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Abstract
In this paper, we consider the setting of graph-structured data that evolves as a result of operations carried

out by users or applications. We study different reasoning problems, which range from ensuring the satisfac-
tion of a given set of integrity constraints after a given sequence of updates, to deciding the (non-)existence
of a sequence of actions that would take the data to an (un)desirable state, starting either from a specific data
instance or from an incomplete description of it. We consider an action language in which actions are finite se-
quences of conditional insertions and deletions of nodes and labels, and use Description Logics for describing
integrity constraints and (partial) states of the data. We then formalize the above data management problems
as a static verification problem and several planning problems. We provide algorithms and tight complexity
bounds for the formalized problems, both for an expressive DL and for a variant of DL-Lite.

1. Introduction

The complex structure and increasing size of information that has to be managed in today’s applications
calls for flexible mechanisms for storing such information,making it easily and efficiently accessible, and
facilitating its change and evolution over time. The paradigm ofgraph structured data(GSD) [32] has gained
popularity recently1 as an alternative to traditional relational DBs that provides more flexibility and thus can
overcome the limitations of an a priori imposed rigid structure on the data. Indeed, differently from relational
data, GSD do not require a schema to be fixed a priori. This flexibility makes them well suited for many
emerging application areas such as managing Web data, information integration, persistent storage in object-
oriented software development, or management of scientificdata. Concrete examples of models for GSD are
RDFS [14], object-oriented data models, and XML.

In GSD, information is represented by means of a node and edgelabeled graph, in which the labels convey
semantic information. The representation structures underlying many standard knowledge representation
formalisms, and in particular Description Logics (DLs) [5]are paradigmatic examples of GSD. Indeed, in
DLs the domain of interest is modeled by means of unary relations (a.k.a.concepts) and binary relations
(a.k.a.roles), and hence the first-order interpretations of a DL knowledge base (KB) can be viewed as node
and edge labeled graphs. DLs have been advocated as a proper tool for data management [26], and are
very natural for describing complex knowledge about domains represented as GSD. A DL KB comprises an
assertional component, calledABox, which is often viewed as a possibly incomplete instance of GSD, and a
logical theory called terminology orTBox, which can be used to infer implicit information from the assertions
in the ABox. An alternative possibility is to view thefinite structures over which DLs are interpreted as
(complete) GSD, and the KB as a description of constraints and properties of the data. Taking this view, DLs

∗. This paper is a extended version of [1] that contains an appendix with proofs.
1. Graph structured data models have their roots in work donein the early ’90s, see, e.g., [20].
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have been applied, for example, for the static analysis of traditional data models, such as UML class diagrams
[11] and Entity Relationship schemata [3]. Problems such asthe consistency of a diagram are reduced to KB
satisfiability in a suitable DL, and DL reasoning services become tools for managing GSD.

In this paper, we follow the latter view, but aim at using DLs not only for static reasoning about data
models, but also for reasoning about the evolution and change over time of GSD that happens as the result
of executing actions. The development of automated tools tosupport such tasks is becoming a pressing
problem, given the large amounts and complexity of GSD currently available. Having tools to understand
the properties and effects of actions is important and provides added value for many purposes, including
application development, integrity preservation, security, and optimization. Questions of interest are, e.g.:

• Will the execution of a given actionpreservethe integrity constraints, for every initial data instance?
• Is there a sequence of actions that leads a given data instance into a state where some property (either

desired or not) holds?
• Does a given sequence of actions lead every possible initialdata instance into a state where some

property necessarily holds?
The first question is analogous to a classic problem in relational databases: verifyingconsistencyof

database transactions. The second and third questions are classic questions in AI (calledplanningandpro-
jection, respectively).

In this paper we address these and other related questions, develop tools to answer them, and characterize
the computational properties of the underlying problems. The role of DLs in our setting is manifold, and we
propose a very expressive DL that is suitable for:(i) modeling sophisticated domain knowledge,(ii) specify-
ing conditions on the state that should be reached (goal state), and(iii) specifying actions to evolve GSD over
time. For the latter, we introduce a simple yet powerful language in which actions are finite sequences of
(possibly conditional) insertions and deletions performed on concepts and roles, using complex DL concepts
and roles as queries. Our results are quite general and allowfor analyzing data evolution in several practically
relevant settings, including RDF data under constraints expressed in RDFS or OWL. Via the standard reifica-
tion technique [11], they also apply to the more traditionalsetting of relational data under schemas expressed
in conceptual models (e.g., ER schemas, or UML class diagrams), or to object-oriented data.

In this setting, we address first thestatic verification problem, that is, the problem of verifying whether
for every possible state satisfying a given set of constraints (i.e., a given KB), the constraints are still satisfied
in the state resulting from the execution of a given (complex) action. We develop a novel technique similar in
spirit to regressionin reasoning about actions [27], and are able to show that static verification is decidable.
We provide tight complexity bounds for it, using two different DLs as domain languages. Specifically, we
provide a tightCONEXPTIME bound for the considered expressive DL, and a tight coNP bound for a variation
of DL-Lite [16]. For our setting, we then study different variants of planning. We define a plan as a sequence
of actions that leads a given structure into a state where some property (either desired or not) holds. Then
we study problems such as deciding the existence of a plan, both for the case where the initial structure is
fully known, and where only a partial description of it is available, and deciding whether a given sequence
of actions is always a plan for some goal. Since the existenceof a plan (of unbounded length) is undecidable
in general, even for lightweight DLs and resctricted actions, we also study plans of bounded length. We
provide tight complexity bounds for the different considered variants of the problem, both for lightweight
and for expressive DLs. This paper adds an appendix with proofs to [1], some of the results were published
in preliminary form [19].

2. An Expressive DL for Modeling GSD

We now define the DLALCHOIQbr, used to express constraints on GSD. It extends the standardALCHOIQ
with Boolean combinations of axioms, a constructor for a singleton role, union, difference and restrictions
of roles, and variables as place-holders for individuals. The importance of these constructors will be become
clear in Sections 3 and 4.

We assume countably infinite setsNR of role names, NC of concept names, NI of individual names, and
NV of variables. Rolesare defined inductively:(i) if p ∈ NR, thenp andp− (theinverseof p) are roles;(ii) if
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{t, t′} ⊆ NI ∪NV, then{(t1, t2)} is also a role;(iii) if r1, r2 are roles, thenr1 ∪ r2, andr1 \ r2 are also roles;
and(iv) if r is a role andC is a concept, thenr|C is a role.Conceptsare defined inductively as well:(i) if
A ∈ NC, thenA is a concept;(ii) if t ∈ NI ∪ NV, then{t} is a concept (callednominal); (iii) if C1, C2 are
concepts, thenC1 ⊓ C2, C1 ⊔ C2, and¬C1 are also concepts;(iv) if r is a role,C is a concept, andn is a
non-negative integer, then∃r.C, ∀r.C, 6n r.C, and>n r.C are also concepts.

A concept(resp.,role) inclusionis an expression of the formα1 ⊑ α2, whereα1, α2 are concepts (resp.,
roles). Expressions of the formt : C and(t, t′) : r, where{t, t′} ⊆ NI ∪ NV, C is a concept, andr is a role,
are calledconcept assertionsandrole assertions, respectively. Concepts, roles, inclusions, and assertions that
have no variables are calledordinary. We define (ALCHOIQbr-)formulaeinductively: (i) every inclusion
and every assertion is a formula;(ii) if K1, K2 are formulae, so areK1 ∧ K2, K1 ∨ K2, and¬̇K1. A formula
K with no variables is calledknowledge base (KB).

