) = ai w j ,

– x · k j
l with r(x · k j

l ) = (ε, κ j
l ), if h(bvl1 · · · vlk vl) = a j .

– for each node of the form x = y0 · (zl1 )
q1 · yl1 · (zl2 )

q2 · yl2 · · · (zlk )
qk · ylk , where k ≥ 0, qi ≥ 0, zli denotes xli or k j

li
, and 

f (r(x)) = i1 · · · ir′ for r′ ≥ 2, and for each vl such that vlk � vl and h(bvl1 · · · vlk vl) = ai1 wi2 · · · wir , x has a child x · yl

with r(x · yl) = (i1 · · · ir, γl).
– for each node of the form x = y0 · z1 · · · zq · k j

l , q ≥ 0 and zi ∈ {yi, xi, ki′
i }, x has one child x · yl with r(x · yl) = ( j, γk).

It is easy to see that (Tr, r) is an accepting run of Ab .

(⇐) Assume that the language of Ab is non-empty and T = ({1, . . . , n}∗, V ) ∈ L(Ab). Let (Tr, r) be an accepting run of 
Ab over T . Denote by U1 and U2, and by G1 and G2 the canonical and the generating models of K1 and K2, respectively. 
We construct a finite set D ⊆ �U2 and a homomorphism h from Ub

1 to U D
2 using T and (Tr, r).

Firstly, we prove that T encodes a finite subset of �U2 . We show

(a) for each i ∈ {1, . . . , na}, V (i) = âi ;
(b) for each k ≥ 2, such that ai1 wi2 · · · wik ∈ �U2 , and for each 2 ≤ j < k, V (i1 · · · i j) = ŵi j , then V (i1 · · · ik) = ŵik or 

V (i1 · · · ik) = S;
(c) for each infinite path ai1 · · · wi j · · · ∈ �U2 , there exists j ≥ 2, such that V (i1 · · · i j) = S .

Proof of (a): by definition of δ(αi, L).
Proof of (b): for the sake of contradiction, assume for some ai1 wi2 · · · wik ∈ �U2 , k ≥ 2, for each 2 ≤ j < k, V (i1 · · · i j) = ŵi j , 
but V (i1 · · · ik) = R or V (i1 · · · ik) = âi . Since (Tr, r) is a run over T there exists a path in Tr of the form

(ε,q0), (ε,q f ), (i1,αi ), (i1i2,ωi ), . . . , (i1 · · · ik,ωi ).
1 2 k
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Then by definition of the transition function, both δ(ωik , R) = ⊥ and δ(ωik , ̂ai) = ⊥, which contradicts the assumption (Tr, r)
is a run.
Proof of (c): By contradiction, assume that there exists an infinite path ai1 · · · wi j · · · in �U2 , such that for each j ≥ 2, 
V (i1 · · · i j) �= S . Now, since (Tr, r) is a run of Ab over T , there must exist an infinite path π in Tr of the form

(ε,q0), (ε,q f ), (i1,αi1), (i1i2,ωi2), . . . , (i1 · · · i j,ωi j ), . . . .

Since inf (π) ∩ {γ1, . . . , γnw } = ∅ we obtain a contradiction with the assumption that (Tr, r) is an accepting run. Therefore, 
let d ≥ 2 be the depth of S , i.e., for each ai1 · · · wi j · · · ∈ �U2 , for some j ≤ d, V (i1 · · · i j) = S . The finite set D is given by 
{ai1 wi2 · · · wid−1 ∈ �U2 }.

Next, we show there exists a 	-homomorphism from Ub
1 to U D

2 by constructing that h. By induction of k, we build 
h(bvl1 · · · vlk ) for each bvl1 · · · vlk ∈ �Ub

1 .
Base of induction. First, in Tr there must exist a path (ε, q0), (ε, qh), and as Tr is a run, for some i, b = ai , hence this 

path continues with (i, γ0) (and the current path is (ε, q0), (ε, qh), (i, γ0)). Then, δ(γ0, ̂ai) is satisfied, which means that 
τ b

ai
= � and, in turn, tU1

� (b) ⊆ tU2
� (ai), so we can set h(b) = ai .

Inductive step. Assume h is defined for each path of length k + 1 in �U1 , k ≥ 0, let bvl1 · · · vlk ∈ �Ub
1 (vl0 denotes b), and 

h(bvl1 · · · vlk ) = ai0 wi1 · · · wir , and assume the current path π in Tr is of the form

(ε,q0), (ε,qh), (i0, γ0), (x,q)∗, . . . , (i0 · · · ir, γk),

where (x, q)∗ denotes a finite (possibly empty) sequence of tuples (x, q) with x ∈ {1, . . . , n}∗ and q ∈ {γl, χl, κ i
l | 1 ≤ l ≤

m, 1 ≤ i ≤ na}. Then δ(γk, ŵir ) (recall, that i0 · · · ir ∈ T is labeled with ŵir ) is satisfied. Now, let vlk �K1 vlk+1 . If vlk � vlk+1 , 
then at least one of the formulas

ψ j = ρ
vlk

,vlk+1
wir ,w j

∧ ( j, γlk+1), for wir �K2 w j (wi0 denotes ai0),

ψi = ρ
vlk

,vlk+1
ai0 ,ai

∧ (−1, κ i
lk+1

), if r = 0,

ψ−1 = η
vlk

,vlk+1
wir

∧ (−1, γlk+1), if r > 0,

is satisfied. Assume ψ j is satisfied for some j ∈ {1, . . . , nw}: then ρ
vlk

,vlk+1
wir ,w j

= �, hence rG1
� (vlk , vlk+1 ) ⊆ rG2

� (wir , w j), and the 

run is continued with (i0 · · · ir j, γlk+1 ). Moreover, δ(γlk+1 , ŵ j) is satisfied, so τ
vlk+1
w j

= �, i.e., tG1
� (vlk+1 ) ⊆ tG2

� (w j). Therefore, 
we can set h(bvl1 · · · vlk+1 ) to be equal to ai0 wi1 · · · wir w j .

In the case r = 0 and ψi is satisfied for some i ∈ {1, . . . , na}, we have that ρ
vlk

,vlk+1
ai0 ,ai

= �, hence rG1
� (vlk , vlk+1 ) ⊆

rG2
� (ai0 , ai), and the run is continued with (ε, κ i

lk+1
), (i, γlk+1 ). Moreover, δ(γlk+1 , ̂ai) is satisfied, so τ

vlk+1
ai

= �, i.e., 

tG1
� (vlk+1 ) ⊆ tG2

� (ai). Therefore, we set h(bvl1 · · · vlk+1 ) to be equal ai .

