arXiv:1404.4274v3 [cs.Al] 29 May 2014

Managing Change in Graph-structured Data Using Descriptian Logics
(long version with appendix) *

Shqgiponja Ahmetaj AHMETAJ@DBAI. TUWIEN.AC.AT
Vienna University of Technology, Austria

Diego Calvanese CALVANESE@INF.UNIBZ.IT
Free University of Bozen-Bolzano, Italy

Magdalena Ortiz ORTIZ@KR.TUWIEN.AC.AT
Vienna University of Technology, Austria

Mantas Simkus SIMKUS@DBAI.TUWIEN.AC.AT
Vienna University of Technology, Austria

Abstract

In this paper, we consider the setting of graph-structuedd that evolves as a result of operations carried
out by users or applications. We study different reasoniofplpms, which range from ensuring the satisfac-
tion of a given set of integrity constraints after a givenwsatge of updates, to deciding the (non-)existence
of a sequence of actions that would take the data to an (Uurgbksstate, starting either from a specific data
instance or from an incomplete description of it. We consaeaction language in which actions are finite se-
guences of conditional insertions and deletions of nodddabels, and use Description Logics for describing
integrity constraints and (partial) states of the data. Méatformalize the above data management problems
as a static verification problem and several planning probleWe provide algorithms and tight complexity
bounds for the formalized problems, both for an expressived for a variant of DL-Lite.

1. Introduction

The complex structure and increasing size of informatiat thas to be managed in today’s applications
calls for flexible mechanisms for storing such informatiorgking it easily and efficiently accessible, and
facilitating its change and evolution over time. The pagadbfgraph structured datéGSD) [32] has gained
popularity recent@ as an alternative to traditional relational DBs that pregidnore flexibility and thus can
overcome the limitations of an a priori imposed rigid stureton the data. Indeed, differently from relational
data, GSD do not require a schema to be fixed a priori. Thisbiliyi makes them well suited for many
emerging application areas such as managing Web datayiafimm integration, persistent storage in object-
oriented software development, or management of sciedtfiz. Concrete examples of models for GSD are
RDFS [14], object-oriented data models, and XML.

In GSD, information is represented by means of a node andlabgked graph, in which the labels convey
semantic information. The representation structures wyidg many standard knowledge representation
formalisms, and in particular Description Logics (DLS) fe paradigmatic examples of GSD. Indeed, in
DLs the domain of interest is modeled by means of unary miat{a.k.aconcepty and binary relations
(a.k.a.roles), and hence the first-order interpretations of a DL know&elgse (KB) can be viewed as node
and edge labeled graphs. DLs have been advocated as a ppopésrtdata managemerit [26], and are
very natural for describing complex knowledge about domagpresented as GSD. A DL KB comprises an
assertional component, calldBox which is often viewed as a possibly incomplete instance ®bGand a
logical theory called terminology drBox which can be used to infer implicit information from the eg®ns
in the ABox. An alternative possibility is to view thinite structures over which DLs are interpreted as
(complete) GSD, and the KB as a description of constraindgmoperties of the data. Taking this view, DLs

+. This paper is a extended version|of [1] that contains anragipavith proofs.
1. Graph structured data models have their roots in work dotiee early '90s, see, e.d.. [20].
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have been applied, for example, for the static analysisditional data models, such as UML class diagrams
[11] and Entity Relationship schematta [3]. Problems sudh@gonsistency of a diagram are reduced to KB
satisfiability in a suitable DL, and DL reasoning servicesdme tools for managing GSD.

In this paper, we follow the latter view, but aim at using DLat only for static reasoning about data
models, but also for reasoning about the evolution and ahargr time of GSD that happens as the result
of executing actions. The development of automated tookufiport such tasks is becoming a pressing
problem, given the large amounts and complexity of GSD auilyeavailable. Having tools to understand
the properties and effects of actions is important and ples/iadded value for many purposes, including
application development, integrity preservation, sdguaind optimization. Questions of interest are, e.g.:

o Will the execution of a given actiopreservethe integrity constraints, for every initial data instafce

¢ Is there a sequence of actions that leads a given data iestsioca state where some property (either
desired or not) holds?

e Does a given sequence of actions lead every possible idiiel instance into a state where some
property necessarily holds?

The first question is analogous to a classic problem in welati databases: verifyingonsistencyof
database transactions. The second and third questiontaasica@uestions in Al (callepglanningandpro-
jection, respectively).

In this paper we address these and other related quest®redpg tools to answer them, and characterize
the computational properties of the underlying problent fole of DLs in our setting is manifold, and we
propose a very expressive DL that is suitable {grmodeling sophisticated domain knowled{g, specify-
ing conditions on the state that should be reached (goa)statd(iii) specifying actions to evolve GSD over
time. For the latter, we introduce a simple yet powerful laage in which actions are finite sequences of
(possibly conditional) insertions and deletions perfadroa concepts and roles, using complex DL concepts
and roles as queries. Our results are quite general and fali@malyzing data evolution in several practically
relevant settings, including RDF data under constrainpsessed in RDFS or OWL. Via the standard reifica-
tion techniquel[11], they also apply to the more traditics®dting of relational data under schemas expressed
in conceptual models (e.g., ER schemas, or UML class diagjfamto object-oriented data.

In this setting, we address first ts&atic verification problemthat is, the problem of verifying whether
for every possible state satisfying a given set of condisdire., a given KB), the constraints are still satisfied
in the state resulting from the execution of a given (compdetion. We develop a novel technique similar in
spirit to regressionin reasoning about actions [27], and are able to show thtt sxification is decidable.
We provide tight complexity bounds for it, using two diffateDLs as domain languages. Specifically, we
provide a tight ONExPTIME bound for the considered expressive DL, and a tight coNP dhéamra variation
of DL-Lite [16]. For our setting, we then study different variants afrpling. We define a plan as a sequence
of actions that leads a given structure into a state wheresqoperty (either desired or not) holds. Then
we study problems such as deciding the existence of a pldh,fbothe case where the initial structure is
fully known, and where only a partial description of it is aable, and deciding whether a given sequence
of actions is always a plan for some goal. Since the existehaglan (of unbounded length) is undecidable
in general, even for lightweight DLs and resctricted actiowe also study plans of bounded length. We
provide tight complexity bounds for the different consielg#wariants of the problem, both for lightweight
and for expressive DLs. This paper adds an appendix withfptod1], some of the results were published
in preliminary form [19].

2. An Expressive DL for Modeling GSD

We now define the DIALCHOZ Qbr, used to express constraints on GSD. It extends the stapd&td OZ Q
with Boolean combinations of axioms, a constructor for algiton role, union, difference and restrictions
of roles, and variables as place-holders for individualse importance of these constructors will be become
clear in Sectiongl|3 arid 4.

We assume countably infinite sédg of role namesN¢ of concept namedN, of individual namesand
Ny of variables Rolesare defined inductively(i) if p € Ng, thenp andp~ (theinverseof p) are rolesfii) if



{t,t'} € NyUNy, then{(t¢1, t2)} is also a role(iii) if r1,r2 are roles, then; Ury, andr; \ o are also roles;
and(iv) if r is a role and” is a concept, then|¢ is a role. Conceptsare defined inductively as wel(i) if
A € N¢, thenA is a concept(ii) if t € N; U Ny, then{¢} is a concept (calledomina); (iii) if Cy, C, are
concepts, thed, N Csy, Cy U Cy, and—C are also conceptsiv) if r is a role,C is a concept, and is a
non-negative integer, their.C, Vr.C, <nr.C, and>nr.C are also concepts.