As usual in DLs, the semantics is given in terms of interpretations. An interpretation is a pairI =
〈∆I , ·I〉 where∆I 6= ∅ is thedomain, AI ⊆ ∆I for eachA ∈ NC, rI ⊆ ∆I ×∆I for eachr ∈ NR, and
oI ∈ ∆I for eacho ∈ NI. For the ordinary roles of the form{(o1, o2)}, we let{(o1, o2)}I = {(oI1 , o

I
2 )}, and

for ordinary roles of the formr|C , we let(r|C)I = {(e1, e2) | (e1, e2) ∈ rI ande2 ∈ CI}. The function·I

is extended to the remaining ordinary concepts and roles in the usual way, see [5]. Assume an interpretation
I. For an ordinary inclusionα1 ⊑ α2, I satisfiesα1 ⊑ α2 (in symbols,I |= α1 ⊑ α2) if αI1 ⊆ αI2 . For an
ordinary assertionβ = o : C (resp.,β = (o1, o2) : r), I satisfiesβ (in symbols,I |= β) if oI ∈ CI (resp.,
(oI1 , o

I
2 ) ∈ rI ). The notion of satisfaction is extended to knowledge basesas follows: (i) I |= K1 ∧ K2 if

I |= K1 andI |= K2; (ii) I |= K1 ∨ K2 if I |= K1 or I |= K2; (iii) I |= ¬̇K if I 6|= K. If I |= K, then
I is amodelof K. Thefinite satisfiability(resp.,unsatisfiability) problemis to decide given a KBK if there
exists (resp., doesn’t exist) a modelI of K with ∆I finite.

A NEXPTIME lower bound for finite satisfiability inALCHOIQbr follows from the work of Tobies
[35]. Using well-known techniques due to Borgida [13], a matching upper bound can be shown by a direct
translation into the two variable fragment with counting, for which finite satisfiability is in NEXPTIME [31].
Hence, the finite satisfiability problem forALCHOIQbr KBs has the same computational complexity as for
the standardALCHOIQ:

Theorem 1. Finite satisfiability ofALCHOIQbr KBs isNEXPTIME-complete.

We are interested in the problem ofeffectivelymanaging GSD satisfying the knowledge represented in a
DL KB K. Hence, we must assume that such data are offinite size, i.e., they correspond naturally tofinite
interpretations that satisfy the constraintsin K. In other words, we consider configurations of the GSD that
are finite models ofK.

3. Updating Graph Structured Data

We now define an action language for manipulating GSD, i.e., finite interpretations. The basic actions allow
one to insert or delete individuals from extensions of concepts, and pairs of individuals from extensions of
roles. The candidates for additions and deletions are instances of complex concepts and roles. Since our DL
supports nominals{o} and singleton roles{(o, o′)}, actions can be defined to add/remove a single individual
to/from a concept, or a pair of individuals to/from a role. Weallow also for action composition and conditional
actions. Note that the action language introduced here is a slight generalization of the one in [19].

Definition 1 (Action language). A basic actionβ is defined by the following grammar:

β −→ (A⊕ C) | (A⊖ C) | (p⊕ r) | (p⊖ r),

whereA is a concept name,C is an arbitrary concept,p is a role name, andr is an arbitrary role. Then
(complex) actionsare given by the following grammar:

α −→ ε | β · α | (K ?αJαK) · α

3



whereβ is a basic action,K is an arbitraryALCHOIQbr-formula, andε denotes theempty action.
A substitutionis a functionσ fromNV to NI. For a formula, an action or an action sequenceΓ, we use

σ(Γ) to denote the result of replacing inΓ every occurrence of a variablex by the individualσ(x). An action
α is groundif it has no variables. An actionα′ is called aground instanceof an actionα if α′ = σ(α) for
some substitutionσ.

Intuitively, an application of an action(A⊕C) on an interpretationI stands for the addition of the content
of CI to AI . Similarly, (A ⊖ C) stands for the removal ofCI from AI . The two operations can also be
performed on extensions of roles. Composition stands for successive action execution, and a conditional
actionK ?α1Jα2K expresses thatα1 is executed if the interpretation is a model ofK, andα2 is executed
otherwise. Ifα2 = ε then we have an action with a simplepre-conditionas in classical planning languages,
and we write it asK ?α1, omittingα2.

To formally define the semantics of actions, we first introduce the notion ofinterpretation update.

Definition 2 (Interpretation update). Assume an interpretationI and letE be a concept or role name. IfE
is a concept, letW ⊆ ∆I , otherwise, ifE is a role, letW ⊆ ∆I ×∆I . Then,I ⊕E W (resp.,I ⊖E W )
denotes the interpretationI ′ such that∆I

′

= ∆I , and
- EI

′

= EI ∪W (resp.,EI
′

= EI \W ), and
- EI

′

1 = EI1 , for all symbolsE1 6= E.

Now we can define the semantics of ground actions:

Definition 3. Given a ground actionα, we define a mappingSα from interpretations to interpretations as
follows:

Sε(I) = I

S(A⊕C)·α(I) = Sα(I ⊕A CI)

S(A⊖C)·α(I) = Sα(I ⊖A CI)

S(p⊕r)·α(I) = Sα(I ⊕p rI)

S(p⊖r)·α(I) = Sα(I ⊖p rI)

S(K ?α1Jα2K)·α(I) =

{

Sα1·α(I), if I |= K,

Sα2·α(I), if I 6|= K.

In the following, we assume that interpretations are updated using the above language.

Example 1. The following interpretationI1 represents (part of) the project database of some research insti-
tute. There are two active projects, and there are three employees that work in the active projects.

PrjI1 = {p1, p2}, ActivePrjI1 = {p1, p2},
EmplI1 = {e1, e3, e7}, FinishedPrjI1 = {},

worksForI1 = {(e1, p1), (e3, p1), (e7, p2)}.

We assume constantspi with pi
I = pi for projects, and analogously constantsei for employees. The following

actionα1 captures the termination of projectp1, which is removed from the active projects and added to the
finished ones. The employees working only for this project are removed.

α1 = ActivePrj ⊖ {p1} · FinishedPrj⊕ {p1} ·
Empl⊖ ∀worksFor.{p1}

The interpretationSα1
(I1) that reflects the status of the database after actionα1 looks as follows:

PrjI1 = {p1, p2}, ActivePrjI1 = {p2},
EmplI1 = {e7}, FinishedPrjI1 = {p1},

worksForI1 = {(e1, p1), (e3, p1), (e7, p2)}.

Note that we have not defined the semantics of actions with variables, i.e., for non-ground actions. In
our approach, all variables of an action are seen as parameters whose values are given before execution by a
substitution with actual individuals, i.e., by grounding.
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Example 2. The following actionα2 with variablesx, y, z transfers the employeex from projecty to project
z:

α2 = (x :Empl ∧ y :Prj ∧ z :Prj ∧ (x, y) :worksFor) ?
(worksFor ⊖ {(x, y)} · worksFor ⊕ {(x, z)})

Under the substitutionσ with σ(x) = e1, σ(y) = p1, andσ(z) = p2, the actionα2 first checks whethere1
is an (instance of) employee,p1, p2 are projects, ande1 works forp1. If yes, it removes theworksFor link
betweene1 andp1, and creates aworksFor link betweene1 andp2. If any of the checks fails, it does nothing.

4. Capturing Action Effects

In this section we present our core technical tool: a transformationTRα(K) that rewritesK incorporating the
possible effects of an actionα. Intuitively, the models ofTRα(K) are exactly the interpretationsI such that
applyingα onI leads to a model ofK. In this way, we can effectively reduce reasoning about changes in any
database that satisfies a givenK, to reasoning about a single KB. In the next section we use this transformation
to solve a wide range of data management problems by reducingthem to standard DL reasoning services, such
as finite (un)satisfiability. This transformation can be seen as a form ofregression[27], which incorporates
the effects of a sequence of actions ‘backwards’, from the last one to the first one.

Definition 4. Given a KBK, we useKE←E′ to denote the KB that is obtained fromK by replacing every
nameE by the (possibly more complex) expressionE′. Given a KBK and an actionα, we defineTRα(K) as
follows:

TRε(K) = K

TR(A⊕C)·α(K) = (TRα(K))A←A⊔C

TR(A⊖C)·α(K) = (TRα(K))A←A⊓¬C

TR(p⊕r)·α(K) = (TRα(K))p←p∪r

TR(p⊖r)·α(K) = (TRα(K))p←p\r

TR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K)) ∧ (K1 ∨TRα2·α(K)).