Alternatively, if for r > 0, ψ−1 is satisfied, it follows that η
vlk

,vlk+1
wir

= �, hence {R− | R ∈ rG1
� (vlk , vlk+1 )} ⊆ rG2

� (wir−1 , wir ), 

and the run is continued with (i0 · · · ir−1, γlk+1 ). Moreover, δ(γlk+1 , ŵir−1 ) is satisfied, so τ
vlk+1
wir−1

= �, i.e., tG1
� (vlk+1 ) ⊆

tG2
� (wir−1 ). Therefore, we can set h(bvl1 · · · vlk+1 ) to be equal to ai0 wi1 · · · wir−1 . It concludes the inductive step for the 

case vlk � vlk+1 .
Consider now, vlk � vlk+1 . Then the run continues with (i1 · · · ir, χlk+1 ). Let

(x1,χlk+1), . . . , (x j,χlk+1), (x j, γlk+1)

be a continuation of the current path π · (i1 · · · ir, χlk+1 ) in Tr , and x j = j0 · · · js . Then δ(γlk+1 , ŵ js ) is satisfied, so τ
vlk+1
w js

= �, 
and tG1

� (vlk+1 ) ⊆ tG2
� (w js ). Since rU1

� (bvl1 · · · vlk , bvl1 · · · vlk+1 ) = ∅, we can set h(bvl1 · · · vlk+1 ) to be equal to a j0 w j1 · · · w js .
Note that the runs considered in the induction never visit a node labeled with S , otherwise it contradicts the definition 

of a run. Therefore, in such a manner, we can define h, a �-homomorphism from Ub
1 to U D

2 . �
Appendix C. Membership problem for UCQ-representability

Let K = 〈O, A〉 be a consistent KB, a, b ∈ Na , σ ∈ �uni(K) , and tail(σ ) �K w[R] . We make use of the following properties:

(A) B ′ ∈ tuni(K)(a) iff A |= B(a) and O |= B � B ′ , and
R ′ ∈ runi(K)(a, b) iff A |= R(a, b) and O |= R � R ′;
Proof: first, by definition of the canonical model, B ′ ∈ tuni(K)(a) if and only if K |= B ′(a). Next, assume A �|= B ′(a), i.e., 
neither B ′(a) ∈A, nor S(a, b) /∈A for B ′ = ∃S and some b ∈ Na . Obviously, a ∈ ind(A), so for some concept A, A(a) ∈A, 
or for some role S , S(a, b) ∈A. By contradiction, assume that O �|= A � B ′ for each A(a) ∈A, and O �|= ∃S � B ′ for each 
S(a, b) ∈ A. Then there exists a model I of K such that aI /∈ B ′I , which contradicts K |= B ′(a). Hence, O |= A � B ′ for 
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some A(a) ∈A or O |= ∃S � B ′ for some S(a, b) ∈A. The opposite direction is obvious. The proof for R ∈ runi(K)(a, b) is 
analogous.

(B) B ∈ tuni(K)(σ w[R]) iff O |= ∃R− � B , and
R ∈ runi(K)(σ , σ w[R ′]) iff O |= R ′ � R .
Proof: Follows from the definition of the canonical model and the types.

(C) Let a �K w[R] for some basic role R . Then there exists a basic concept B , such that A |= B(a) and B �O R .
Proof: by definition of a �K w[R] it follows that K |= ∃R(a) and R is a minimal with respect to ≤O role among 
all {R ′ | K |= ∃R ′(a)}. By (A) we have that A |= B(a) for some concept B , and O |= B � ∃R . Now, consider KB B =
〈O, {B(o)}〉 for some o ∈ Na . Obviously, B |= ∃R(o), B �|= R(o, o), and R is a minimal with respect to ≤O role among all 
{R ′ | B |= ∃R ′(o)}. Therefore, o �B w[R] , and B �O R .

(D) Let w S �K w[R] for basic roles S and R . Then ∃S− �O R .
Proof: by definition of w[S] �K w[R] it follows that O |= ∃S− � ∃R , [S−] �= [R], and R is a minimal with respect to ≤O
role among all {R ′ |O |= ∃S− � ∃R ′}. Consider KB B = 〈O, {∃S−(o)}〉 for some o ∈ Na . The rest of the proof is similar to 
the proof of (C).

(E) Let {B1, . . . , Bn} be a set of basic concepts and O′ a TBox such that KB = 〈O, {B1(o), . . . , Bn(o)}〉 and 〈O ∪ O′, A〉
are consistent. Assume y ∈ �uni(KB ) . If for some δo ∈ �uni(O∪O′,A) , {B1, . . . , Bn} ⊆ tuni(O∪O′,A)(δo), then there exists 
δy ∈ �uni(O∪O′,A) such that

tuni(KB )(y) ⊆ tuni(O∪O′,A)(δy) and runi(KB )(o, y) ⊆ runi(O∪O′,A)(δo, δy) (C.1)

Proof: consider the cases of y ∈ �uni(KB ) . If y = o, then δy = δo . Let y = ow[R1] · · · w[Rm] for m ≥ 1: then for some 1 ≤
i ≤ n, O |= Bi � ∃R1, and for 1 ≤ j < m, O |= ∃R−

j � ∃R j+1. Obviously, these entailments are valid in O ∪O′ , so ∃R1 ∈
tuni(O∪O′,A)(δo) and there exists δ1 ∈ �uni(O∪O′,A) such that R1 ∈ runi(O∪O′,A)(δo, δ1) and ∃R−

1 ∈ tuni(O∪O′,A)(δ1). 
Moreover, for each 1 ≤ j < m, we have that ∃R j+1 ∈ tuni(O∪O′,A)(δ j) and there exists δ j+1 ∈ �uni(O∪O′,A) such that 
R j+1 ∈ runi(O∪O′,A)(δ j, δ j+1) and ∃R−

j+1 ∈ tuni(O∪O′,A)(δ j+1). So we take δy to be equal to δm . It is easy to see that (C.1)
is satisfied.

(F) concept B is O-inconsistent iff O |= B � C � D for some concept disjointness C � ¬D ∈ O, or there exist n ≥ 1 and 
roles R1, . . . , Rn such that B �O R1, ∃R−

i �O Ri+1, and
– O |= ∃R−

n � C � D , for some concept disjointness C � ¬D ∈O, or
– O |= Rn � S � Q or O |= Rn � S− � Q − , for some role disjointness S � ¬Q ∈O.

(G) role R is O-inconsistent iff O |= R � S � Q or O |= R � S− � Q − for some role disjointness S � ¬Q ∈ O, or one of 
∃R, ∃R− is O-inconsistent.

Proposition C.1. Let conditions (ii) and (iii) of Lemma 7.1 hold. Further, let As be an ABox over � such that 〈S ∪ B, As〉 and 〈T ∪
B, As〉 are consistent, and let Usb and Utb be their respective canonical models. Then Usb is 	-homomorphically embeddable into Utb .

Proof. We build a function h from �Usb to �Utb , which is a 	-homomorphism from Usb to Utb .
Base of induction. Initially, for each a ∈ ind(As) we define h(a) = a. Let us immediately verify that tUsb

	 (a) ⊆ tUtb
	 (a). Let 

B ′ ∈ tUsb
	 (a), it follows by (A) there exists B over � such that As |= B(a) and S∪B |= B � B ′ . Note that B is S∪B-consistent, 

then by (ii), T ∪B |= B � B ′ , therefore we obtain B ′ ∈ tUtb (a). The proof of rUsb
	 (a, b) ⊆ rUtb

	 (a, b) is analogous.
Next, assume that σ ∈ �Usb and σ = aw[R] . We show how to define h(σ ). It follows that a �Ksb w[R] and by (C) we 

obtain a concept B over � such that As |= B(a), and B �S∪B R . Then B is S ∪ B-consistent, and by (iii) there exists 
y ∈ �gen(T ∪B,B(o)) such that

tgen(S∪B,B(o))

	 (w[R]) ⊆ tgen(T ∪B,B(o))(y), and rgen(S∪B,B(o))

	 (o, w[R]) ⊆ rgen(T ∪B,B(o))(o, y).