A concepfi(resp.role) inclusionis an expression of the foram C as, Wherea;, as are concepts (resp.,
roles). Expressions of the form C and(¢,¢’) : r, where{¢,¢'} C N, U Ny, C is a concept, and s a role,
are callecconcept assertiorsndrole assertionsrespectively. Concepts, roles, inclusions, and assertiat
have no variables are calleddinary. We define ALCHOZ Qbr-)formulaeinductively: (i) every inclusion
and every assertion is a formuld) if X1, o are formulae, so ar€;, A Ko, K1 V Ko, and-/C;. A formula
K with no variables is calle@nowledge base (KB)

As usual in DLs, the semantics is given in terms of intergi@ta. An interpretationis a pairZ =
(AT, T) whereAT # () is thedomain AT C A for eachA € Nc, 72 C AT x A7 for eachr € Ng, and
o? € AT for eacho € N,. For the ordinary roles of the for#{o1, 02) }, we let{(o1, 02)}* = {(o%,0Z)}, and
for ordinary roles of the form|c, we let(r|c)% = {(e1,e2) | (e1,e2) € r* andes € CT}. The function”
is extended to the remaining ordinary concepts and roldsaimsual way, see|[5]. Assume an interpretation
Z. For an ordinary inclusion; C «s, Z satisfiesa; T s (in symbols,Z = a; C aw) if a% - oz%. For an
ordinary assertio = o : C (resp.,3 = (01, 02) : ), T satisfiess (in symbols,Z = j) if o € CZ (resp.,
(o, 0%) € rT). The notion of satisfaction is extended to knowledge basé®llows: (i) Z = K1 A Ko if
T 'ZICl andZ 'ZICQ; (II)I ): K1V Ks if Z 'ZICl orZ 'ZICQ; (III) A ': ﬁICIfIl;éK: If 7 ): IC, then
7 is amodelof K. Thefinite satisfiability(resp.,unsatisfiability problemis to decide given a KK if there
exists (resp., doesn't exist) a modebf KC with AZ finite.

A NEXPTIME lower bound for finite satisfiability inALCHOZQbr follows from the work of Tobies
[35]. Using well-known techniques due to Borgidal[13], a améihg upper bound can be shown by a direct
translation into the two variable fragment with countingy, Which finite satisfiability is in NEPTIME [31].
Hence, the finite satisfiability problem fotLCHOZ Qbr KBs has the same computational complexity as for
the standarddLCHOZQ:

Theorem 1. Finite satisfiability of ACCHOZ Qbr KBs iSNEXPTIME-complete.

We are interested in the problemeffectivelymanaging GSD satisfying the knowledge represented in a
DL KB K. Hence, we must assume that such data afeibé size, i.e., they correspond naturallyftoite
interpretations that satisfy the constraints/C. In other words, we consider configurations of the GSD that
are finite models oK.

3. Updating Graph Structured Data

We now define an action language for manipulating GSD, imtefinterpretations. The basic actions allow
one to insert or delete individuals from extensions of cpitgeand pairs of individuals from extensions of
roles. The candidates for additions and deletions arerinstaof complex concepts and roles. Since our DL
supports nominal§o} and singleton role§(o, o’)}, actions can be defined to add/remove a single individual
to/from a concept, or a pair of individuals to/from a role. s#@w also for action composition and conditional
actions. Note that the action language introduced hereligtet generalization of the one in [19].

Definition 1 (Action language) A basic action3 is defined by the following grammar:
g — (AsC) | (AeC) | (per) | (por),

where A is a concept name,' is an arbitrary conceptp is a role name, and is an arbitrary role. Then
(complex) actionsire given by the following grammar:

a— e | f-al (K?2afa])



whereg is a basic action/C is an arbitrary ACCHOZ Qbr-formula, ands denotes thempty action

A substitutionis a functiono from Ny to N,. For a formula, an action or an action sequencewe use
o(I") to denote the result of replacing Inevery occurrence of a variableby the individuab (z). An action
« is groundif it has no variables. An action’ is called aground instancef an actiona if o’ = o(a) for
some substitution.

Intuitively, an application of an actiofd @ C') on an interpretatioff stands for the addition of the content
of C7 to AZ. Similarly, (A © C) stands for the removal afZ from AZ. The two operations can also be
performed on extensions of roles. Composition stands focessive action execution, and a conditional
action K ? a1 Jas] expresses that; is executed if the interpretation is a model/6f and o, is executed
otherwise. Ifas; = ¢ then we have an action with a simpgles-conditionas in classical planning languages,
and we write it agC ? a1, omitting a.

To formally define the semantics of actions, we first intragtie notion ofnterpretation update

Definition 2 (Interpretation update)Assume an interpretatioh and let ' be a concept or role name. K
is a concept, lelV C AZ, otherwise, ifE is a role, letlV C AT x AT, ThenZ @& W (resp.,Z © W)
denotes the interpretatidff such thatAZ = AZ, and

- ET' = ETUW (resp.,.ET = EZ\ W), and

- ET' = FZ, for all symbolsE; # E.

Now we can define the semantics of ground actions:

Definition 3. Given a ground actiory, we define a mapping§,, from interpretations to interpretations as
follows:

S(T) = T
Sascya(Z) = Sa(Z®aCT)
Saecya) = SalZoaCT)

5(,,597.).&(1) = Sa(Z®p TI)
5(,,97.).&(1) = Sa(ZSp TI)

Soqi-a(L), I EK,
Stc? afas])-o(@) { veld) =

Sey.olT), ifT K.
In the following, we assume that interpretations are uptlaténg the above language.

Example 1. The following interpretatiorT; represents (part of) the project database of some reseasth i
tute. There are two active projects, and there are three eygas that work in the active projects.

PFJ'I1 ={p1,p2}, /-\ctivePrjI1 ={p1,p2},
Empl™ = {e1, e3, €7}, FinishedPrj™t = {},
worksFort = {(e1,p1), (e3,p1), (e7,p2)}.

We assume constantswith p;~ = p; for projects, and analogously constart$or employees. The following
actiona; captures the termination of projegt, which is removed from the active projects and added to the
finished ones. The employees working only for this project@mnoved.

a1 = ActivePrj © {p1} - FinishedPrj ® {p1} -
Empl & YworksFor.{p1}

The interpretationS,,, (Z1) that reflects the status of the database after actighooks as follows:

PiZt = {p1,p2}, ActivePri™* = {p»},
Emp|Il = {er}, FiniSheC“:)I’jI1 ={p1},
worksFor™t = {(e1,p1), (e3,p1), (e7,p2)}.
Note that we have not defined the semantics of actions witiablas, i.e., for non-ground actions. In

our approach, all variables of an action are seen as pareswdtese values are given before execution by a
substitution with actual individuals, i.e., by grounding.



Example 2. The following actiorn, with variablese, y, = transfers the employeefrom projecty to project
z
az = (z:EmplAy:PriA z:PrjA (x,y): worksFor) ?
(worksFor © {(x,y)} - worksFor & {(x, 2)})
Under the substitutioa with o(x) = e1, o(y) = p1, ando(z) = pa, the actionas first checks whethes;
is an (instance of) employepy, p, are projects, and; works forp;. If yes, it removes th@orksFor link
betweere; andp;, and creates avorksFor link betweere; andp,. If any of the checks fails, it does nothing.