Note that the size ofTRα(K) might be exponential in the size ofα. We now show that this transformation
correctly captures the effects of complex actions.

Theorem 2. Assume a ground actionα and a KBK. For every interpretationI, we haveSα(I) |= K iff
I |= TRα(K).

Proof. We defines(α) as follows:s(ε) = 0, s(β · α) = 1 + s(α), ands(K ?α1Jα2K · α3) = 1 + s(α1) +
s(α2) + s(α3). We prove the claim by induction ons(α). In the base case wheres(α) = 0 andα = ε, we
haveSα(I) = I andTRα(K) = K by definition, and thus the claim holds.

Assumeα = (A ⊕ C) · α′. Let I ′ = I ⊕A CI , that is,I ′ coincides withI except thatAI
′

= AI ∪
CI . For every KBK′, I ′ |= K′ iff I |= K′A←A⊔C (This can be proved by a straightforward induction on
the structure of the expressions inK′). In particular,I ′ |= TRα′(K) iff I |= (TRα′(K))A←A⊔C . Since
(TRα′(K))A←A⊔C = TRα(K), we getI ′ |= TRα′(K) iff I |= TRα(K). By the induction hypothesis,I ′ |=
TRα′(K) iff Sα′(I ′) |= K, thusI |= TRα(K) iff Sα′(I ′) |= K. SinceSα′(I ′) = Sα′(S(A⊕C)(I)) = Sα(I)
by definition, we obtainI |= TRα(K) iff Sα(I) |= K as desired.

For the casesα = (A⊖ C) · α′, α = (p⊕ r) · α′, andα = (p⊖ r) · α′, the argument is analogous.
Finally, we considerα = (K1 ?α1Jα2K) · α′, and assume an arbitraryI. We consider the case where

I |= K1; the case whereI 6|= K1 is analogous. By definitionSα(I) = Sα1·α′(I). By the induction
hypothesis we know thatSα1·α′(I) |= K iff I |= TRα1·α′(K), soSα(I) |= K iff I |= TRα1·α′(K). Since
I |= K1 andTR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K)) ∧ (K1 ∨TRα2·α(K)), it follows thatSα(I) |= K
iff I |= TR(K1 ?α1Jα2K)·α(K).

This theorem will be important for solving the reasoning problems we study below.
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Example 3. The following KBK1 expresses constraints on the project database of our running example: all
projects are active or finished, the domain ofworksFor are the employees, and its range the projects.

(Prj⊑ ActivePrj ⊔ FinishedPrj) ∧
(∃worksFor.⊤⊑ Empl) ∧
(∃worksFor−.⊤⊑ Prj)

By applying the transformation above toK1 andα1, we obtain the following KBTRα1
(K1):

(Prj⊑ (ActivePrj ⊓ ¬{p1}) ⊔ (FinishedPrj ⊔ {p1})) ∧
(∃worksFor.⊤⊑ Empl ⊓ ∃worksFor.¬{p1}) ∧
(∃worksFor−.⊤⊑ Prj)

5. Static Verification

In this section, we consider the scenario where DL KBs are used to impose integrity constraints on GSD. One
of the most basic reasoning problems for action analysis in this setting isstatic verification, which consists in
checking whether the execution of an actionα always preserves the satisfaction of integrity constraints given
by a KB.

Definition 5 (The static verification problem). LetK be a KB. We say that an actionα isK-preservingif for
every ground instanceα′ of α and every finite interpretationI, we have thatI |= K impliesSα′(I) |= K.
Thestatic verification problemis defined as follows:

(SV) Given an actionα and a KBK, isα K-preserving?

Using the transformationTRα(K) above, we can reduce static verification to finite (un)satisfiability of
ALCHOIQbr KBs: An actionα is notK-preserving iff some finite model ofK does not satisfyTRα∗(K),
whereα∗ is a ‘canonical’ grounding ofα. Formally, we have:

Theorem 3. Assume a (complex) actionα and a KBK. Then the following are equivalent:
(i) The actionα is notK-preserving.
(ii) K ∧ ¬̇TRα∗(K) is finitely satisfiable, whereα∗ is obtained fromα by replacing each variable with a

fresh individual name not occurring inα andK.

Example 4. The actionα1 from Example 1 is notK1-preserving:I1 |= K1, butSα1
(I1) 6|= K1 since the

concept inclusion∃worksFor.Prj ⊑ Empl is violated. This is reflected in the fact thatI1 6|= TRα1
(K1), as can

be readily checked. Intuitively, values removed fromEmpl should also be removed fromworksFor, as in the
followingK1-preserving action:

α′1 = ActivePrj ⊖ {p1} · FinishedPrj⊕ {p1} ·
Empl⊖ ∀worksFor.{p1} · worksFor ⊖ worksFor|{p1}

The above theorem provides an algorithm for static verification, which we can also use to obtain tight
bounds on the computational complexity of the problem. Indeed, even thoughK ∧ ¬̇TRα∗(K) may be
of size exponential inα, we can avoid to generate it all at once. More precisely, we use a non-deterministic
polynomial time many-one reduction that builds onlyK∧¬̇TRc

α∗(K) for a fragmenṫ¬TRc
α(K) of ¬̇TRα∗(K)

that corresponds to one fixed way of choosing one ofα1 or α2 for each conditional actionK′ ?α1Jα2K in α
(intuitively, we can view¬̇TRc

α∗(K) as one conjunct of the DNF of¬̇TRα(K), where axioms and assertions
are treated as propositions). Such a¬̇TRc

α(K) has polynomial size, and it can be built non-deterministically
in polynomial time. It is not hard to show thatK ∧ ¬̇TRα∗(K) is finitely satisfiable iff there is some choice
TR

c
α∗(K) such thatK ∧ ¬̇TRc

α∗(K) is finitely satisfiable. By Theorem 1, the latter test can be done in
non-deterministic exponential time, hence from Theorem 3 we obtain:

Theorem 4. The problem (SV) is coNEXPTIME-complete in case the input KB is expressed inALCHOIQbr.
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We note that in our definition of the (SV) problem, in additionto the action to be verified, one has as
input only one KBK expressing constraints. We can also consider other interesting variations of the problem
where, for example, we have a pair of KBsKpre andKpost instead of (or in addition to)K and we want to
decide whether executing the action on any model ofKpre (andK) leads to a model ofKpost (andK). The
reasoning techniques and upper bounds presented above alsoapply to these generalized settings.

Lowering the Complexity

The goal of this section is to identify a setting for which thecomputational complexity of static verification
is lower. The natural way to achieve this is to consider as constraint language a DL with better computational
properties, such as the logics of theDL-Lite family [16].

Unfortunately, we cannot achieve tractability, since static verification is coNP hard even in a very re-
stricted setting, as shown next.

Theorem 5. The static verification problem is coNP-hard already for KBs of the form(A1 ⊑ ¬A′1) ∧ · · · ∧
(An ⊑ ¬A′n), where eachAi, A

′
i is a concept name, and ground sequences of basic actions of the forms

(A⊕ C) and(A⊖ C).

We next present a rich variant ofDL-LiteR, which we callDL-Lite+R, for which the static verification
problem is in coNP. It supports (restricted) Boolean combinations of inclusions and assertions, and allows
for complex concepts and roles in assertions. As shown below, this allows us to express the effects of actions
insideDL-Lite+R KBs.

Definition 6. The logic DL-Lite+R is defined as follows:

- Concept inclusions have the formC1 ⊑ C2 or C1 ⊑ ¬C2, withC1, C2 ∈ NC ∪ {∃p.⊤, ∃p−.⊤ | p ∈ NR}.

- Role inclusions inK have the formr1 ⊑ r2 or r1 ⊑ ¬r2, with r1, r2 ∈ NR ∪ {p− | p ∈ NR}.