Since {B} ⊆ tUtb (a), by (E) there exists δ ∈ �Utb such that

tgen(T ∪B,B(o))(y) ⊆ tUtb(δ), and rgen(T ∪B,B(o))(o, y) ⊆ rUtb(a, δ).

As for a TBox O, ABoxes A and A′ , and x ∈ �gen(O,A) , z ∈ �uni(O,A′) with x = tail(z), the concept and role types of x and z
coincide, it follows now by transitivity of ‘⊆’ that

tUsb
	 (aw[R]) ⊆ tUtb

	 (δ), and rUsb
	 (a,aw[R]) ⊆ rUtb

	 (a, δ).

Hence, we assign h(σ ) = δ.

Inductive step. We show now how to define homomorphism for σ w[R] ∈ �Usb with σ = σ ′w[S] given that h(σ ) and 
h(σ ′) are defined. It follows w[S] �Ksb w[R] and S is a basic role over � by the structure of S ∪ B. Moreover, ∃S− is 
S ∪B-consistent, and by (D), ∃S− �S∪B R . So (iii) is triggered, and there exists y ∈ �gen(T ∪B,∃S−(o)) satisfying

tgen(S∪B,∃S−(o))
(w[R]) ⊆ tgen(T ∪B,∃S−(o))

(y), and rgen(S∪B,∃S−(o))
(o, w[R]) ⊆ rgen(T ∪B,∃S−(o))

(o, y).
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Let B = supB
	 (∃S−), C = supB

	 (∃S), and S = supB
	 (S) (supO

� was defined in Section 7.2). Then uni(S ∪ B, ∃S−(o)) and 
uni(T ∪ B, ∃S−(o)) can be partially depicted as follows. Note that here the presented concept and role labels are not the 
exact concept and role types. Moreover, we depict only those individuals and links between them that are guaranteed to 
exist given the information at hand. Note also that in the pictures further in this proof, we depict only the necessary bits of 
information.

gen(S ∪B,∃S−(o))

o
∃S−,∃R,B

w[S−]
∃S,C

w[R]
∃R−

S,S

R

gen(T ∪B,∃S−(o))

o
∃S−,B

w[S−]
∃S,C

y

S,S

Denote by B(o) assertions B1(o), . . . , Bm(o) for Bi ∈ B, and similarly for C(a). Moreover, denote by S(a, o) assertions 
S1(a, o), . . . , Sk(a, o) for Si ∈ S. There are two possible cases considering that B is a set of inclusions from � to 	, T
is a TBox over 	, and S is a role over �.

(I) o �〈T ∪B,∃S−(o)〉 w[Q 1] � · · · � w[Q n] , n ≥ 0 and Q i are roles over 	.
Then, if n = 0, y = o, otherwise y = w[Q n] .

Consider KB 〈T , {B(o)}〉, then we obtain that y ∈ �gen(T ,{B(o)}) and

tgen(T ∪B,∃S−(o))

	 (y) ⊆ tgen(T ,{B(o)})
	 (y), and rgen(T ∪B,∃S−(o))

	 (o, y) ⊆ rgen(T ,{B(o)})
	 (o, y).

Observe that B ⊆ tUtb
	 (h(σ )), since obviously B ⊆ tUsb

	 (σ ) and h is a homomorphism on σ . Therefore, by (E) we obtain 
δ ∈ �Utb such that

tgen(T ,{B(o)})
	 (y) ⊆ tUtb

	 (δ), and rgen(T ,{B(o)})
	 (o, y) ⊆ rUtb

	 (h(σ ), δ).

As above, it follows tUsb
	 (σ w[R]) ⊆ tUtb

	 (δ), and rUsb
	 (σ , σ w[R]) ⊆ rUtb

	 (h(σ ), δ). Hence, we assign h(σ w[R]) = δ. This case can 
be depicted as follows:

gen(S ∪B,∃S−(o))

o
∃S−,∃R,B

w[R]
∃R−

R

gen(T , {B(o)})
o

B

y = w[Q n ]

Usb

σ ′
∃S,C

σ = σ ′ w[S]
∃S−,∃R,B

σ w[R]
∃R−

S,S

R

Utb

h(σ ′)
C

h(σ )
B

δ

S

(II) o �〈T ∪B,∃S−(o)〉 w[S−] � w[Q 1] � · · · � w[Q n] , n ≥ 0, Q i are roles over 	.
Then, if n = 0, y = w[S−] , otherwise y = w[Q n] .

Consider KB 〈T , {C(a), S(a, o)}〉. Then a �〈T ,{C(a),S(a,o)}〉 w[Q 1] � · · · � w[Q n] , y′ ∈ �gen(T ,{C(a),S(a,o)}): if n = 0, y′ = a, 
otherwise y′ = w[Q n] , and

tgen(T ∪B,∃S−(o))

	 (y) ⊆ tgen(T ,{C(a),S(a,o)})
	 (y′), and rgen(T ∪B,∃S−(o))

	 (o, y) ⊆ tgen(T ,{C(a),S(a,o)})
	 (o, y′).

As above, C ⊆ tUtb
	 (h(σ ′)), therefore by (E) we obtain δ ∈ �Utb such that tgen(T ,{C(a),S(a,o)})

	 (y′) ⊆ tUtb
	 (δ).

Observe that if rgen(S∪B,∃S−(o))

	 (o, w[R]) �= ∅, it has to be the case that

y = w[S−], y′ = a, and δ = h(σ ′).



56 M. Arenas et al. / Artificial Intelligence 238 (2016) 11–62
Let R ′ ∈ rgen(S∪B,∃S−(o))

	 (o, w[R]), it follows R ′ ∈ rgen(T ,{C(a),S(a,o)})
	 (o, a), and from the latter, T |= S−

i � R ′ for some Si ∈ S. 
As Si ⊆ rUtb

	 (h(σ ′), h(σ )), we obtain that R ′ ∈ tUtb
	 (h(σ ), h(σ ′)).

All in all, it follows that tUsb
	 (σ w[R]) ⊆ tUtb

	 (δ), and rUsb
	 (σ , σ w[R]) ⊆ rUtb

	 (h(σ ), δ). Hence, we set h(σ w[R]) = δ. We 
conclude with a graphical representation of this case:

gen(S ∪B,∃S−(o))

o
∃S−,∃R,B

w[R]
∃R−

R

gen(T , {C(a),S(a,o)})
o a

C

y′ = w[Q n ]

S

Usb

σ ′
∃S,C

σ = σ ′ w[S]
∃S−,∃R,B

σ w[R]
∃R−

S,S

R

Utb

h(σ ′)
C

h(σ )

B

δ

S

In such a way we can define h(σ ) for each σ ∈ �Usb , hence h is a 	-homomorphism from Usb to Utb . �
Proposition C.2. Let conditions (ii) and (iv) of Lemma 7.1 hold. Further, let As be an ABox over � such that 〈S ∪ B, As〉 and 〈T ∪
B, As〉 are consistent, and let Usb and Utb be their respective canonical models. Then Utb is 	-homomorphically embeddable into Usb.