4. Capturing Action Effects

In this section we present our core technical tool: a tramsédionTR,, (XC) that rewritesC incorporating the
possible effects of an actian Intuitively, the models offR,, () are exactly the interpretatioissuch that
applyinga onZ leads to a model of. In this way, we can effectively reduce reasoning about ghain any
database that satisfies a giv€to reasoning about a single KB. In the next section we usdrdmsformation

to solve a wide range of data management problems by redti@ngto standard DL reasoning services, such
as finite (un)satisfiability. This transformation can bersas a form ofregressiorf27], which incorporates
the effects of a sequence of actions ‘backwards’, from teiedae to the first one.

Definition 4. Given a KB/, we usel . g/ to denote the KB that is obtained frokh by replacing every
nameFE by the (possibly more complex) expressigin Given a KBK and an actior, we defindlR,, (K) as
follows:

TRA(K) =K
TRAg0)-(K) = (TRa(K)) aeauc
TR4s0).o(K) = (TRa(K)) 4 an-c
TR(pGBT) (K) = (TRa(’C))pHpuT
TR(per o(K) = (TR (K ))pep\r
TR(’Cl ?aqfaz])- a(K) = (7K1 V TRa,.(K)) A (K1 V TR, .(K)).

Note that the size of R, (K) might be exponential in the size of We now show that this transformation
correctly captures the effects of complex actions.

Theorem 2. Assume a ground actiom and a KB/C. For every interpretatior?, we haveS,(Z) = K iff
T = TRL(K).

Proof. We defines(«) as follows:s(e) = 0, s(8 - @) = 1 + s(a), ands(K ? a1az] - a3) = 1+ s(a1) +
s(az2) + s(ag). We prove the claim by induction of{«). In the base case whesén) = 0 anda = ¢, we
haveS,(Z) = Z andTR,(K) = K by definition, and thus the claim holds.

Assumen = (A@® C) - /. LetT' = T @, CZ, thatis,Z’ coincides withZ except thatd” = AZ U
CT. Forevery KBK', ' = K' iff Z = K/;,_4,c (This can be proved by a straightforward induction on
the structure of the expressionsAif). In particular,Z’ E TR, (K) iff T E (TRw(K))acauc. Since
(TR (K)) ac-auc = TR (K), we getZ’ |= TR,/ (K) iff Z = TR, (K). By the induction hypothesig, =
TR (K) iff Sor(Z') |= K, thusZ |= TR, (K) iff So (') = K. SinceSa: (Z') = S/ (S(asc)(T)) = Sa(T)
by definition, we obtailf = TR, (K) iff S,(Z) = K as desired.

Forthecasea = (Ao C)-d',a=(p®r)-d/,anda = (por) - o/, the argument is analogous.

Finally, we considerr = (K1 ? a1[as]) - o/, and assume an arbitrafy We consider the case where
T E Ki; the case wher& (£ K; is analogous. By definitios,(Z) = Sa,.o/(Z). By the induction
hypothesis we know the,, .o/ (Z) = K iff Z = TRq, .o/ (K), S05,(Z) = K iff T = TR,,.o-(K). Since
T | K1 andTRk, 20, [as])-a(K) = (7K1 VTR, (K)) A (K1 V TRa,.«(K)), it follows thatS,(Z) = K
iff Z = TRk, 7 onfas])-o (K)- O

This theorem will be important for solving the reasoninglgemns we study below.



Example 3. The following KBIC; expresses constraints on the project database of our rgneiample: all
projects are active or finished, the domainaafrksFor are the employees, and its range the projects.

(Prj C ActivePrj LI FinishedPrj) A
(3worksFor. T T Empl) A
(3worksFor™.T C Prj)

By applying the transformation aboveAt anda;, we obtain the following KB R,, (K1):

(Prj C (ActivePrj M —{p1}) U (FinishedPrj L {p1})) A
(3worksFor. T C Empl 1 3worksFor.—{p1}) A
(3worksFor™. T C Prj)

5. Static Verification

In this section, we consider the scenario where DL KBs ard tesempose integrity constraints on GSD. One
of the most basic reasoning problems for action analysisignsetting isstatic verificationwhich consists in
checking whether the execution of an actioalways preserves the satisfaction of integrity constsaginten
by a KB.

Definition 5 (The static verification problem)Let  be a KB. We say that an actianis XC-preservingf for
every ground instanca’ of o and every finite interpretatiof, we have thaf = K impliesS. (Z) = K.
Thestatic verification problerns defined as follows:

(SV) Given an actionr and a KBK, is « K-preserving?

Using the transformatiom R, (K) above, we can reduce static verification to finite (un)satiity of
ALCHOIQbr KBs: An actiona is notK-preserving iff some finite model &€ does not satisfff R, - (K),
whereca* is a ‘canonical’ grounding ofc. Formally, we have:

Theorem 3. Assume a (complex) actienand a KBK. Then the following are equivalent:

(i) The actiona is not/C-preserving.

(i) KA TR, (K) is finitely satisfiable, whera* is obtained fromu by replacing each variable with a
fresh individual name not occurring i and C.

Example 4. The actiona; from Examplé1l is nok’;-preserving:Z; = K4, butS,, (Z1) ¥~ K since the
concept inclusiomworksFor.Prj C Empl is violated. This is reflected in the fact that = TR,, (K1), as can
be readily checked. Intuitively, values removed fiimpl should also be removed froworksFor, as in the
following K, -preserving action:

o} = ActivePrj © {p1} - FinishedPrj ® {p1} -
Empl © YworksFor.{p1} - worksFor & worksFor|,,}

The above theorem provides an algorithm for static verificatwhich we can also use to obtain tight
bounds on the computational complexity of the problem. éujeeven thougiC A ~TR,~(K) may be
of size exponential irv, we can avoid to generate it all at once. More precisely, veeauson-deterministic
polynomial time many-one reduction that builds oy ~TR?, . (K) for a fragment- TR, (K) of “ TR+ (K)
that corresponds to one fixed way of choosing one0br o, for each conditional actiol’ ? a; [az] in «
(intuitively, we can view-TR,. (K) as one conjunct of the DNF 6fTR,,(K), where axioms and assertions
are treated as propositions). SuchBR;, (K) has polynomial size, and it can be built non-determini#itica
in polynomial time. It is not hard to show th&t A = TR, (K) is finitely satisfiable iff there is some choice
TRS. (K) such that'C A = TRL. (K) is finitely satisfiable. By Theoref 1, the latter test can bredin
non-deterministic exponential time, hence from Thedremedhtain:

Theorem 4. The problem (SV) is dEXPTIME-complete in case the input KB is expressed ECHOZ Qbr.



We note that in our definition of the (SV) problem, in additimnthe action to be verified, one has as
input only one KBKC expressing constraints. We can also consider other ititegesriations of the problem
where, for example, we have a pair of KBS,. and/C,,s; instead of (or in addition to)C and we want to
decide whether executing the action on any modélpf. (andX) leads to a model of,,,: (andXC). The
reasoning techniques and upper bounds presented abowapalgdo these generalized settings.

Lowering the Complexity

The goal of this section is to identify a setting for which t@mputational complexity of static verification
is lower. The natural way to achieve this is to consider astraint language a DL with better computational
properties, such as the logics of the-Lite family [16].