- Role assertions are defined as forALCHOIQbr, but in concept assertionso : C, we requireC ∈ B
+,

whereB+ is the smallest set of concepts such that:

(a) NC ⊆ B
+,

(b) {o′} ∈ B
+ for all o′ ∈ NI,

(c) ∃r.⊤ ∈ B
+ for all roles r,

(d) {B1 ⊓B2, B1 ⊔B2,¬B1} ⊆ B
+ for all B1, B2 ∈ B

+.

- Formulae and KBs are defined as forALCHOIQbr, but the operatoṙ¬ may occur only in front of asser-
tions.

A DL-LiteR KB K is a DL-Lite+R KB that satisfies the following restrictions:
- K is a conjunctionof inclusions and assertions, and
- all assertions inK arebasic assertionsof the formso : A withA ∈ NC, and(o, o′) : p with p ∈ NR.
We make theunique name assumption (UNA): for every pair of individualso1, o2 and interpretationI, we
haveoI1 6= oI2 .

We need to slightly restrict the action language, which involves allowing only Boolean combinations of
assertions to express the conditionK in actions of the formK ?α1Jα2K.

Definition 7. A (complex) actionα is calledsimple if (i) no (concept or role) inclusions occur inα, and
(ii) all concepts ofα are fromB

+.

We next characterize the complexity of finite satisfiabilityin DL-Lite+R.

Theorem 6. Finite satisfiability of DL-Lite+R KBs isNP-complete.

7



DL-Lite+R is expressive enough to allow us to reduce static verification for simple actions to finite unsatisfia-
bility, and similarly as above, we can use a non-deterministic polynomial time many-one reduction (from the
complement of static verification to finite unsatisfiability) to obtain a coNP upper bound on the complexity
of static verification. This bound is tight, even if we allow only actions with preconditions rather than full
conditional actions. We note that all lower bounds in the next section also hold for this restricted case.

Theorem 7. The static verification problem for DL-Lite+R KBs and simple actions is coNP-complete.

6. Planning

We have focused so far on ensuring that the satisfaction of constraints is preserved when we evolve GSD.
But additionally, there may be desirable states of the GSD that we want to achieve, or undesirable ones that
we want to avoid. For instance, one may want to ensure that a finished project is never made active again.
This raises several problems, such as deciding if there exists a sequence of actions to reach a state with
certain properties, or whether a given sequence of actions always ensures that a state with certain properties
is reached. We consider now these problems and formalize them by means ofautomated planning.

We use DLs to describe states of KBs, which may act as goals or preconditions. Aplan is a sequence of
actionsfrom a given set, whose execution leads an agent from the current state to a state that satisfies a given
goal.

Definition 8. Let I = 〈∆I , ·I〉 be a finite interpretation,Act a finite set of actions, andK a KB (thegoal
KB). A finite sequence〈α1, . . . , αn〉 of ground instances of actions fromAct is called aplan forK fromI (of
lengthn), if there exists a finite set∆with∆I∩∆ = ∅ such thatSα1···αn

(I ′) |= K, whereI ′ = 〈∆I ∪∆, ·I〉.

Recall that actions in our setting do not modify the domain ofan interpretation. To support unbounded
introduction of values in the data, the definition of planning above allows for the domain to be expanded
a-priori with a finite set of fresh domain elements.

We can now define the first planning problems we study:

(P1) Given a setAct of actions, a finite interpretationI, and a goal KBK, does there exist a plan forK from
I?

(P2) Given a setAct of actions and a pairKpre , K of formulae, does there exist a substitutionσ and a plan
for σ(K) from some finiteI with I |= σ(Kpre)?

(P1) is the classic plan existence problem, formulated in the setting of GSD. (P2) also aims at deciding plan
existence, but rather than the full actual state of the data,we have as an input apreconditionKB, and we are
interested in deciding the existence of a plan from some of its models. To see the relevance of (P2), consider
the complementary problem: a ‘no’ instance of (P2) means that, from every relevant initial state, (undesired)
goals cannot be reached. For instance,Kpre = Kic ∧ x : FinishedPrj andK = x : ActivePrj may be used to
check whether starting with GSD that satisfies the integrityconstraints and contains some finished projectp,
it is possible to makep an active project again.

Example 5. Recall the interpretationI1 and the actionα′1 from Example 4, and the substitutionσ from
Example 2, which gives us the following ground instance ofα2:

α′2 = (e1 : Empl ∧ p1 : Prj ∧ p2 : Prj ∧ (e1, p1) : worksFor) ?
(worksFor ⊖ {(e1, p1)} · worksFor ⊕ {(e1, p2)})

The followinggoalKB requires thatp1 is not an active project, and thate1 is an employee.

Kg = ¬̇(p1 :ActivePrj) ∧ e1 :Empl

8



A plan forKg from I1 is the sequence of actions〈α′2, α
′
1〉. The interpretationSα′

2
·α′

1
(I1) that reflects the

status of the data after applying〈α′2, α
′
1〉 looks as follows:

Prj
S
α′

2
·α′

1

(I1)
= {p1, p2}

ActivePrj
S
α′

2
·α′

1

(I1)
= {p2}

Empl
S
α′

2
·α′

1

(I1)
= {e1, e7}

FinishedPrj
S
α′

2
·α′

1

(I1)
= {p1}

worksFor
S
α′

2
·α′

1

(I1)
= {(e1, p2), (e7, p2)}

Clearly,Sα′

2
·α′

1
(I1) |= K1.

Unfortunately, these problems are undecidable in general,which can be shown by a reduction from the
Halting problem for Turing machines.

Theorem 8. The problems (P1) and (P2) are undecidable, already for DL-Lite+R KBs and simple actions.

Intuitively, problem (P1) is undecidable because we cannotknow how many fresh objects need to be
added to the domain ofI, but it becomes decidable if the size of∆ in Definition 8 is bounded. It is not
difficult to see that problem (P2) remains undecidable even if the domain is assumed fixed (as the problem
definition quantifies existentially over interpretations,one can choose interpretations with sufficiently large
domains). However, also (P2) becomes decidable if we place abound on the length of plans. More precisely,
the following problems are decidable.

(P1b) Given a setAct of actions, a finite interpretationI, a goal KBK, and a positive integerk, does there
exist a plan forK from I where|∆| ≤ k?

(P2b) Given a set of actionsAct, a pairKpre ,K of formulae, and a positive integerk, does there exist a
substitutionσ and a plan of length≤ k for σ(K) from some finite interpretationI with I |= σ(Kpre)?

We now study the complexity of these problems, assuming thatthe input boundsk are coded in unary. The
problem (P1b) can be solved in polynomial space, and thus is not harder than deciding the existence of a plan
in standard automated planning formalisms such as propositional STRIPS [15]. In fact, the following lower
bound can be proved by a reduction from the latter formalism,or by an adaptation of the Turing Machine
reduction used to prove undecidability in Theorem 8.

Theorem 9. The problem (P1b) is PSPACE-complete forALCHOIQbr KBs.

Now we establish the complexity of (P2b), both in the general setting (i.e., whenKpre andK are in
ALCHOIQbr), and for the restricted case ofDL-Lite+R KBs and simple actions. For (SV), considering the
latter setting allowed us to reduce the complexity from coNEXPTIME to coNP. Here we obtain an analogous
result and go from NEXPTIME-completeness to NP-completeness.

Theorem 10. The problem (P2b) is NEXPTIME-complete. It isNP-complete ifKpre ,K are expressed in
DL-Lite+R and all actions inAct are simple.

Now we consider three problems that are related to ensuring plans thatalwaysachieve a given goal, no
matter what the initial data is. They are variants of the so-called conformantplanning, which deals with
planning under various forms of incomplete information. Inour case, we assume that we have an incomplete
description of the initial state, since we only know it satisfies a given precondition, but have no concrete
interpretation.

The first of such problems is to ‘certify’ that a candidate plan is indeed a plan for the goal, for every
possible database satisfying the precondition.

(C) Given a sequenceP = 〈α1, . . . , αn〉 of actions and formulaeKpre , K, is σ(P ) a plan forσ(K) from
every finite interpretationI with I |= σ(Kpre), for every possible substitutionσ?