Proof. We build a function h from �Utb to �Usb , a 	-homomorphism from Utb to Usb .
Base of induction. Initially, for each a ∈ ind(As) we define h(a) = a. Let us immediately verify that tUtb

	 (a) ⊆ tUsb
	 (a). Let 

B ′ ∈ tUtb
	 (a), it follows by (A) there exists B over � such that As |= B(a) and T ∪ B |= B � B ′ . Then B is S ∪ B-consistent 

(recall that Ksb = 〈S ∪ B, As〉 is consistent), so by (ii), S ∪ B |= B � B ′ , therefore we obtain B ′ ∈ tUsb (a). The proof of 
rUtb
	 (a, b) ⊆ rUsb

	 (a, b) is analogous.
Next, assume σ ∈ �Utb and σ = aw[R] , we show how to define h(σ ). It follows that a �Ktb w[R] and by (C) we obtain B

over � such that As |= B(a), and B �T ∪B R . We are going to show now there exists y ∈ �gen(S∪B,B(o)) such that

tgen(T ∪B,B(o))

	 (w[R]) ⊆ tgen(S∪B,B(o))

	 (y), and (C.2)

rgen(T ∪B,B(o))

	 (o, w[R]) ⊆ rgen(S∪B,B(o))

	 (o, y). (C.3)

Assume, first, R is a role over 	, and observe that B is S ∪ B-consistent, then by (iv) there exists y ∈ �gen(S∪B,B(o))

satisfying (C.2) and (C.3).
Assume now R is a role over �, then it follows B = ∃R . Let o �〈S∪B,∃R(o)〉 w[Q ] for a role Q over � such that S |= Q � R

(such Q always exists, for instance R itself if it does not have proper subroles). Then we choose y to be w[Q ] , and show 
first that (C.2) is satisfied. Let B ∈ tgen(T ∪B,∃R(o))

	 (w[R]), then by (B), T ∪B |= ∃R− � B , and as ∃R− ∈ tgen(S∪B,∃R(o))

� (w[Q ]), 
by (ii) we obtain that B ∈ tgen(S∪B,∃R(o))

	 (w[Q ]). In a similar way, we can show that (C.3) is satisfied.
To continue the proof consider {B} ⊆ tUsb (a), then by (E) there exists δ ∈ �Usb such that tgen(S∪B,B(o))(y) ⊆ tUsb (δ) and 

rgen(S∪B,B(o))(o, y) ⊆ rUsb (a, δ). It follows now using (C.2) that tUtb
	 (aw[R]) ⊆ tUsb

	 (δ). Analogously using (C.3) one obtains 
rUtb
	 (a, aw[R]) ⊆ rUsb

	 (a, δ).
Inductive step. We show how to define homomorphism for σ w[R] ∈ �Utb with σ = σ ′w[S] given that h(σ ) is defined. 

It follows w[S] �Ktb w[R] , therefore T ∪ B |= ∃S− � ∃R , and R is a role over 	 distinct from S− . By (B) it also follows 
∃R ∈ tUtb (σ ), and since h is a 	-homomorphism, ∃R ∈ tUsb

	 (h(σ )). As As is an ABox over � and S is a TBox over �, there 
exists a concept B over � such that B ∈ tUsb (h(σ )) and B |= B � ∃R . Next, assume that o �〈T ∪B,B(o)〉 w[Q ] for some role 
Q such that T ∪ B |= Q � R . Then B is S ∪ B-consistent and B �T ∪B Q . As above for σ = aw[R] , by (vi) there exists 
y ∈ �gen(S∪B,B(o)) such that

tgen(T ∪B,B(o))

	 (w[Q ]) ⊆ tgen(S∪B,B(o))

	 (y), and rgen(T ∪B,B(o))

	 (o, w[Q ]) ⊆ rgen(S∪B,B(o))

	 (o, y).

Again, by (E) we obtain δ in �Usb such that tgen(S∪B,B(o))(y) ⊆ tUsb (δ) and rgen(S∪B,B(o))(o, y) ⊆ rUsb (h(σ ), δ). Observe 
that T ∪ B |= Q � R , so the concept and role types of w[R] and (o, w[R]) are subsumed by those of w[Q ] and (o, w[Q ])
in gen(T ∪ B, B(o)). Finally, we obtain that tUtb (σ w[R]) ⊆ tUsb (δ) and rUtb(σ , σ w[R]) ⊆ rUsb (h(σ ), δ). Hence, we assign 
h(σ w[R]) = δ.

In such a way we can define h(σ ) for each σ ∈ �Utb , hence h is a 	-homomorphism from Utb to Usb . �
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Appendix D. Non-emptiness problem for UCQ-representability

Proposition D.1. For a concept B over � and C ′ over 	, inclusion B � C ′ is representable in S and M if and only if there exists B ′
over 	 such that B |= B � B ′ , and for each S-consistent concept D over �:

(H) S ∪B |= D � B ′ implies S ∪B |= D � C ′ ,
(I) if B ′ = ∃Q ′ − for some role Q ′ over 	, then S ∪ B |= D � ∃Q ′ implies D �S∪B Q for some role Q such that S ∪ B |= {Q �

Q ′, ∃Q − � C ′}.

In this case, B � C ′ is representable by B ′ � C ′ .

Proof.
(⇐) Let B be a concept over � and C ′ over 	, B ′ �= C ′ , and conditions (H) and (I) are satisfied. We show inclusion 

B � C ′ is representable in S and M by B ′ � C ′ . Take T a parsimonious UCQ-representation for S under M: we prove 
T ′ = T ∪ {B ′ � C ′} is a parsimonious UCQ-representation by showing the following is satisfied:

– for each S-consistent and T ′ ∪ B-inconsistent pair of concepts or roles (X, Y ), it follows (X, Y ) is S ∪ B-inconsistent, 
which corresponds to the ⇐ direction of condition (i) of Lemma 7.1,

– for each S ∪ B-consistent concept or role X over � and each X ′ over 	, T ′ ∪ B |= X � X ′ implies S ∪ B |= X � X ′ , 
which corresponds to the ⇐ direction of condition (ii) of Lemma 7.1, and

– condition (iv) of Lemma 7.1.

Observe that from T is a parsimonious UCQ-representation of S under M, it follows the above conditions are already 
satisfied for T , S and M.