Unfortunately, we cannot achieve tractability, sinceistagrification is coNP hard even in a very re-
stricted setting, as shown next.

Theorem 5. The static verification problem is 8tP-hard already for KBs of the forrtd; T —A}) A--- A
(A, C —A!), where eachd;, A, is a concept name, and ground sequences of basic action® dbtims
(A@pC)and(Ae O).

We next present a rich variant 8fL-Liter, which we callDL-Lite},, for which the static verification
problem is in coNP. It supports (restricted) Boolean coratims of inclusions and assertions, and allows
for complex concepts and roles in assertions. As shown héhisvallows us to express the effects of actions
insideDL-Lite; KBs.

Definition 6. The logic DL-Lité, is defined as follows:

- Concept inclusions have the foify C C5 or Cy C —Co, withCy,C € Nc U {3p.T,3p~.T | p € Nr}.
- Role inclusions ik have the formry C 7o or 71 T =g, Withry, 70 € Nf U {p~ | p € Ngr}.

- Role assertions are defined as td2CHOZQbr, but in concept assertions: C, we requireC € BT,

whereB™ is the smallest set of concepts such that:

(@) Nc € BT,

(b) {o'} e BT forall o’ € Ny,

(c) 3».T € B* forall rolesr,

(d) {Bl M By, B1 U Bs, _‘Bl} - B~ for all B1,Bs € Bt.

- Formulae and KBs are defined as fdi2CHOZ Qbr, but the operator- may occur only in front of asser-
tions.

A DL-Liter KB K is a DL-Lite}, KB that satisfies the following restrictions:

- K is aconjunctionof inclusions and assertions, and

- all assertions ink are basic assertionsf the forms : A with A € N¢, and(o, 0’) : p withp € Ng.

We make th@iniqgue name assumption (UNApr every pair of individuals);, oo and interpretationz, we
haveol # oZ.

We need to slightly restrict the action language, which imes allowing only Boolean combinations of
assertions to express the conditiénn actions of the fornk ? o [az].

Definition 7. A (complex) actiorn is calledsimpleif (i) no (concept or role) inclusions occur ia, and
(ii) all concepts ofx are fromB™.

We next characterize the complexity of finite satisfiabiih'rt)DL-Liteg.

Theorem 6. Finite satisfiability of DL-Litéé KBs isNP-complete.



DL-Lite}, is expressive enough to allow us to reduce static verifindtio simple actions to finite unsatisfia-
bility, and similarly as above, we can use a non-deternmaysgtlynomial time many-one reduction (from the
complement of static verification to finite unsatisfiabilitp obtain a coNP upper bound on the complexity
of static verification. This bound is tight, even if we allowlp actions with preconditions rather than full
conditional actions. We note that all lower bounds in thetisextion also hold for this restricted case.

Theorem 7. The static verification problem for DL-LifeKBs and simple actions is 8tP-complete.

6. Planning

We have focused so far on ensuring that the satisfaction mdgtcaints is preserved when we evolve GSD.
But additionally, there may be desirable states of the G@Dwle want to achieve, or undesirable ones that
we want to avoid. For instance, one may want to ensure thatshéid project is never made active again.
This raises several problems, such as deciding if therdsesisequence of actions to reach a state with
certain properties, or whether a given sequence of actiares/a ensures that a state with certain properties
is reached. We consider now these problems and formaline lyemeans oautomated planning

We use DLs to describe states of KBs, which may act as goalseeppditions. Aplanis a sequence of
actionsfrom a given setwhose execution leads an agent from the current state &leatbat satisfies a given
goal.

Definition 8. LetZ = (AZ,.Z) be a finite interpretationAct a finite set of actions, ankl a KB (thegoal
KB). A finite sequencgy, . . ., «;,) of ground instances of actions frodxt is called aplan forC from Z (of
lengthn), if there exists a finite seX with AZNA = @ suchthatS,, ..., (Z') | K, whereZ’ = (AT U A, -T).

Recall that actions in our setting do not modify the domaimwinterpretation. To support unbounded
introduction of values in the data, the definition of plargnabove allows for the domain to be expanded
a-priori with a finite set of fresh domain elements.

We can now define the first planning problems we study:

(P1) Given a sefict of actions, a finite interpretatidh, and a goal KBC, does there exist a plan f&F from
7?

(P2) Given a sefict of actions and a paic,,., K of formulae, does there exist a substitutioand a plan
for o(KC) from some finiteZ with Z = o (K, )?

(P1) is the classic plan existence problem, formulatedérsttting of GSD. (P2) also aims at deciding plan
existence, but rather than the full actual state of the degehave as an input@reconditionKB, and we are
interested in deciding the existence of a plan from somesahibdels. To see the relevance of (P2), consider
the complementary problem: a ‘no’ instance of (P2) mearts fttan every relevant initial state, (undesired)
goals cannot be reached. For instari€g,. = C;c A « : FinishedPrj and/C = x : ActivePrj may be used to
check whether starting with GSD that satisfies the integatystraints and contains some finished prgject

it is possible to make an active project again.

Example 5. Recall the interpretatiorf; and the actiono) from Examplé ¥4, and the substitutionfrom
Examplé®, which gives us the following ground instance,of

a/2 = (e1 : Empl A p1: Prj A p2: Prj A (e, p1) : worksFor) ?
(worksFor © {(e1, p1)} - worksFor & {(e1, p2)})

The followinggoal KB requires thap; is not an active project, and that is an employee.

Kq = =(p1 : ActivePrj) A eg : Empl



A plan for K, from 7, is the sequence of actiofas, o). The interpretationS,, .., (Z1) that reflects the
status of the data after applyings, o) looks as follows:

Prjsaé""/lal) = {p1,p2}
ActivePrj o2t 1) — 151
Empls"é'“/1 @) {e1,er}
FinishedPrj 51 ™) = {p,}
worksFor >@4-e4 F1) {(e1,p2), (e7,p2)}

Clearly, Say.o; (Z1) = K1
Unfortunately, these problems are undecidable in genetath can be shown by a reduction from the
Halting problem for Turing machines.

Theorem 8. The problems (P1) and (P2) are undecidable, already for lte;L KBs and simple actions.

Intuitively, problem (P1) is undecidable because we cahknoiv how many fresh objects need to be
added to the domain ¢, but it becomes decidable if the size Afin Definition[8 is bounded. It is not
difficult to see that problem (P2) remains undecidable ef/é#imeidomain is assumed fixed (as the problem
definition quantifies existentially over interpretationgsge can choose interpretations with sufficiently large
domains). However, also (P2) becomes decidable if we pldoeiad on the length of plans. More precisely,
the following problems are decidable.

(P1,) Given a setdct of actions, a finite interpretatiah, a goal KBK, and a positive integek, does there
exist a plan fo'C from Z where|A| < k?

(P2%) Given a set of actionslct, a pairkC,,., K of formulae, and a positive integér does there exist a
substitutiory and a plan of lengtke k for o(KC) from some finite interpretatiah with Z = o (KCpre )?

We now study the complexity of these problems, assumingtieahput bounds are coded in unary. The
problem (P3) can be solved in polynomial space, and thus is not hardardbeiding the existence of a plan
in standard automated planning formalisms such as propoaitSTRIPS[[15]. In fact, the following lower
bound can be proved by a reduction from the latter formalisnhy an adaptation of the Turing Machine
reduction used to prove undecidability in Theofém 8.