9



Finally, we are interested in the existence of a plan that always achieves the goal, for every possible state
satisfying the precondition. Solving this problem corresponds to the automatedsynthesisof a program for
reaching a certain condition. We formulate the problem withand without a bound on the length of the plans
we are looking for.

(S) Given a setAct of actions and formulaeKpre ,K, does there exist a sequenceP of actions such thatσ(P )
is a plan forσ(K) from every finite interpretationI with I |= σ(Kpre ), for every possible substitution
σ?

(Sb) Given a setAct of actions, formulaeKpre ,K, and a positive integerk, does there exist a sequenceP of
actions such thatσ(P ) is of length at mostk and is a plan forσ(K) from every finite interpretationI
with I |= σ(Kpre), for every possible substitutionσ?

We conclude with the complexity of these problems:

Theorem 11. The following hold:

- Problem (S) is undecidable, already for DL-Lite+
R KBs and simple actions.

- Problems (C) and (Sb) are coNEXPTIME-complete.

- If Kpre ,K are expressed in DL-Lite+R and all actions inAct are simple, then (C) is coNP-complete and
(Sb) is NPNP-complete.

7. Related Work

Using DLs to understand the properties of systems while fully taking into account both structural and dynamic
aspects is very challenging [36]. Reasoning in DLs extendedwith a temporal dimension becomes quickly
undecidable [2], unless severe restrictions on the expressive power of the DL are imposed [4]. An alternative
approach to achieve decidability is to take a so-called “functional view of KBs” [28], according to which each
state of the KB can be queried via logical implication, and the KB is progressed from one state to the next
through forms of update [17]. This makes it possible (under suitable conditions) tostatically verify(temporal)
integrity constraints over the evolution of a system [6, 10].

Updating databases, and logic theories in general, is a classic topic in knowledge representation, discussed
extensively in the literature, cf. [21, 23]. The updates described by our action language are similar in spirit to
the knowledge base updates studied in other works, and in particular, the ABox updates considered in [29],
and [24]. As our updates are done directly on interpretations rather than on (the instance level of) knowledge
bases, we do not encounter the expressibility and succinctness problems faced there.

Concerning the reasoning problems we tackle, verifying consistency of transactions is a crucial problem
that has been studied extensively in Databases. It has been considered for different kinds of transactions
and constraints, over traditional relational databases [33], object-oriented databases [34, 12], and deductive
databases [25], to name a few. Most of these works adopt expressive formalisms like (extensions of) first
or higher order predicate logic [12], or undecidable tailored languages [33] to express the constraints and
the operations on the data. Verification systems are often implemented using theorem provers, and complete
algorithms cannot be devised.

As mentioned, the problems studied in Section 6 are closely related to automated planning, a topic ex-
tensively studied in AI. DLs have been employed to reason about actions, goals, and plans, as well as about
the application domains in which planning is deployed, see [22] and its references. Most relevant to us is
the significant body of work on DL-based action languages [8,30, 7, 29, 9]. In these formalisms, DL con-
structs are used to give conditions on the effects of action execution, which are often non-deterministic. A
central problem considered is theprojection problem, which consists in deciding whether every possible exe-
cution of an action sequence on a possibly incomplete state will lead to a state that satisfies a given property.
Clearly, our certification problem (C), which involves an incomplete initial state, is a variation of the pro-
jection problem. However, we do not face the challenge of having to consider different possible executions
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of non-deterministic actions. Many of our other reasoning problems are similar to problems considered in
these works, in different forms and contexts. A crucial difference is that our well-behaved action language al-
lows us to obtain decidability even when we employ full-fledged TBoxes for specifying goals, preconditions,
and domain constraints. To the best of our knowledge, previous results rely on TBox acyclicity to ensure
decidability.

8. Conclusions

We have considered graph structured data that evolve as a result of updates expressed in a powerful yet
well-behaved action language. We have studied several reasoning problems that support the static analysis
of actions and their effects on the state of the data. We have shown the decidability of most problems,
and in the cases where the general problem is undecidable, wehave identified decidable restrictions and
have characterized the computational complexity for a veryexpressive DL and a variant ofDL-Lite. We
believe this work provides powerful tools for analyzing theeffects of executing complex actions on databases,
possibly in the presence of integrity constraints expressed in rich DLs. Our upper bounds rely on a novel KB
transformation technique, which enables to reduce most of the reasoning tasks to finite (un)satisfiability in
a DL. This calls for developing finite model reasoners for DLs(we note thatALCHOIQbr does not have
the finite model property). It also remains to better understand the complexity of finite model reasoning in
different variations ofDL-Lite. E.g., extensions ofDL-Lite+R with role functionality would be very useful in
the context of graph structured data. Generalizing the positive decidability results to logics with powerful
identification constraints, like the ones considered in [18], would also be of practical importance. Given that
the considered problems are intractable even for weak fragments of the coreDL-Lite and very restricted forms
of actions, it remains to explore how feasible these tasks are in practice, and whether there are meaningful
restrictions that make them tractable.
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Appendix

Proof of Theorem 3. (i)to (ii) . Assume there exist a ground instanceα′ of α and a finite interpretationI
such thatI |= K andSα′(I) 6|= K. Then by Theorem 2,I 6|= TRα′(K). ThusI |= ¬TRα′(K). Suppose
o1 → x1, . . . , on → xn is the substitution that transformsα into α′. Suppose alsoo′1 → x1, . . . , o

′
n → xn

is the substitution that transformsα into α∗. Take the interpretationI∗ that coincides withI except for
(o′i)
I∗ = (oi)

I . ThenI∗ |= K ∧ ¬TRα∗(K).
(ii) to (i). AssumeK ∧ ¬TRα∗(K) is finitely satisfiable, i.e., there is an interpretationI such thatI |= K

andI 6|= TRα∗(K). Then by Theorem 2,Sα∗(I) 6|= K.

Proof of Theorem 4.For coNEXPTIME-hardness, we note that finite unsatisfiability ofALCHOIQbr KBs
can be reduced in polynomial time to static verification in the presence ofALCHOIQbr KBs. Indeed, a KB
K is finitely satisfiable iff(A′ ⊕ {o}) is not(K ∧ (A ⊑ ¬A′) ∧ (o : A))-preserving, whereA, A′ are fresh
concept names ando is a fresh individual.

Obtaining a matching upper bound is slightly more involved.It follows from Theorem 3 that the com-
plement of static verification in the presence ofALCHOIQbr KBs reduces to finite satisfiability of a KB
K ∧ ¬̇TRα∗(K) in ALCHOIQbr, but unfortunately, this reduction is exponential in general. Hence we use
an alternative reduction that allow us tonon-deterministicallybuild in polynomial time a formulaK′ of poly-
nomial size, such thatK ∧ K′ is satisfiable iffK ∧ ¬̇TRα∗(K) is satisfiable. The upper bound then follows
from this and the fact that finite satisfiability inALCHOIQbr is NEXPTIME-complete (c.f. Theorem 1).

To obtain this non-deterministic polynomial time many-onereduction, it is convenient to first define a
minor variationTRα(K) of the transformation above, which generates an already negated KB.

TRε(K) =¬̇K

TR(A⊕C)·α(K) =(TRα(K))A←A⊔C

TR(A⊖C)·α(K) =(TRα(K))A←A⊓¬C

TR(p⊕r)·α(K) =(TRα(K))p←p∪r

TR(p⊖r)·α(K) =(TRα(K))p←p\r

TR(K1 ?α1Jα2K)·α(K) =
(

K1 ∧TRα1·α(K)
)

∨
(

¬̇K1 ∧TRα2·α(K)
)

It can be shown by a straightforward induction ons(α) (as defined in the Proof of Theorem 2) thatTRα(K)
is logically equivalent tȯ¬TRα(K) for everyK and everyα. Hence, by Theorem 2,K ∧TRα∗(K) is finitely
satisfiable iffK ∧ ¬̇TRα∗(K) is finitely satisfiable iffα is notK-preserving.