First, for condition (ii) of Lemma 7.1, let D be an S ∪ B-consistent concept over � and E ′ a concept over 	 such that 
T ′ ∪ B |= D � E ′ and T ∪ B �|= D � E ′ . Hence, there exists D ′ over 	 such that T |= {D ′ � B ′, C ′ � E ′} and B |= D � D ′ . 
Since T is a parsimonious UCQ-representation and T ∪ B |= D � B ′ , it follows S ∪ B |= D � B ′ , so there exists B1 over �
such that S |= D � B1 and B |= B1 � B ′ . Next, B ′, C ′ satisfy condition (H), therefore S ∪B |= B1 � C ′ , so there exists C over 
� such that S |= B1 � C and B |= C � C ′ . And we can continue by analogy. To summarize, there exist B1, C and E over �
such that

S |= {D � B1, B1 � C, C � E} (D.1)

and B |= {B1 � B ′, C � C ′, E � E ′}. Finally, we obtain that S ∪B |= D � E ′ .
Next, for condition (i), let (D1, D2) be a pair of S-consistent, T ∪B-consistent and T ′ ∪B-inconsistent concepts. For the 

sake of contradiction, assume (D1, D2) is S ∪B-consistent (hence, each Di is S ∪B-consistent).
Suppose both Di are T ′ ∪ B-consistent. Without loss of generality, we may assume that for some D ′ over 	, T ′ ∪ B |=

{D1 � D ′, D2 � ¬D ′}. From condition (ii), it follows there exists D over � such that S |= D1 � D and B |= D � D ′ . Consider 
the following cases:
1) T ∪B |= D2 � ¬D ′ (and T ∪B �|= D1 � D ′). Then, either there exist D ′

2, F
′ over 	 such that T |= {D ′

2 � F ′, F ′ � ¬D ′} and 
B |= D2 � D ′

2 (see the diagram below), or B |= D2 � ¬D ′ . In both cases, (D, D2) is T ∪B-inconsistent, so it follows (D, D2)

is S ∪B-inconsistent. In view of S |= D1 � D , we obtain contradiction with the assumption (D1, D2) is S ∪B-consistent.
2) T ∪ B �|= D2 � ¬D ′ . Then, there exists F ′ over 	 such that T ′ ∪ B |= D2 � F ′ and T |= F ′ � ¬D ′ (note, T ∪ B �|=
D2 � F ′). From condition (ii), it follows there exists F over � such that S |= D2 � F and B |= F � F ′ . Now, as (D, F )

is T ∪ B-inconsistent, it follows (D, F ) is S ∪ B-inconsistent, which in view of S |= {D1 � D, D2 � F } contradicts the as-
sumption (D1, D2) is S ∪B-consistent.

S
D1

D2

D

T
D ′

1

D ′

D ′
2

F ′

(1)

S
D2

D1

F

D

T
D ′

2

D ′

D ′
1

F ′

(2)

Suppose one of Di is T ′ ∪B-inconsistent. Consider the following two cases by (F):
1) for some D ′ over 	, T ′ ∪ B |= {Di � D ′, Di � ¬D ′}. The contradiction is obtained similarly as in the case both Di are 
T ′ ∪B-consistent.
2) there exist n ≥ 1 and distinct roles S ′

1, . . . , S
′
n such that Di �T ′∪B S ′

1, ∃S ′ −
j �T ′∪B S ′

j+1 and T ′ ∪ B |= S ′
n � R ′ � Q ′ for 

R ′ � ¬Q ′ ∈ T , or T ′ ∪B |= ∃S ′ −
n � E ′ � F ′ for E ′ � ¬F ′ ∈ T .
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If n = 1 and S ′
1 is a role over � (i.e., Di = ∃S ′

1 and S ′
1 is S ∪B-consistent), then from condition (ii), it follows S ∪B |=

S ′
1 � R ′ � Q ′ or S ∪B |= ∃S ′ −

1 � E ′ � F ′ . In the former case, there exist roles R, Q over � such that S |= S ′
1 � R � Q and B |=

{R � R ′, Q � Q ′}; then (R, Q ) is T ∪ B-inconsistent, since T is a parsimonious UCQ-representation, it follows (R, Q ) is 
S∪B-inconsistent. In the latter case, there exist concepts E, F over � such that S |= ∃S ′ −

1 � E � F and B |= {E � E ′, F � F ′}; 
then (E, F ) is T ∪B-inconsistent, hence (E, F ) is S ∪B-inconsistent. In any case we obtain S ′

1 is S ∪B-inconsistent, which 
contradicts the assumption Di is S ∪B-consistent.

If n = 1 and S ′
1 is a role over 	, assume T ∪B �|= Di � ∃S ′

1. From condition (ii) it follows S∪B |= Di � ∃S ′
1, so there exists 

D over � such that S |= Di � D and B |= D � ∃S ′
1. Then D �T ∪B T ′ for some role T ′ (possibly coinciding with S ′

1) such that 
T ∪B |= T ′ � S ′

1. In the case T ∪B |= S ′
1 � R ′ � Q ′ or T ∪B |= ∃S ′ −

1 � E ′ � F ′ , since T is a parsimonious UCQ-representation, 
from condition (iv) it follows there exists a role T such that D �S∪B T , and S ∪B |= T � R ′ � Q ′ or S ∪B |= ∃T − � E ′ � F ′ . 
Again, we obtain that D is S ∪B-inconsistent, which contradicts the assumption Di is S ∪B-consistent.

Assume now T ∪ B �|= ∃S ′ −
1 � E ′ � F ′ (the case T ∪ B �|= S ′

1 � R ′ � Q ′ is not possible). Then it follows T |= {∃S ′ −
1 �

B ′, C ′ � E ′} and/or T |= {∃S ′ −
1 � B ′, C ′ � F ′}, and the role T above is such that S ∪ B |= ∃T − � B ′ . If T is over �, 

then S |= ∃T − � B1 and B |= B1 � B ′ for some concept B1 over �, next we have that T ′ ∪ B |= B1 � E ′ � F ′ , so from 
condition (ii) it follows S ∪B |= B1 � E ′ � F ′ , and as before B1 is S ∪B-inconsistent, which contradicts the assumption Di
is S ∪ B-consistent. If T is over 	, then B ′ = ∃T − = ∃S−

1 , and by (I) it follows there exists S1 such that D �S∪B S1 and 
S ∪ B |= {S1 � S ′

1, ∃S−
1 � C ′}. Since ∃S ′ −

1 �= C ′ , it follows S1 is over �, and there exists C over � such that S |= ∃S−
1 � C

and B |= C � C ′ . Now, we have that T ′ ∪B |= C � E ′ � F ′ , from condition (ii) it follows S ∪B |= C � E ′ � F ′ , so as before C
is S ∪B-inconsistent, which contradicts the assumption Di is S ∪B-consistent.

For n > 1, we can continue reasoning as for the case n = 1 to obtain a contradiction. Finally, we conclude that Di is 
S ∪B-inconsistent, hence (D1, D2) is S ∪B-inconsistent.

Let (S1, S2) be a pair of S-consistent, T ∪ B-consistent and T ′ ∪ B-inconsistent roles (this is the only non-trivial case). 
Since T ′ extends T with a concept inclusion, we have that there exist D1, D2 covering {∃S1, ∃S2} or {∃S−

1 , ∃S−
2 } such 

(D1, D2) is T ′ ∪ B-inconsistent and T ∪ B-consistent. By reasoning as above, we obtain (D1, D2) is S ∪ B-inconsistent, 
therefore (S1, S2) is S ∪B-inconsistent.