Theorem 9. The problem (PJ) is PSPAcE-complete fotALCHOZ Qbr KBs.

Now we establish the complexity of (P2 both in the general setting (i.e., whég),,. and K are in
ALCHOIQbr), and for the restricted case BL-Lite;, KBs and simple actions. For (SV), considering the
latter setting allowed us to reduce the complexity from codNEIME to coNP. Here we obtain an analogous
result and go from NEPTIME-completeness to NP-completeness.

Theorem 10. The problem (Pg) is NEXPTIME-complete. It isNP-complete ifiC,,., K are expressed in
DL-Lite}, and all actions inAct are simple.

Now we consider three problems that are related to ensutargsghatalwaysachieve a given goal, no
matter what the initial data is. They are variants of the albed conformantplanning, which deals with
planning under various forms of incomplete informationour case, we assume that we have an incomplete
description of the initial state, since we only know it sfi¢is a given precondition, but have no concrete
interpretation.

The first of such problems is to ‘certify’ that a candidaterpia indeed a plan for the goal, for every
possible database satisfying the precondition.

(C) Given a sequencE = (a4, ...,qa,) of actions and formula&,,.., I, is o(P) a plan foro () from
every finite interpretatiof with Z |= o (K, ), for every possible substitutiar?



Finally, we are interested in the existence of a plan thaagdnachieves the goal, for every possible state
satisfying the precondition. Solving this problem cori@sgs to the automatesi/nthesiof a program for
reaching a certain condition. We formulate the problem it without a bound on the length of the plans
we are looking for.

(S) Given asetict of actions and formulak,,., K, does there exist a sequerfe®f actions such that(P)

is a plan foro(KC) from every finite interpretatio with Z = o(K,.), for every possible substitution
o?

(S) Given a setAct of actions, formuladC,,., IC, and a positive integet, does there exist a sequeneef
actions such that(P) is of length at most: and is a plan fow (K) from every finite interpretatio
with Z |= o(K,,.), for every possible substitutiar?

We conclude with the complexity of these problems:
Theorem 11. The following hold:
- Problem (S) is undecidable, already for DL-LfgeKBs and simple actions.
- Problems (C) and (g are cdNEXPTIME-complete.

- If Kpre, K are expressed in DL-Li% and all actions inAct are simple, then (C) is d¢éP-complete and
(S) is NPNP-complete.

7. Related Work

Using DLs to understand the properties of systems whilg faking into account both structural and dynamic
aspects is very challenging [36]. Reasoning in DLs extendi#idl a temporal dimension becomes quickly
undecidable 2], unless severe restrictions on the expeegewer of the DL are imposed|[4]. An alternative
approach to achieve decidability is to take a so-called¢tiamal view of KBs” [28], according to which each
state of the KB can be queried via logical implication, angl B is progressed from one state to the next
through forms of updaté [17]. This makes it possible (undéable conditions) tatatically verify(temporal)
integrity constraints over the evolution of a systénri [6, 10]

Updating databases, and logic theories in general, is siclapic in knowledge representation, discussed
extensively in the literature, cf. [21, 23]. The updatescdibgd by our action language are similar in spirit to
the knowledge base updates studied in other works, and iicylar, the ABox updates considered |in [29],
and [24]. As our updates are done directly on interpretatiather than on (the instance level of) knowledge
bases, we do not encounter the expressibility and sucesstioroblems faced there.

Concerning the reasoning problems we tackle, verifyingststancy of transactions is a crucial problem
that has been studied extensively in Databases. It has lmemidered for different kinds of transactions
and constraints, over traditional relational datab&ds8k [ihject-oriented databasés|[34] 12], and deductive
databases [25], to name a few. Most of these works adopt ssipesformalisms like (extensions of) first
or higher order predicate logic [12], or undecidable tatbtanguages [33] to express the constraints and
the operations on the data. Verification systems are oftpheimented using theorem provers, and complete
algorithms cannot be devised.

As mentioned, the problems studied in Secfibn 6 are clostfitad to automated planning, a topic ex-
tensively studied in Al. DLs have been employed to reasoméctions, goals, and plans, as well as about
the application domains in which planning is deployed, 238 &nd its references. Most relevant to us is
the significant body of work on DL-based action languagé803.7,[29/ 9]. In these formalisms, DL con-
structs are used to give conditions on the effects of actk@cwion, which are often non-deterministic. A
central problem considered is thejection problemwhich consists in deciding whether every possible exe-
cution of an action sequence on a possibly incomplete st#itkead to a state that satisfies a given property.
Clearly, our certification problem (C), which involves acégmplete initial state, is a variation of the pro-
jection problem. However, we do not face the challenge ofrttato consider different possible executions
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of non-deterministic actions. Many of our other reasoningbfems are similar to problems considered in
these works, in different forms and contexts. A crucialefi#nce is that our well-behaved action language al-
lows us to obtain decidability even when we employ full-fledg Boxes for specifying goals, preconditions,
and domain constraints. To the best of our knowledge, poaviesults rely on TBox acyclicity to ensure
decidability.

8. Conclusions

We have considered graph structured data that evolve asuli ofsipdates expressed in a powerful yet
well-behaved action language. We have studied severadmagasproblems that support the static analysis
of actions and their effects on the state of the data. We hlageirs the decidability of most problems,
and in the cases where the general problem is undecidabléawe identified decidable restrictions and
have characterized the computational complexity for a exressive DL and a variant @fL-Lite. We
believe this work provides powerful tools for analyzing #fects of executing complex actions on databases,
possibly in the presence of integrity constraints expmgseich DLs. Our upper bounds rely on a novel KB
transformation technique, which enables to reduce mosdieofeéasoning tasks to finite (un)satisfiability in
a DL. This calls for developing finite model reasoners for e note thatALCHOZQbr does not have
the finite model property). It also remains to better undaerdtthe complexity of finite model reasoning in
different variations oDL-Lite. E.g., extensions dbL-Lite}, with role functionality would be very useful in
the context of graph structured data. Generalizing thetigesiecidability results to logics with powerful
identification constraints, like the ones considered_ir},[M®uld also be of practical importance. Given that
the considered problems are intractable even for weak feaggof the cor®L-Lite and very restricted forms
of actions, it remains to explore how feasible these tas&srapractice, and whether there are meaningful
restrictions that make them tractable.
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Appendix

Proof of Theorerhl3. (iJo (ii). Assume there exist a ground instanceof « and a finite interpretatio
such thatZ = K and S,/ (Z) (= K. Then by Theoreml2] (= TR,/ (K). ThusZ = TR,/ (K). Suppose
01 — x1,...,0, — I, IS the substitution that transformsinto o/. Suppose also| — z1,...,0,, = =,
is the substitution that transformsinto o*. Take the interpretatio* that coincides withZ except for
(o))" = (0:)*. ThenZ* = K A = TR, (K).

(ii) to (i). AssumefC A = TR~ (K) is finitely satisfiable, i.e., there is an interpretatibauch thatZ = K
andZ j TR+ (K). Then by Theoreml 25, (Z) [~ K. O

Proof of Theorerhl4 For coNExPTIME-hardness, we note that finite unsatisfiability 4£CHOZ Qbr KBs
can be reduced in polynomial time to static verification ia finesence al LCHOZ Qbr KBs. Indeed, a KB
K is finitely satisfiable iff(A’ & {o}) is not(X A (A C —A") A (0 : A))-preserving, wherel, A’ are fresh
concept names andis a fresh individual.