Now, for the desired reduction, we use a non-deterministic version ofTRα(K) that is defined analogously
but in the last case, for the conditional axioms, we non-deterministically choose betweenK1 ∧TRα1·α(K),
or ¬̇K1 ∧TRα2·α(K), rather than considering the disjunction of both. We denoteby TRα(K) the set of all
the KBs obtained this way, that is:

TRε(K) ={¬̇K}

TR(A⊕C)·α(K) ={K′A←A⊔C | K′ ∈ TRα(K)}

TR(A⊖C)·α(K) ={K′A←A⊓¬C | K′ ∈ TRα(K)}

TR(p⊕r)·α(K) ={K′p←p∪r | K
′ ∈ TRα(K)}

TR(p⊖r)·α(K) ={K′p←p\r | K′ ∈ TRα(K)}

TR(K1 ?α1Jα2K)·α(K) ={K1 ∧K′ | K′ ∈ TRα1·α(K)} ∪ {¬̇K1 ∧K′ | K′ ∈ TRα2·α(K)}

It is easy to see that|TRα(K)| may be exponential inα andK, but eachK′ ∈ TRα(K) is of polynomial size
and can be built (non-deterministically) in polynomial time. It is only left to show thatK∧TRα(K) is finitely
satisfiable iff there is someK′ ∈ TRα(K) such thatK ∧ K′ is finitely satisfiable. This is a consequence of
the fact that, for every interpretationI, I |= TRα(K) iff there is someK′ ∈ TRα(K) such thatI |= K′.
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We show this by induction ons(α). The base case is straightforward: ifα = ǫ, thenTRα(K) =
{TRα(K)}. For the inductive step, we first considerα = (A ⊕ C) · α′. First we assume thatI |= TRα(K).
That is,I |= (TRα′(K))A←A⊔C . We can apply the induction hypothesis to infer that there existsK′ ∈
TRα′(K) such thatI |= K′A←A⊔C , which implies that existsK′′ = K′A←A⊔C such thatK′′ ∈ TRα(K)
andI |= K′′ as desired. For the converse, ifI |= K′′ for someK′′ ∈ TRα(K), by definition we have
that there is someK′ ∈ TRα′(K) such thatI |= K′A←A⊔C . Using the induction hypothesis we getI |=
TRα′(K)A←A⊔C , that is,I |= TRα(K) as desired. The cases ofα = (A ⊖ C) · α′, α = (p⊕ r) · α′, and
α = (p⊖ r) · α′ are analogous.

Finally, considerα = (K1 ?α1Jα2K) · α′. We first show that ifI |= TRα(K), then there is some
K′ ∈ TRα(K) such thatI |= K′. By definition,TRα(K) =

(

K1 ∧TRα1·α(K)
)

∨
(

¬̇K1 ∧TRα2·α(K)
)

.
So, if I |= TRα(K), then one ofI |= K1 ∧TRα1·α(K) or I |= ¬̇K1 ∧TRα2·α(K) holds. In the former
case, we can use the induction hypothesis to conclude that there exists someK′ ∈ TRα2·α(K) such that
I |= K1 ∧ K′. SinceK1 ∧ K′ ∈ TRα(K) by definition, the claim follows. The latter case is analogous.
For the converse, we assume that there exists someK′ ∈ TRα(K) such thatI |= K′. By definition, thisK′

must be of the formK1 ∧ K′′ with K′′ ∈ TRα1·α(K), or of the form¬̇K1 ∧ K′′ with K′′ ∈ TRα2·α(K).
In the former case, it follows from the induction hypothesisthat I |= K1 ∧ TRα1·α(K), and henceI |=
(

K1 ∧ TRα1·α(K)
)

∨
(

¬̇K1 ∧ TRα2·α(K)
)

and the claim follows. The second case, whereK′ is of the form
¬̇K1 ∧ K′′, is analogous to the first one.

Proof of Theorem 5.We employ the 3-Coloring problem for graphs. Assume a graphG = (V,E) with
V = {1, . . . , n}. We construct in polynomial time a KBK and an actionα such thatG is 3-colorable iffα
is notK- preserving. For everyv ∈ V , we use 3 concept namesA0

v, A
1
v, A

2
v for the 3 possible colors of the

vertexv. In addition, we employ a concept nameD. LetK be the following KB:

K = (D ⊑ ¬D) ∧
∧

(v,v′)∈E∧0≤c≤2(A
c
v ⊑ ¬Ac

v′ ).

It remains to define the actionα. For this we additionally use a nominal{o} and fresh concept names
B1, . . . , Bn. We letα := α1α

1
2 · · ·α

n
2α3, where

(i) α1 = (D ⊕ {o}) · (B1 ⊕ {o}) · · · (Bn ⊕ {o}),

(ii) αi
2 = (Bi ⊖A0

i ) · (Bi ⊖A1
i ) · (Bi ⊖A3

i ), for all i ∈ {1, . . . , n}, and

(iii) α3 = (D ⊖B1) · · · (D ⊖ Bn).

AssumeI is a model ofK such thatSα(I) 6|= K. It is possible to show that thenG is 3-colorable.
SupposeG is 3-colorable and a proper coloring ofG is given by a functioncol : V → {0, 1, 2}. Take

any interpretationI with ∆I = {e} and such that(i) {o}I = e, (ii) DI = ∅, (iii) e ∈ (Ac
v)
I iff col(v) = c.

Sincecol is a proper coloring ofG, I is a model ofK. As easily seen,Sα(I) 6|= K.

Proof of Theorem 6.NP-hardness is immediate (e.g., by a reduction from propositional satisfiability). For
membership in NP, we define a non-deterministic rewriting procedure that transforms in polynomial time a
DL-Lite+R KB into a DL-LiteR KB. We ensure that aDL-Lite+R KB K is finitely satisfiable iff there exists
a rewriting ofK into a finitely satisfiableDL-LiteR KB. As satisfiability testing inDL-LiteR is feasible in
polynomial time, we obtain an NP upper bound forDL-Lite+R.

Assume aDL-Lite+R KB K. The rewriting ofK has two steps: first, we get rid of the possible occurrences
of ∨, and then of the complex concepts and roles in assertions.

Let P be the set of inclusions and assertions ofK. Non-deterministically pick a setM ⊆ P such that
M is a model ofK, whenK is seen as a propositional formula overP . LetKM =

∧

α∈M α ∧
∧

α′ 6∈M ¬̇α′.
Clearly,K is finitely satisfiable iff we can choose anM with KM finitely satisfiable.

In the next step, we show how to obtain fromKM a DL-LiteR KB. Let T be the set of inclusions that
occur inKM and letA be the set of assertions and their negations occurring inKM . Recall that the inclusions
of T are inclusions of the standardDL-LiteR, but the assertions inA may contain complex concepts. We non-
deterministically completeA with further assertions to explicate complex concepts and roles. Acompletion
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- A ⊆ A+;
- for every assertionα, α 6∈ A+ or ¬̇α 6∈ A+;
- if o is an individual fromKM andC1 ⊑ C2 ∈ T , then¬̇(o : C1) ∈ A+ or o : C2 ∈ A+;
- if (o, o′) are individuals fromKM andr1 ⊑ r2 ∈ T , then¬̇((o, o′) : r1) ∈ A+ or (o, o′) : r2 ∈ A+;
- if o : C1 ⊓ C2 ∈ A+, theno : C1 ∈ A+ ando : C2 ∈A+;
- if o : C1 ⊔ C2 ∈ A+, theno : C1 ∈ A+ or o : C2 ∈ A+;
- if o : ∃r.⊤ ∈ A+, then(o, o′) : r ∈ A+ for a fresho′;
- if o : ¬C ∈ A+, then¬̇(o : C) ∈ A+;
- if ¬̇(o : C) ∈ A+, theno : ¬C ∈ A+;
- if o : ¬¬C ∈ A+, theno : C ∈ A+;
- if o : ¬(C1 ⊓ C2) ∈ A+, then¬̇(o : C1) ∈ A+ or ¬̇(o : C2) ∈ A+;
- if o : ¬(C1 ⊔ C2) ∈ A+, then¬̇(o : C1) ∈ A+ and¬̇(o : C2) ∈ A+;
- if o : ¬(∃r.⊤) ∈ A+, then¬̇((o, o′) : r ∈ A+) for all individualso′ of A+;
- if (o, o′) : r ∈ A+, then(o′, o) : r− ∈ A+;
- if (o, o′) : r1 ∪ r2 ∈ A+, then(o, o′) : r1 ∈ A+ or (o, o′) : r2 ∈ A+;
- if (o, o′) : r1 \ r2 ∈ A+, then(o, o′) : r1 ∈ A+ and¬̇((o, o′) : r2) ∈ A+;
- if ¬̇((o, o′) : r1 ∪ r2) ∈ A+, then¬̇((o, o′) : r1) ∈ A+ and¬̇((o, o′) : r2) ∈ A+;
- if ¬̇((o, o′) : r1 \ r2) ∈ A+, then¬̇((o, o′) : r1) ∈ A+ or (o, o′) : r2 ∈ A+;
- if o : {o′} ∈ A+, theno = o′;
- if (o1, o2) : {(o′1, o