To show condition (iv) of Lemma 7.1 assume an S ∪B-consistent concept D over � and a role R such that D �T ′∪B R
and it is not the case that D �T ∪B R . Hence, R is a role over 	, and there exists D ′ over 	 such that T |= {D ′ � B ′, C ′ � ∃R}
and B |= D � D ′ . As before, we can conclude there exists (an S ∪ B-consistent) C over � such that B |= C � C ′ (and S |=
D � C ). It means T ∪B |= C � ∃R , therefore either C �T ∪B R , or C = ∃Q for some role Q over � such that T ∪B |= Q � R , 
and C �T ∪B Q . Since T is a parsimonious UCQ-representation, it follows there exists z ∈ �gen(S∪B,C(o)) such that

tgen(T ∪B,C(o))

	 (x) ⊆ tgen(S∪B,C(o))

	 (z) and rgen(T ∪B,C(o))

	 (o, x) ⊆ rgen(S∪B,C(o))

	 (o, z),

with x = w[R] or x = w[Q ] . Observe that R ∈ rgen(T ∪B,C(o))

	 (o, x), which implies that z = w[S] for some role S such that 
S ∪B |= C � ∃S . Now, notice that S ∪B |= D � ∃S: we obtain that o �〈S∪B,D(o)〉 w[T ] for some role T (possibly coinciding 
with S) such that S ∪B |= T � S . Finally, we have that

tgen(T ′∪B,D(o))

	 (w[R]) ⊆ tgen(S∪B,D(o))

	 (w[T ]) and rgen(T ′∪B,D(o))

	 (o, w[R]) ⊆ rgen(S∪B,D(o))

	 (o, w[T ]),
so we take y in condition (ii) to be equal to w[T ] .

Assume now B ′ = ∃R− for some role R over 	, and D is an S ∪ B-consistent concept over � such that D �T ∪B R . 
By condition (ii), it follows S ∪ B |= D � ∃R . The interesting case to consider is tgen(T ∪B,D(o))

	 (w[R]) = {∃R−} (hence, 
rgen(T ∪B,D(o))

	 (o, w[R]) = {R}), as for T it is enough to take y ∈ �gen(S∪B,D(o)) equal to w[S] such that D �S∪B S and 
S ∪ B |= S � R (such S exists: we take S equal to R if D �S∪B R). However, given the axiom ∃R− � C ′ in T ′ , we have 
tgen(T ′∪B,D(o))

	 (w[R]) ⊇ {∃R−, C ′} (note, still rgen(T ′∪B,D(o))

	 (o, w[R]) = {R}). As B ′ and C ′ satisfy (I) and S ∪ B |= D � ∃R , it 
follows there exists S such that D �S∪B S and S ∪ B |= {S � R, ∃S− � C ′}; moreover by C ′ �= ∃R− and the structure of 
S ∪ B it follows S is over �. From the latter we obtain a role Q over � such that S |= S � Q and B |= Q � R , moreover 
∃Q − and Q are S ∪B-consistent. Now, assume T |= ∃R− � E ′; then T ∪B |= ∃Q − � E ′ , and since T satisfies condition (ii)

it follows S ∪ B |= ∃Q − � E ′ , therefore E ′ ∈ tgen(S∪B,D(o))

	 (w[S]). Thus tgen(T ′∪B,D(o))

	 (w[R]) ⊆ tgen(S∪B,D(o))

	 (w[S]), and we 
take y = w[S] to satisfy condition (iv) of Lemma 7.1.

(⇒) Suppose inclusion B � C ′ is representable in S and M by a target axiom α. Then T = {α} is a parsimonious 
UCQ-representation and T ∪ B |= B � C ′ . If B |= B � C ′ , we take B ′ equal to C ′: obviously, (H) and (I) are satisfied. Now, 
assume B �|= B � C ′ . Then it must be the case α is of the form D ′ � C ′ and B |= B � D ′ for some concept D ′ over 	. So we 
take B ′ equal to D ′ , and prove below (H) and (I) are satisfied.

For (H), let S ∪ B |= D � B ′ for a S ∪ B-consistent concept D over �. It follows S |= D � B1 and B |= B1 � B ′ for 
some concept B1 over �. Consequently, T ∪ B |= B1 � C ′ , and as T is a parsimonious UCQ-representation, we obtain that 
S ∪B |= B1 � C ′ . Finally, we proved that S ∪B |= D � C ′ .

For (I), assume B ′ is of the form ∃Q ′ − for some role Q ′ over 	, and S ∪ B |= D � ∃Q ′ . As above, there ex-
ists B1 over � such that B |= B1 � ∃Q ′ . Then, B1 �T ∪B S ′ for some role S ′ (possibly coinciding with Q ′) such that 
T ∪ B |= S ′ � Q ′ . By condition (iv) of Lemma 7.1 and Q ′ ∈ rgen(T ∪B,B1(o))

(o, w[S ′]), there exists a role S such that 
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tgen(T ∪B,B1(o))

	 (w[S ′]) ⊆ tgen(S∪B,B1(o))

	 (w[S]) and rgen(T ∪B,B1(o))

	 (o, w[S ′]) ⊆ rgen(S∪B,B1(o))

	 (o, w[S]). It implies, B1 �S∪B S . 
Further, since S ∪ B |= D � B1, we have that D �S∪B Q for some role Q (possibly coinciding with S) such that 
T ∪B |= Q � S . It is straightforward to verify that S ∪B |= {Q � Q ′, ∃Q − � C ′}. �
Proposition D.2. For a role R over � and Q ′ over 	, inclusion R � Q ′ is representable in S and M if and only if there exists R ′ over 
	 such that B |= R � R ′ , and

(J) for each S-consistent role S over �, S ∪B |= S � R ′ implies S ∪B |= S � Q ′;
(K) B ′, C ′ satisfy conditions (H) and (I) for B ′ = ∃R ′ , C ′ = ∃Q ′ , and B ′ = ∃R ′ − , C ′ = ∃Q ′ − .

Then, R � Q ′ is representable by R ′ � Q ′ .

Proof.
(⇐) Let R be a role over � and Q ′ over 	, R ′ �= Q ′ , and conditions (J) and (K) are satisfied. We show inclusion 

R � Q ′ is representable in S and M by R ′ � Q ′ . Similarly, to the proof of Proposition D.1, take T a parsimonious 
UCQ-representation for S under M: we prove T ′ = T ∪ {R ′ � Q ′} is a parsimonious UCQ-representation by showing 
the direction of condition (i) stating that for each S-consistent and T ′ ∪ B-inconsistent pair of concepts or roles (X, Y ), 
(X, Y ) is S ∪B-inconsistent, the ⇐ direction of condition (ii), and condition (iv) of Lemma 7.1 are satisfied.

Satisfaction of conditions (ii) and (i) of Lemma 7.1 can be shown by analogy with the corresponding proofs in Propo-
sition D.1. Note, here for concept inclusions/disjointness axioms we use the fact that ∃R ′, ∃Q ′ and ∃R ′ −, ∃Q ′ − satisfy (H), 
and for role inclusions/disjointness axioms we use the fact R ′, Q ′ satisfy (J).