Obtaining a matching upper bound is slightly more involvidollows from Theoreni B that the com-
plement of static verification in the presence4£CHOZ Qbr KBs reduces to finite satisfiability of a KB
KA ATR+ (K) in ALCHOZQbr, but unfortunately, this reduction is exponential in gethellence we use
an alternative reduction that allow usrton-deterministicallyuild in polynomial time a formulé’’ of poly-
nomial size, such that A K’ is satisfiable iffC A = TR, (K) is satisfiable. The upper bound then follows
from this and the fact that finite satisfiability MCCHOZ Qbr is NExPTIME-complete (c.f. Theorefd 1).

To obtain this non-deterministic polynomial time many-arduction, it is convenient to first define a
minor variationTR,, (K) of the transformation above, which generates an alreadgtedd<B.

TR.(K) ==K
TR(A60)-a(K) =(TRa(K)) acauc
TR60)-a(K) =(TRa(K)) ac-an-c
ﬁ(péBr) () :(ﬁa(lc))zﬂ—pur
TRper-(K) =(TRa(K))pep\r
TR(/Cl ?aifaz])-a (K) = (Kl /\ﬁal-a(lc)) v (%Kl /\ﬁaz'a(lc))

It can be shown by a straightforward induction ) (as defined in the Proof of Theorérh 2) tAaR,, (K)
is logically equivalent to-TR,, (K) for everyK and everyr. Hence, by Theorefd Z; A TR, (K) is finitely
satisfiable ifflC A = TR, (K) is finitely satisfiable iffa is not/C-preserving.

Now, for the desired reduction, we use a non-determinigtision ofTR,, (K) that is defined analogously
but in the last case, for the conditional axioms, we non+detgstically choose betweeki; A TR,,.«(K),
or “K; A TRa,.o(K), rather than considering the disjunction of both. We debgt& R, (K) the set of all
the KBs obtained this way, that is:

TR.(K) ={~K}
TR (A60)«(K) ={Kiauc | K" € TRa(K)}
TR (A60)«(K) ={K)1an-c | K" € TR4(K)}
TR(p@r a(/C) :{ pepUr | K' e TRQ(K)}
TR(per.0(K) ={K,p, | K € TRa(K)}
TR (i, 7 0y [az])-«(K) ={K1 AK' | K" € TRa,.o(K)} U{K1 AK' | K" € TRa,.o(K)}

Itis easy to see thal'R,, ()| may be exponential in andkC, but eachC’ € TR, (K) is of polynomial size
and can be built (non-deterministically) in polynomial &nit is only left to show thakC A TR, (K) is finitely
satisfiable iff there is somE’ € TR, (K) such thatC A K’ is finitely satisfiable. This is a consequence of
the fact that, for every interpretatidn Z = TR, (K) iff there is someC’ € TR, (K) such thaf = K'.
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We show this by induction or(«). The base case is straightforward:cif = ¢, then TR, (K) =
{TR.(K)}. For the inductive step, we first consider= (A @ C) - o/. First we assume that = TR, (K).
Thatis,Z = (TR. (K))acauc. We can apply the induction hypothesis to infer that theristeXC’ €
TR, (K) such thatZ = K';, 4 . which implies that exist&” = K’,, , - such that” € TR, (K)
andZ = K" as desired. For the converseZif= K" for someK” € TR, (K), by definition we have
that there is som&’ € TR, (K) such thatZ = Ky, 4 . Using the induction hypothesis we getj=
TR (K)acauc, thatis,Z = TR, (K) as desired. The cases@f= (A C)-o/,a= (p®r) -/, and
a=(por)-« areanalogous.

Finally, considera = (KC; ? ay[az]) - o/. We first show that ifZ = TR, (K), then there is some
K’ € TR4(K) such thatZ = K'. By definition, TR, (K) = (K1 A TRa,.0(K)) V (K1 A TRas.(K)).
So, ifZ = TR, (K), then one off = K1 ATR,,.o(K) or Z = -K1 A TR4,.o(K) holds. In the former
case, we can use the induction hypothesis to conclude thet txists somé’ € TR.,..(K) such that
T | Ky AK. Sincek; A K € TR (K) by definition, the claim follows. The latter case is analagjou
For the converse, we assume that there exists 6@ TR, (K) such thaZ = K. By definition, thisk’
must be of the formiC; A K with K € TR, .«(K), or of the form=K; A K" with K" € TRa,.o(K).
In the former case, it follows from the induction hypotheiatZ = K; A TR,,.«(K), and henc€ =
(K1 ATRa,.a(K)) V (%K1 A TRa,.o(K)) and the claim follows. The second case, whigtés of the form
-/C1 A K", is analogous to the first one. O

Proof of Theorerhl5We employ the 3-Coloring problem for graphs. Assume a gré@pk- (V, E)) with
V ={1,...,n}. We construct in polynomial time a KR and an actiorx such thaiG is 3-colorable iffa

is notkC- preserving. For every € V, we use 3 concept namel§, AL, A2 for the 3 possible colors of the
vertexv. In addition, we employ a concept nare Let K be the following KB:

K= (DE-D)ANu,vyeprocea(Af E AL

It remains to define the actiom. For this we additionally use a nomingb} and fresh concept names
Bi,...,B,. We leta := ajad - - - aBas, where

() cn = (D@ A{o})  (Bi®{o}) - (Bn ®{o}),
(i) ob=(BioAY)-(B;o A}) - (B;© A?),foralli € {1,...,n}, and
(i) as = (Do By)--- (DO By).

AssumeZ is a model offC such thatS,,(Z) K. Itis possible to show that the® is 3-colorable.

Suppose? is 3-colorable and a proper coloring 6fis given by a functioreol : V' — {0,1,2}. Take
any interpretatio with AZ = {e} and such thai) {0} = e, (i) DT = 0, (iii) e € (AS)T iff col(v) = c.
Sincecol is a proper coloring of7, Z is a model ofC. As easily seenS,, (Z) £ K. O

Proof of Theorerhl6 NP-hardness is immediate (e.g., by a reduction from prdipaosi satisfiability). For
membership in NP, we define a non-deterministic rewritirmcpdure that transforms in polynomial time a
DL-Litej; KB into a DL-Litex KB. We ensure that ®L-Lite;, KB K is finitely satisfiable iff there exists
a rewriting of € into a finitely satisfiableDL-Liter KB. As satisfiability testing irDL-Litex is feasible in
polynomial time, we obtain an NP upper bound Rir-Lite}; .

Assume &DL-Lite}; KB K. The rewriting ofK has two steps: first, we get rid of the possible occurrences
of v, and then of the complex concepts and roles in assertions.

Let P be the set of inclusions and assertions(of Non-deterministically pick a se/ C P such that
M is a model ofkC, whenK is seen as a propositional formula over Let Kns = A, cpr @ A Ayrgpr
Clearly, £ is finitely satisfiable iff we can choose ad with K, finitely satisfiable.