′
2)} ∈ A+, theno1 = o′1 ando2 = o′2;

Figure 1: Completion forDL-Lite+R ABoxes

of A is a⊆-minimal setA+ of assertions that is closed under the conditions in Figure 1. Let A+
b be the

restriction ofA+ to basic assertions. Clearly,
∧

T ∧
∧

A+
b is aDL-LiteR KB. It is not difficult to see that

KM is finitely satisfiable iff there exists a completionA+ such that
∧

T ∧
∧

A+
b is finitely satisfiable.

Proof of Theorem 7.The lower bound follows from Theorem 5, or alternatively, itcan be proved by a reduc-
tion from finite unsatisfiability inDL-Lite+R, employing the same reduction as in the proof of Theorem 4.

For the upper bound, assume aDL-Lite+R KB K and a simple actionα. We proceed analogously to the
Proof of 4. From Theorem 3 we know thatα is notK-preserving iffK ∧ ¬̇TRα∗(K) is finitely satisfiable.
Moreover, we have shown thatK∧¬̇TRα∗(K) is finitely satisfiable iff there exists aK′ ∈ TRα∗(K) such that
K ∧ K′ is not finitely satisfiable, andK′ can be obtained non-deterministically in polynomial time and is of
size polynomial inα andK. The KBK′ is not aDL-Lite+R KB, but it can be transformed into an equisatisfiable
DL-Lite+R KB in linear time. To this end, turnK′ into negation normal form, i.e., pusḣ¬ inside so thaṫ¬
occurs in front of inclusions and assertions only. Then replace every occurrence of¬̇(B1⊑B2) and¬̇(r1⊑r2)
in the resultingK′ byo : B1⊓¬B2 and(o, o′) : r1\r2, respectively, whereo, o′ are fresh individuals. Clearly,
the above transformations preserve satisfiability. Moreover, since inK the operatoṙ¬ may occur only in front
of assertions, andα is simple, every inclusion in the resultingK′ already appears inK. This implies thatK′

is aDL-Lite+R KB as desired.

Proof of Theorem 8.The proof is by reduction from the Halting problem. We reduceto (P1) and to (P2)
deciding whether a deterministic Turing machineM accepts a wordw ∈ {0, 1}∗.

For (P1), assumeM is given by a tupleM = (Q, δ, q0, qa, qr), whereQ is a set of states,δ : {0, 1, b} ×
Q → {0, 1, b} × Q × {+1,−1} is the transition function,b is the blank symbol,q0 ∈ Q is the initial state,
qa ∈ Q is the accepting state, andqr ∈ Q is the rejecting state. We can assume w.l.o.g. that after accepting
or rejecting the input the machine returns the read/write head to the initial position.

Intuitively, we define an action that implements the effectsof each possible transition fromδ. We also
have a pair of actions that “extend” the tape with blank symbols as needed. For the reduction we use the role
next, concept namesSym0, Sym1, Symb, andStq for eachq ∈ Q.
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The setAct of actions is defined as follows. For every(σ, q) ∈ {0, 1, b}×Qwith δ(σ, q) = (σ′, q′, D) we
have the actionασ,q = (x1, x2) : next∧x2 : Symσ∧x2 : Stq∧ (x2, x3) : next ? (Symσ⊖{x2})(Symσ′ ⊕
{x2})(Stq ⊖{x2})(Stq′ ⊕{x2+D}). To extend the tape with blank symbols, we have the actionsαr andαl.
In particular,αr = x : (Sym0⊔Sym1⊔Symb)∧y : ¬(Sym0⊔Sym1⊔Symb)?(next⊕{(x, y)})(Symb⊕
{y})}. The actionαl is obtained fromαr by replacing(next⊕ {(x, y)}) with (next⊕{(y, x)}). We finally
have an initialization actionαinit which stores the initial configuration ofM in the database. In particular,
αinit = (a1 : ¬(Sym0 ⊔ Sym1 ⊔ Symb))?(Symσ1

⊕ {a1}) · · · (Symσm
⊕ {am})(Stq0 ⊕ {a1}), where

σ1 · · ·σm = w. We letK = a1 :Stqa ⊔ Stqr and the initial databaseI is empty, i.e. no domain element
participates in a concept or a role.

It can be easily seen that the reduction is correct. IfK has a plan, thenM halts onw. Conversely, ifM
halts onw, then it halts within some number of stepss. One can verify that expanding the domain ofI with
s fresh elements is sufficient to find a plan forK using the actions inAct .

The above reduction also applies to (P2). It suffices to definea precondition KBKpre that describes the
aboveI. Simply letKpre be the conjunction of(Sym0 ⊔ Sym1 ⊔ Symb ⊔ ∃next ⊔ ∃next− ⊑ ⊥) and
⊔

q∈Q Stq ⊑⊥.

Proof of Theorem 9.The lower bound can be proven by an easy adaption of the reduction in Theorem 8.
For the upper bound we employ a non-deterministic polynomial space procedure that stores in memory

a finite interpretation and non-deterministically appliesactions until the goal is satisfied. Since the domain
of each candidate interpretation is fixed and of size linear in the input, each of them can be represented in
polynomial space. The number of possible interpretations is bounded byc = 2r·d

2+c·d, wherer andc are
respectively the number of concepts and roles appearing in the input set of actions, andd is the cardinality
of the domain of the initial interpretation. Thus the procedure can be terminated afterc many steps, without
loss of completeness. We note that a counter that counts up toc can be implemented in polynomial space,
and that model checkingALCHOIQbr-formulae is feasible in polynomial space.

Proof of Theorem 10.The lower bounds can be immediately inferred from the complexity of static verifica-
tion with KBs inALCHOIQbr (Theorem 4) andDL-Lite+R (Theorem 5).

For the upper bounds, we first guess a variable substitutionσ and a sequenceP = 〈α1, . . . , αm〉 of at
mostk actions. By Theorem 2, it follows thatP is a plan as desired iffσ(Kpre) ∧ TRα1···αm

(σ(K)) is
finitely satisfiable. To be able to check the finite satisfiability of σ(Kpre) ∧ TRα1···αm

(σ(K)) within the
desired bounds, we proceed similarly as above, and considera procedure that non-deterministically builds
a polynomialK′ such thatσ(Kpre) ∧ K′ is finitely satisfiable iffσ(Kpre) ∧ TRα1···αm

(σ(K)) is finitely
satisfiable. Note that the core difference between this proof and the ones of Theorems 4 and 7 is that now
the formulaTRα1···αm

(σ(K)) is not negated and hence, intuitively, we need to decide the existence of an
interpretation that satisfies the negation of all formulas inTRα(K), rather than satisfying just one of them.

We define a set of KBsTR
∧
α(K) that is similar toTRα(K), but contains the negation of the formulas in

the latter, and uses conjunction rather than implications for the conditional axioms.