For condition (iv), the interesting case to consider is D �T ∪B R ′ , with D an S ∪ B-consistent concept over �, 
tgen(T ∪B,D(o))

	 (w[R]) = {∃R ′ −} and rgen(T ∪B,D(o))

	 (o, w[R]) = {R ′}. Now, given R ′ � Q ′ ∈ T ′ , tgen(T ′∪B,D(o))

	 (w[R]) ⊇ {∃R ′ −,

∃Q ′ −} and rgen(T ′∪B,D(o))

	 (o, w[R]) ⊇ {R ′, Q ′}. By condition (ii), it follows S ∪ B |= D � ∃R ′ . As ∃R ′ − and ∃Q ′ − satisfy (I)
and S ∪ B |= D � ∃R ′ , it follows there exists S such that D �S∪B S and S ∪ B |= {S � R ′, ∃S− � ∃Q ′ −}; moreover 
by ∃Q ′ − �= ∃R ′ − and the structure of S ∪ B it follows S is over �. From the latter we obtain a role Q over � such 
that S |= S � Q and B |= Q � R , moreover ∃Q − and Q are S ∪ B-consistent. Now, assume T |= ∃R ′ − � E ′; then 
T ∪ B |= ∃Q − � E ′ , and since T satisfies condition (ii) it follows S ∪ B |= ∃Q − � E ′ , therefore E ′ ∈ tgen(S∪B,D(o))

	 (w[S]). 
Similarly, for T ′ such that T |= R ′ � T ′ , we can show T ′ ∈ rgen(S∪B,D(o))

	 (o, w[S]). Thus, we take y = w[S] to satisfy condi-
tion (iv) of Lemma 7.1.

(⇒) Suppose inclusion R � Q ′ is representable in S and M by a target axiom α. Then T = {α} is a parsimonious 
UCQ-representation and T ∪B |= R � Q ′ . If B |= R � Q ′ , we take R ′ equal to Q ′: obviously, (J) and (K) are satisfied. Now, 
assume B �|= R � Q ′ . Then it must be the case α is of the form S ′ � Q ′ and B |= R � S ′ for some role S ′ over 	. So we take 
R ′ equal to S ′ , then (J) is shown similarly to (H) in the proof of Proposition D.1, and satisfaction of (K) is shown exactly as 
in the proof of ⇒ of Proposition D.1 for B ′ = ∃R ′ , C ′ = ∃Q ′ , and B ′ = ∃R ′ − , C ′ = ∃Q ′ − . �
Proposition D.3. For roles R1, R2 over �, (R1, R2) is target contradictable in S and M iff either for {R, Q } ⊆ {R1, R2} there exists 
R ′ over 	 such that

(L) B |= R � R ′ , and either Q � ¬R ′ ∈ B, or there exists Q ′ over 	 such that B |= Q � Q ′ and
(a) for each S ∪B-consistent pair of roles S1, S2 over � it is not the case S ∪B |= {S1 � R ′, S2 � Q ′};
(b) for each S∪B-consistent concept D over � and each role S such that D �S∪B S, it is neither the case S∪B |= S � R ′ � Q ′ ,

nor S ∪B |= S � R ′ − � Q ′ − ,
(M) or B |= R � ¬R ′ and inclusion Q � R ′ is representable in S and M;

or for {B, C} ⊆ {∃R1, ∃R2} or {∃R−
1 , ∃R−

2 } there exists B ′ over 	 such that

(N) B |= B � B ′ , and either C � ¬B ′ ∈ B, or there exists C ′ over 	 such that B |= C � C ′ and
(c) for each S ∪B-consistent pair of concepts D1, D2 over � it is not the case S ∪B |= {D1 � B ′, D2 � C ′};
(d) for each S ∪B-consistent concept D over � and each role S such that D �S∪B S it is not the case S ∪B |= ∃S− � B ′ � C ′ ,

(O) or B |= B � ¬B ′ and inclusion C � B ′ is representable in S and M.

Then (R1, R2) is target contradictable by either R ′ � R ′ , or Q ′ � ¬R ′ in (L), by axiom α, where Q � R ′ is representable by α in (M), 
by either B ′ � B ′ , or C ′ � ¬B ′ in (N), and by axiom α, where C � B ′ is representable by α in (O).

Proof. (⇐) Let R1, R2 be roles over � and one of the conditions (L), (M), (N), or (O) is satisfied. We show (R1, R2) is target 
contradictable by α given by each of the conditions. Take T a parsimonious UCQ-representation for S under M: we prove 
T ′ = T ∪{α} is a parsimonious UCQ-representation, by showing conditions (i), (ii), and (iv) of Lemma 7.1 are satisfied (only 
the required directions, see the proof of Proposition D.1). That (R1, R2) is T ′ ∪ B-inconsistent, follows immediately from 
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the shape of α and B in each of the cases. Observe that if α is given by one of the conditions (M) or (O), then T ′ is a 
parsimonious UCQ-representation follows from the proof of Propositions D.1 and D.2. As for α given by conditions (L) or (N), 
it should be clear that conditions (ii) and (iv) of Lemma 7.1 are satisfied, as disjointness axioms do not affect entailments 
of the concept and role inclusions. Therefore, below we show T ′ satisfies condition (i).

Assume condition (L) is satisfied, and α = Q ′ � ¬R ′ (the case α = R ′ � R ′ is trivial), hence B �|= Q � ¬R ′ . Let (D1, D2)

be a pair of S-consistent, T ∪ B-consistent and T ′ ∪ B-inconsistent concepts. The case both Di is T ′ ∪ B-consistent is not 
possible due to the shape of α. Then some Di is T ′ ∪ B-inconsistent, and by (F) it follows there exist n ≥ 1 and distinct 
roles S ′

1, . . . , S
′
n such that Di �T ∪B S ′

1, ∃S ′ −
j �T ∪B S ′

j+1 and T ∪ B |= S ′
n � R ′ � Q ′ or T ∪ B |= S ′

n � R ′ − � Q ′ − . In the 
following, we consider only T ∪B |= S ′

n � R ′ � Q ′ .
For the sake of contradiction, assume Di is S ∪ B-consistent. If n = 1 and S ′

1 is a role over � (i.e., Di = ∃S ′
1 and S ′

1 is 
S ∪B-consistent), then we obtain contradiction with (a) rised from the assumption Di is S ∪B-consistent. If n = 1 and S ′

1
is a role over 	, then since T is a parsimonious UCQ-representation and Di �T ∪B S ′

1, by condition (iv), we obtain a role 
S1 such that Di �S∪B S1, and S ∪B |= S1 � R ′ � Q ′: contradiction with (b).

For n > 1, inductively using condition (iv), we obtain roles S1, . . . , Sn−1 over � and Sn such that Di �S∪B S1, ∃S−
j �S∪B

S j+1, and S ∪B |= Sn � R ′ � Q ′ . Then (b) implies that ∃S−
n−1 is S ∪B-inconsistent, which contradicts the assumption Di is 

S ∪B-consistent. Finally, we conclude that Di is S ∪B-inconsistent, hence (D1, D2) is S ∪B-inconsistent.

Let (S1, S2) be a pair of S-consistent, T ∪ B-consistent and T ′ ∪ B-inconsistent roles. For the sake of contradiction, 
assume (S1, S2) is S ∪B-consistent (and each of Si is S ∪B-consistent).

Suppose both Si is T ′ ∪ B-consistent. From the shape of α, without loss of generality, we may assume that T ′ ∪ B |=
{S1 � R ′, S2 � Q ′}. From condition (ii), we obtain S ∪B |= {S1 � R ′, S2 � Q ′}, which contradicts (a).