In the next step, we show how to obtain frd@, a DL-Litegx KB. Let 7 be the set of inclusions that
occur infCy; and letA be the set of assertions and their negations occurrifgjn Recall that the inclusions
of 7 are inclusions of the standaldd_-Liter , but the assertions id may contain complex concepts. We non-
deterministically completel with further assertions to explicate complex concepts atesr Acompletion
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- AQA+;

- for every assertion, o € AT or v € AT

- if ois anindividual fromiCy; andC; C C; € T, then-(o: C1) € AT oro: Cy € AT;
- if (0,0) are individuals fromiC, andry; C 7o € T, then—((0,0’) : 1) € AT or (0,0') : 2 € AT;
-ifo:CiMCy e AT, theno: C; € AT ando: Cy e AT;

-ifo:CiuCy e AT, theno: Ci € AT oro: Cy € AT

- ifo: 3. T € A*, then(o,0') : r € AT for afresho’;

-ifo:-C € At,thent(o: C) € AT

- if 2(0: C) € AT, theno : =C € AT;

-ifo:=~C € AT, theno: C € A™;

-ifo:=(C11Cy) € AT, thens(o: C1) € AT or=(o: Cy) € AT;

-ifo: (Cl (] CQ) € AT, then%( 0: Cl) €At and%(o : CQ) € AT;

- |f 0:—=(3Ir.T) € AT, then=((0,0') : r € AT) for all individualso’ of AT;

- if (0,0") : 7 € AT, then(d’,0) : 1~ € AT;

- if (0,0') : 11 Ury € AT, then(o,0') : 1y € AT or (0,0') : r2 € AT;

- ( ,0') 111\ ra € AT, then(o,0') : 11 € AT and~((0,0") : r3) € A™;

- if - (( o) :riUrs) € AT, then-((0,0') : 71) € AT and-((0,0') : r2) € AT;

- if %((0,0’) i1\ m2) € AT, then—((0,0) : r1) € AT or (0,0') : 3 € AT;

- ifo: {0’} € AT, theno = ¢o/;

- if (01,02) : {(0],04)} € AT, theno; = o} andoy = 0};

Figure 1: Completion foDL-Lite}, ABoxes

of A is aC-minimal setA™ of assertions that is closed under the conditions in Figlireet A;r be the
restriction of A* to basic assertions. Clearly 7 A A A} is aDL-Liter KB. Itis not difficult to see that
K is finitely satisfiable iff there exists a completight such that\ 7 A A A, is finitely satisfiable. O

Proof of Theorerhl7 The lower bound follows from Theordnh 5, or alternativelygan be proved by a reduc-
tion from finite unsatisfiability iDL-Lite};, employing the same reduction as in the proof of Thedrem 4.
For the upper bound, assum®a-Lite}, KB K and a simple action. We proceed analogously to the
Proof off4. From Theorem 3 we know thatis not K-preserving iffilC A = TR, (K) is finitely satisfiable.
Moreover, we have shown thitA - TR, (K) is finitely satisfiable iff there existsid’ € TR~ (K) such that
K A K’ is not finitely satisfiable, ani’ can be obtained non-deterministically in polynomial tinmel és of
size polynomial inv andiC. The KBK' is not aDL-Lite}, KB, butit can be transformed into an equisatisfiable
DL-Lite}, KB in linear time. To this end, turiC’ into negation normal form, i.e., pushinside so that-
occurs in front of inclusions and assertions only. Thenaepkvery occurrence 6f B1 C Bs) and-(r1 Crs)
in the resultingC’ by o : B;M—Bs and(o, 0’) : 71 \ re, respectively, where, o’ are fresh individuals. Clearly,
the above transformations preserve satisfiability. Moegaince inC the operator~ may occur only in front
of assertions, and is simple, every inclusion in the resultiig already appears ik. This implies tha’’
is aDL-Lite}; KB as desired. O

Proof of Theorerhl8The proof is by reduction from the Halting problem. We redtméP1) and to (P2)
deciding whether a deterministic Turing machineaccepts a worad € {0, 1}*.

For (P1), assumé/ is given by a tupleM = (Q, ¢, qo, 94, ¢ ), WhereQ is a set of states, : {0,1,b} x
Q — {0,1,b} x Q x {+1,—1} is the transition functior is the blank symbolg, € Q is the initial state,
da € Q is the accepting state, and € @ is the rejecting state. We can assume w.l.0.g. that afteydicg
or rejecting the input the machine returns the read/writate the initial position.

Intuitively, we define an action that implements the effexfteach possible transition from We also
have a pair of actions that “extend” the tape with blank syisbe needed. For the reduction we use the role
next, concept nameSymg, Sym1, Symy, andSt, for eachg € Q.
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The setAct of actions is defined as follows. For evépy q) € {0,1,b} x Qwith §(o,q) = (¢’,¢’, D) we
have the action, = (21, z2) : next Aza : Syme Axg @ Stg A (a2, x3) : next? (Syme S {x2})(Syms &
{22})(Sty © {x2})(Sty ® {z24p}). To extend the tape with blank symbols, we have the actigrenda;.

In particular, = z : (SymoUSymi USymy) Ay : =(SymoUSymq USymy)?(next®{(x,y)})(Sympy®
{y})}. The actiorny, is obtained from,. by replacing(next ® {(x, y)}) with (next ® {(y, z)}). We finally
have an initialization action;,,;; which stores the initial configuration @f/ in the database. In particular,
Qinit = (a1 : ~(Symoe U Symi U Symy))?(Syme, @ {a1}) --- (Syme,, & {am})(Sty, & {a1}), where
o1 om = w. We letlC = ay: Sty U St,, and the initial databasg is empty, i.e. no domain element
participates in a concept or a role.

It can be easily seen that the reduction is correckl Has a plan, thed/ halts onw. Conversely, ifAMf
halts onw, then it halts within some number of stepsOne can verify that expanding the domairiZofvith
s fresh elements is sufficient to find a plan #6rusing the actions inlct.

The above reduction also applies to (P2). It suffices to defipeecondition KBIC,,,. that describes the
aboveZ. Simply let,,. be the conjunction of Symg U Sym; U Symy U Inext L Ineaxt™ C L) and
L,eq Sta E L. O

Proof of Theorerhl9 The lower bound can be proven by an easy adaption of the lieduotTheoreni B.

For the upper bound we employ a non-deterministic polynbsmace procedure that stores in memory
a finite interpretation and non-deterministically appbesions until the goal is satisfied. Since the domain
of each candidate interpretation is fixed and of size linedghé input, each of them can be represented in
polynomial space. The number of possible interpretatieri®ounded by: = or-d*+ed \wherer andc are
respectively the number of concepts and roles appearirgimput set of actions, andis the cardinality
of the domain of the initial interpretation. Thus the progegican be terminated aftemany steps, without
loss of completeness. We note that a counter that counts eipaa be implemented in polynomial space,
and that model checkind LCHOZ Qbr-formulae is feasible in polynomial space. O

Proof of Theoreri 10The lower bounds can be immediately inferred from the coripl®f static verifica-
tion with KBs in ACCHOZ Qbr (Theoreni#) an®L-Lite}; (Theorenib).

For the upper bounds, we first guess a variable substitatiand a sequencE = (aq, ..., a,,) of at
mostk actions. By Theorerfl2, it follows tha® is a plan as desired i (K,re) A TRq,-.a,, (0(K)) is
finitely satisfiable. To be able to check the finite satisfigbibf o(KCpre) A TRa; -, (0(K)) within the
desired bounds, we proceed similarly as above, and corsigescedure that non-deterministically builds
a polynomialK’ such thats(1Cp.) A K’ is finitely satisfiable iffo(Kpre) A TRay - a,, (0(K)) is finitely
satisfiable. Note that the core difference between thisfrand the ones of Theorerh$ 4 dnd 7 is that now
the formulaTR,, ..., (¢(K)) is not negated and hence, intuitively, we need to decidetistemce of an
interpretation that satisfies the negation of all formute®R., (), rather than satisfying just one of them.