TR
∧
ε (K) ={K}

TR
∧
(A⊕C)·α(K) ={K′A←A⊔C | K′ ∈ TR

∧
α(K)}

TR
∧
(A⊖C)·α(K) ={K′A←A⊓¬C | K′ ∈ TR

∧
α(K)}

TR
∧
(p⊕r)·α(K) ={K′p←p∪r | K

′ ∈ TR
∧
α(K)}

TR
∧
(p⊖r)·α(K) ={K′p←p\r | K′ ∈ TR

∧
α(K)}

TR
∧
(K1 ?α1Jα2K)·α(K) ={K1 ∧K′ | K′ ∈ TR

∧
α1·α(K)} ∪ {¬̇K1 ∧K′ | K′ ∈ TR

∧
α2·α(K)}

Similarly as above,|TR
∧
α(K)| may be exponential but eachK′ ∈ TR

∧
α(K) is polynomial and can be built

non-deterministically in polynomial time. We show below the following claim:
(‡) For everyI and everyK, there exists someK′ ∈ TR

∧
α(K) such thatI |= K′ iff I |= TRα(K).
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With (‡) we can easily show thatσ(Kpre) ∧ TRα1···αm
(σ(K)) is finitely satisfiable iff there exists some

K′ ∈ TR
∧
α1···αm

(σ(K)) such thatσ(Kpre) ∧ K′ is finitely satisfiable. For the ‘only if’ direction, assume
σ(Kpre) ∧ TRα1···αm

(σ(K)) is finitely satisfiable. Then there exists some finiteI such thatI |= σ(Kpre)
andI |= TRα1···αm

(σ(K)). By (‡), for this I there is someK′ ∈ TR
∧
α1···αm

(σ(K)) such thatI |= K′

iff I |= TRα1···αm
(σ(K)). We choose thisK′. It follows thatI |= K′ and, sinceI |= σ(Kpre), we can

conclude thatσ(Kpre) ∧ K′ is finitely satisfiable. For the other direction, assume thatthere is noK′ ∈
TR

∧
α1···αm

(σ(K)) such thatσ(Kpre) ∧ K′ is finitely satisfiable. Then it follows that:(∗) I 6|= K′ for every
K′ ∈ TR

∧
α1···αm

(σ(K)) and everyI with I |= σ(Kpre). Assume towards a contradiction thatσ(Kpre) ∧
TRα1···αm

(σ(K)) is satisfiable. Then there is someI with I |= σ(Kpre) andI |= TRα1···αm
(σ(K)), and

by (‡), for thisI there is someK′ ∈ TR
∧
α1···αm

(σ(K)) such thatI |= K′ iff I |= TRα1···αm
(σ(K)). This

would imply thatI |= K′, contradicting(∗). Having shown this, the upper bound follows directly from the
complexity of deciding finite satisfiability ofσ(Kpre)∧K′, and the fact thatK′ is of polynomial size and can
be obtained non-deterministically in polynomial time.

It is only left to show(‡), what we do by induction ons(α). The base case is trivial, since forα = ε we
haveTR

∧
α(K) = {K} andTRα(K) = K, so we can setK′ = K and the claim follows.

For the case ofα = A ⊕ C · α′, we haveTRα′(K) = TRα′(K). By induction hypothesis there is some
K′′ ∈ TR

∧
α′(K) such thatI |= K′′ iff I |= TRα′(K). We letK′ = K′′A←A⊔C . ThenK′ ∈ TR

∧
α(K),

andI |= K′ iff I |= TRα′(K)A←A⊔C as desired. The cases ofα = (A ⊖ C) · α′, α = (p ⊕ r) · α′, and
α = (p⊖ r) · α′ are analogous.

Finally, if α = (K1 ?α1Jα2K) · α′, the choice ofK′ depends onI. We distinguish two cases:
• If I |= K1, let K′′ ∈ TR

∧
α1·α′(K) be such thatI |= K′′ iff I |= TRα1·α′(K), which exists the

induction hypothesis. Then we setK′ = K1 ∧ K′′. We haveK′′ ∈ TR
∧
α(K) by definition. Now we

show thatI |= K′ iff I |= TRα(K).
AssumeI |= K′. ThenI |= K′′, andI |= TRα1·α′(K). This ensures thatI |= ¬̇K1 ∨TRα1·α′(K).
SinceI |= K1, we also haveI |= K1 ∨TRα2·α(K). SinceTRα(K) = (¬̇K1 ∨TRα1·α′(K)) ∧
(K1 ∨TRα2·α′(K)), we obtainI |= TR(K1 ?α1Jα2K)·α′(K) as desired.
For the converse, assumeI |= TRα(K), that is,I |= ¬̇K1 ∨TRα1·α′(K) andI |= K1 ∨TRα2·α′(K).
From the former andI |= K1, it follows thatI |= TRα1·α′(K). By our selection ofK′′, this implies
I |= K′′, and we also have thatI |= K1, we can concludeI |= K′ as desired.

• Otherwise, ifI |= ¬̇K1, let K′′ be such thatK′′ ∈ TR
∧
α2·α′(K) andI |= K′′ iff I |= TRα2·α′(K)

(such aK′′ exists by the induction hypothesis), and letK′ = ¬̇K1 ∧K′′. ThenK′′ ∈ TR
∧
α(K), and the

proof ofI |= K′ iff I |= TRα(K) is analogous to the first case.

Proof of Theorem 11.Problem (S) can be shown to be undecidable by employing the same reduction as for
(P2) in Theorem 8. The coNEXPTIME lower bounds for (C) and (Sb) trivially follow from finite satisfiability
in ALCHOIQbr.

For the upper bounds, we first observe that (C) reduces to validity testing inALCHOIQbr: an instance
of (C) (as described above) is positive iff the formulaσ(K′pre) → TRα1···αn

(σ(K′)) is valid, whereK′pre ,K
′

are obtained fromKpre ,K by replacing every variable by a fresh individual. Decidingvalidity of σ(K′pre) →
TRα1···αn

(σ(K′)) in turn reduces to deciding whetherσ(K′pre)∧¬̇TRα1···αn
(σ(K′)) is finitely unsatisfiable.

The upper bounds for (C) then follow from the NP and NEXPTIME upperbounds for the satisfiability of KBs
of the formK′ ∧ ¬̇TRα(K) shown in the proofs of Theorems 4 and 7.

Negative instances of (Sb), whereKpre is the precondition andK is the goal, can be recognized in NEX-
PTIME. Such a test comprises building an exponentially large set of all candidate action sequences of length
at mostk, and then making sure that that each candidate is invalidated. That is, each candidate action se-
quenceP induces an instance of (C), which can be shown negative in NEXPTIME. In the case ofDL-Lite+R
and simple actions, we can guess non-deterministically a sequence of actions of length at mostk and then
check that the induced instance of (C) is positive, which is atest in coNP. It is not difficult to see that the
NPNP upper bound is tight. This can be shown by a polynomial time reduction from evaluating QBFs of
the formγ = ∃p1 . . . ∃pn∀q1 . . . ∀qm.ψ, whereψ is a Boolean combination over propositional variables
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V = {p1, . . . , pn, q1, . . . , qm}. We can assume that negation inψ occurs in front of propositional variables
only. For the reduction to (Sb), we employ concept namesT andF , and individual namesov for each propo-
sitional variablev ∈ V . We letKpre =

(
∧

1≤i≤n opi
:¬(T ⊔ F )

)

∧
(
∧

1≤i≤m oqi : (T ⊔ F ) ⊓ (¬T ⊔ ¬F )
)

.
Intuitively, each initial interpretation encodes an assignment for the variablesq1, . . . , qm, but does not say
anything aboutp1, . . . , pn. The latter is determined by choosing a candidate plan. To this end, for each
1 ≤ i ≤ n, we construct the following actions:

αi = opi
:¬F ?T ⊕ {opi

}, α′i = opi
:¬T ?F ⊕ {opi

}.

We finally letk = n and letK be the KB obtained fromψ by replacing each negative literal¬v by ov :F and
each positive literalv by ov :T . It is not difficult to see thatγ evaluates totrue iff the constructed instance of
(Sb) is positive.
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