Suppose one of Si is T ′ ∪ B-inconsistent. Then by (G) either T ∪ B |= Si � R ′ � Q ′ or T ∪ B |= Si � R ′ − � Q ′ − , or 
D is T ′ ∪ B-inconsistent for D = ∃Si or D = ∃S−

i . In the latter case, we obtain contradiction as in the case (D1, D2) is 
T ′ ∪ B-inconsistent. In the former case, from condition (ii), it follows S ∪ B |= Si � R ′ � Q ′ or S ∪ B |= Si � R ′ − � Q ′ − , 
which contradicts (a). Finally, we conclude (S1, S2) is S ∪B-inconsistent.

Assume condition (N) is satisfied, and α = C ′ � ¬B ′ (the case α = B ′ � B ′ is trivial), hence B �|= C � ¬B ′ . Let (D1, D2) be 
a pair of S-consistent, T ∪B-consistent and T ′ ∪B-inconsistent concepts. For the sake of contradiction, assume (D1, D2) is 
S ∪B-consistent (and each of Di is S ∪B-consistent).

Suppose both Di is T ′ ∪ B-consistent. From the shape of α, without loss of generality, we may assume that T ∪ B |=
{D1 � B ′, D2 � C ′}. From condition (ii), it follows S ∪B |= {D1 � B ′, D2 � C ′}: contradiction with (c).

Suppose one of Di is T ′ ∪ B-inconsistent. By (F), consider T ∪ B |= Di � B ′ � C ′ . From condition (ii), it follows S ∪
B |= Di � B ′ � C ′: contradiction with (c). Now, consider the case there exist n ≥ 1 and distinct roles S ′

1, . . . , S
′
n such that 

Di �T ∪B S ′
1, ∃S ′ −

j �T ∪B S ′
j+1 and T ∪ B |= ∃S ′ −

n � B ′ � C ′ . Inductively using condition (iv), we obtain roles S1, . . . , Sn−1

over � and Sn such that Di �S∪B S1, ∃S−
j �S∪B S j+1, and S ∪ B |= ∃S−

n � B ′ � C ′ . Then (d) implies that ∃S−
n−1 (or Di

if n = 1) is S ∪ B-inconsistent, which contradicts the assumption Di is S ∪ B-consistent. Finally, we conclude that Di is 
S ∪B-inconsistent, hence (D1, D2) is S ∪B-inconsistent.

Let (S1, S2) be a pair of S-consistent, T ∪B-consistent and T ′ ∪B-inconsistent roles. From the shape of α, it follows D
is T ′ ∪B-inconsistent, for D = ∃Si or D = ∃S−

i and i ∈ {1, 2}. It can be shown D is S ∪B-inconsistent as above.

(⇒) Suppose pair (R1, R2) is target contradictable in S and M by a target axiom α. If (R1, R2) is B-inconsistent, then 
there exist R, Q ∈ {R1, R2} and R ′ over 	 such that B |= {R � R ′, Q � ¬R ′} (hence, (L) is satisfied), or there exist B, C in 
{∃R1, ∃R2} or in {∃R1, ∃R2} and B ′ over 	 such that B |= {B � B ′, C � ¬B ′} (hence, (N) is satisfied).

Assume (R1, R2) is B-consistent. Then α is a non-trivial axiom, T = {α} is a parsimonious UCQ-representation, and 
(R1, R2) is T ∪B-inconsistent.

Suppose α is a role disjointness axiom S1 � ¬S2. Then it follows there exist R, Q ∈ {R1, R2} and S, T ∈ {S1, S2} such 
that B |= {R � S, Q � T }. So we set R ′ equal to S and Q ′ equal to T . We prove (a) and (b) are satisfied. For (a), assume 
an S ∪B-consistent pair of roles S1, S2 over � such that S ∪B |= {S1 � R ′, S2 � Q ′}. It follows there exist S11, S22 over �
such that S |= {S1 � S11, S2 � S22} and B |= {S11 � R ′, S22 � Q ′}. Next, (S11, S22) is T ∪B-inconsistent, and since T is a 
parsimonious UCQ-representation, it follows (S11, S22) is S ∪B-inconsistent, which contradicts (S1, S2) is S ∪B-consistent. 
Hence, it cannot be the case S ∪B |= {S1 � R ′, S2 � Q ′}. For (b), assume an S ∪B-consistent concept D over � such that 
D �S∪B S and S∪B |= S � R ′ � Q ′ . If S is over �, then as above, we obtain a contradiction with D being S∪B-consistent. If 
S is over 	, it follows S = R ′ = Q ′ , and there exists a concept D1 over � such that S |= D � D1 and B |= D1 � ∃S . As above, 
(D1, D1) is T ∪B-inconsistent, and since T is a parsimonious UCQ-representation, it follows (D1, D1) is S ∪B-inconsistent, 
which contradicts D is S ∪ B-consistent. Hence, it cannot be the case S ∪ B |= S � R ′ � Q ′ . In a similar way we obtain a 
contradiction if assume S ∪B |= S � R ′ − � Q ′ − . Thus, (L) is satisfied.

Suppose α is a role inclusion assertion S1 � S2. Then it follows there exist R, Q ∈ {R1, R2} such that B |= {R � ¬S2,

Q � S1}. So we set R ′ equal to S2, the proof Q � R ′ is representable by S1 � R ′ is similar to the proof of ⇒ of Proposi-
tion D.2. Thus, (M) is satisfied.

Suppose α is a concept disjointness axiom D1 � ¬D2. Then it follows there exist B, C in {∃R1, ∃R2} or {∃R−
1 , ∃R−

2 } and 
D, E ∈ {D1, D2} such that B |= {B � D, C � E}. So we set B ′ equal to D and C ′ equal to E . We can prove (c) and (d) are 
satisfied by analogy with the proof of (a) and (b). Thus, (N) is satisfied.
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Suppose α is a concept inclusion assertion D1 � D2. Then it follows there exist B, C in {∃R1, ∃R2} or {∃R−
1 , ∃R−

2 } such 
that B |= {B � ¬D2, C � D1}. So we set B ′ equal to D2, the proof C � B ′ is representable by D1 � B ′ is similar to the proof 
of ⇒ of Proposition D.1. Thus, (O) is satisfied. �
Proposition D.4. For concepts B1, B2 over �, (B1, B2) is target contradictable in S and M if either for {B, C} ⊆ {B1, B2} there 
exists B ′ over 	 such that

(P) B |= B � B ′ , and either C � ¬B ′ ∈ B, or there exists C ′ over 	 such that B |= C � C ′ and
(c) for each S ∪B-consistent pair of concepts D1, D2 over � it is not the case S ∪B |= {D1 � B ′, D2 � C ′};
(d) for each S ∪B-consistent concept D over � and each role S such that D �S∪B S it is not the case S ∪B |= ∃S− � B ′ � C ′ ,

(Q) or B |= B � ¬B ′ and inclusion C � B ′ is representable in S and M;

or B1 = ∃R or B2 = ∃R for a role R, and

(R) (R, R) is target contradictable in S and M.

Then (B1, B2) is target contradictable by either B ′ � B ′ or C ′ � ¬B ′ in (P), by axiom α, where C � B ′ is representable by α in (Q), 
and by axiom α such that (R, R) is target contradictable by α in (R).

Proof. The proof is similar to the proof of Proposition D.3. �
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