We define a set of KBTR (K) that is similar tdTR., (K), but contains the negation of the formulas in
the latter, and uses conjunction rather than implicationstfe conditional axioms.

TR (K) ={K}
TR(A@C)'O((IC) ={K4auc | K" € TRL(K)}
TR(AAGC)-Q(IC) ={Ksan-c | K" € TRL(K)}
TR (600 (K) ={K)pur | K € TRL(K)}
TR {600 (K) ={K} 0, | K € TRA(K)}
TRé\Icl ?alﬂag]])-a(lc) :{’Cl /\IC/ | IC/ € TRgl-a(K)} U {;'Kl /\’C/ | IC/ € TRQQ'O{(IC)}

Similarly as above|,TR/ (K)| may be exponential but eadtf € TR/ (K) is polynomial and can be built
non-deterministically in polynomial time. We show belove ttollowing claim:
(1) ForeveryZ and everyk, there exists somE’ € TR/ (K) such thatZ |= K’ iff Z = TR, (K).
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With () we can easily show that(/Cpre) A TRy, ..a,, (0(K)) is finitely satisfiable iff there exists some
K' € TR}, ... (0(K)) such thatr(K,,.) A K’ is finitely satisfiable. For the ‘only if’ direction, assume
0(Kpre) A TRay 0, (0(K)) is finitely satisfiable. Then there exists some fiffitsuch thatZ = o (K, )
andZ = TRq,...a,, (0(K)). By (), for thisZ there is som&l’ € TR}, .., (o(K)) such thatZ = K’

iff Z = TR, .0, (6(K)). We choose thi&’. It follows thatZ = K’ and, sinceZ E o(Kpre), we can
conclude that (ICpr) A K’ is finitely satisfiable. For the other direction, assume thate is nok’ €

TRQI,,,% (0(K)) such that (K, ) A K’ is finitely satisfiable. Then it follows thafx) Z = K’ for every
K' € TR}, ... (o(K)) and everyZ with Z |= o(K,,.). Assume towards a contradiction thetC,,.) A

TRy, --ar, (0(K)) is satisfiable. Then there is soewith Z = o(Kpre) andZ = TRy, ...q,, (0(K)), and
by (1), for thisZ there is som&’ € TR}, ..., (c(K)) suchthatZ = K’ iff Z = TR, ...a,, (0(K)). This
would imply thatZ = K’, contradicting(x). Having shown this, the upper bound follows directly frore th
complexity of deciding finite satisfiability af(/C,..) A K, and the fact tha’ is of polynomial size and can
be obtained non-deterministically in polynomial time.

It is only left to show(}), what we do by induction or(«). The base case is trivial, since for= ¢ we
haveTR) (K) = {K} andTR,(K) = K, so we can set’ = K and the claim follows.

Forthe case ot = A ® C - o/, we haveTR,/(K) = TRy (K). By induction hypothesis there is some
K" € TR, (K) such thatZ = K" iff Z = TR./(K). We letK’ = Ky, 4,c- ThenK’ € TR, (K),
andZ E K'iff T = TR+ (K)acauc as desired. The casesef= (A C)-o’,a=(podr) -, and
a=(por)-« areanalogous.

Finally, if « = (K1 ? a1 Jaz]) - o/, the choice ok’ depends of. We distinguish two cases:

e If T = Ky, letK” € TR}, ..,(K) be such thafl = K" iff Z = TRq,.or(K), which exists the
induction hypothesis. Then we sét = K; A K. We haveK” € TR/ (K) by definition. Now we
show thatZ |= K’ iff Z |= TR,(K).

AssumeZ = K'. ThenZ E K", andZ | TR, .o (K). This ensures thaf = =K1V TRy, .o (K).
SinceZ E K1, we also haveZl = K1V TR4,.4(K). SinceTR,(K) = (K1 VTR4, .o (K)) A
(K1 VTR, (K)), we obtainZ |= TRk, 7 o, [as])-o (K) @s desired.

For the converse, assurie= TR, (K), thatis,Z = =K1V TRy, .o/ (K) andZ |= K1V TRy, (K).
From the former and |= K, it follows thatZ = TR,,../(K). By our selection ofC”, this implies
7 = K", and we also have thdt}= K, we can concludg& = K’ as desired.

e Otherwise, ifZ = K, let K" be such thak” € TR, .., (K) andZ = K" iff Z = TRq,.o/ (K)
(such a"” exists by the induction hypothesis), andAgt= -x; A K”. ThenK” € TR/, (K), and the
proof of Z = K' iff T = TR, (K) is analogous to the first case.

o

Proof of Theoreril1Problem (S) can be shown to be undecidable by employing the saduction as for
(P2) in Theorerhl8. The coNE®TIME lower bounds for (C) and ¢$trivially follow from finite satisfiability
in ACCHOZQbr.

For the upper bounds, we first observe that (C) reduces tdityalesting inALCHOZQbr: an instance
of (C) (as described above) is positive iff the formuldC;,, . ) — TRa, ..., (¢(K')) is valid, wherelC),, ., K’
are obtained fron’C,,.., K by replacing every variable by a fresh individual. Decidwadjdity of o(X,,..) —
TR4, -0, (0(K')) in turn reduces to deciding whethefK’), . ) A " TRy, ..o, (0(K")) is finitely unsatisfiable.
The upper bounds for (C) then follow from the NP andNH IME upperbounds for the satisfiability of KBs
of the formK’ A = TR, (K) shown in the proofs of Theorerik 4 did 7.

Negative instances of (5 wherekC,,. is the precondition ani is the goal, can be recognized in XE
PTIME. Such a test comprises building an exponentially largefs&it oandidate action sequences of length
at mostk, and then making sure that that each candidate is invatidaftbat is, each candidate action se-
guenceP induces an instance of (C), which can be shown negative iRfNEVE. In the case oDL-Lite;g
and simple actions, we can guess non-deterministicallygaesee of actions of length at mdstand then
check that the induced instance of (C) is positive, whichteshain coNP. It is not difficult to see that the
NPYP upper bound is tight. This can be shown by a polynomial tintkiction from evaluating QBFs of
the form~y = Jp; ... Ip.Vq1 ... Vg, .10, Whered) is a Boolean combination over propositional variables
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V={p1,.-,Pn,q1,---,9m - We can assume that negationyjiroccurs in front of propositional variables
only. For the reduction to (3, we employ concept namé&sandF, and individual names, for each propo-
sitional variablev € V. We letKpre = (A <icp 0p, i (T UF)) A (Aj<icm 0q t (TUF) N (=T U=F)).
Intuitively, each initial interpretation encodes an asgignt for the variables, ..., ¢, but does not say
anything aboups,...,p,. The latter is determined by choosing a candidate plan. iBehd, for each
1 <i < n, we construct the following actions:

a; =0y, F 1T @ {op,}, af =o0p, : 7T ?TF ®{op,}.

We finally letk = n and letIC be the KB obtained fronp by replacing each negative literab by o, : F and
each positive literab by o, : T'. It is not difficult to see that evaluates tdrue iff the constructed instance of
(S) is positive. O
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