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Abstract. The problem of updating ontologies has received increased
attention in recent years. In the approaches proposed so far, either the
update language is restricted to sets of ground atoms or, where the full
SPARQL update language is allowed, the TBox language is restricted
so that no inconsistencies can arise. In this paper we discuss directions
to overcome these limitations. Starting from a DL-Lite fragment cover-
ing RDFS and concept disjointness axioms, we define three semantics
for SPARQL instance-level (ABox) update: under cautious semantics,
inconsistencies are resolved by rejecting updates potentially introducing
conflicts; under brave semantics, instead, conflicts are overridden in favor
of new information where possible; finally, the fainthearted semantics is a
compromise between the former two approaches, designed to accommo-
date as much of the new information as possible, as long as consistency
with the prior knowledge is not violated. We show how these semantics
can be implemented in SPARQL via rewritings of polynomial size and
draw first conclusions from their practical evaluation.

1 Introduction

RDF has become one of the most important data formats for interoperabil-
ity, knowledge representation and querying. SPARQL, the W3C standardized
language for managing RDF data [11], has grown to offer great power and flexi-
bility of querying, including support for efficient reasoning, rooted in more than
a decade of intensive research in description logics. With respect to updates how-
ever, SPARQL is currently far less mature. In particular, the interplay between
updates and reasoning remains completely open.

In [1], we discussed semantics of SPARQL updates for RDFS ontologies, for
the cases in which the knowledge base ABox is fully materialized or to the con-
trary, is reduced to its minimal core that cannot be derived using TBox axioms.
The present paper continues this study of SPARQL updates focusing on the role
of inconsistency in supporting SPARQL ABox updates over materialized stores.
As a minimalistic ontology language allowing for inconsistencies, we consider
RDFS¬, an extension of RDFS [12] with class disjointness axioms of the form
{P disjointWith Q} from OWL [16].
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As a running example, we assume a triple store G with an RDFS¬ ontology
(TBox) T encoding an educational domain, asserting a range restriction plus
mutual disjointness of the concepts like professor and student (we use Turtle
syntax [2], in which dw abbreviates OWL’s disjointWith keyword, and dom
and rng respectively stand for the domain and range keywords of RDFS).

T = {:studentOf dom :Student. :studentOf rng :Professor.
:Professor dw :Student. }

Consider the following SPARQL update [8] request u in the context of the
TBox T :
INSERT {?X :studentOf ?Y} WHERE {?X :attendsClassOf ?Y}

Consider an ABox with data on student tutors that happen to attend each other’s
classes: A1 = {:jim :attendsClassOf :ann. :ann :attendsClassOf
:jim}. Here, u would create two assertions :jim :studentOf :ann and
:ann :studentOf :jim. Due to the range and domain constraints in T , these
assertions result in clashes both for Jim and for Ann. Note that all inconsisten-
cies are in the new data, and thus we say that u is intrinsically inconsistent
for the particular ABox A1. We discuss how such updates can be fixed using
SPARQL rewritings.

Now, let A2 be the ABox {:jim :attendsClassOf :ann. :jim a
:Professor}. It is clear that after the update u, the ABox will become incon-
sistent with respect to T due to the property assertion :jim :studentOf
:ann, implying that Jim is both a professor and a student which contradicts the
disjointness axiom. In contrast to the previous case, the clash here is between
the prior knowledge and the new data. Based on [1] we propose three update
semantics for this case, and provide efficient SPARQL rewriting algorithms for
implementing them in the RDFS¬ setting.

The topic of knowledge base updates is extremely broad. Our aim in this
paper is to adapt the basic belief revision operators for efficient implementation
of ABox updates expressed in SPARQL 1.1, in the presence of RDFS¬ TBox
axioms. In contrast to our setting, most of existing works on knowledge base
evolution consider updates based on sets of ground facts to be inserted or deleted.
Restricting negation to class disjointness allowed us to keep the presentation
clear. It is not difficult to lift our rewritings to theories with role disjointness,
functionality and inequality (owl:differentFrom). We discuss related work
in more detail in Sect. 6.

In the remainder of the paper, after some short preliminaries (Sect. 2) we dis-
cuss checking for intrinsic inconsistencies in Sect. 3. Then in Sect. 4 we present
three semantics for dealing with general inconsistencies in the context of mate-
rialized triple stores. Sect. 5 describes our practical evaluation of the semantics.
Finally, Sect. 6 puts our work in the context of existing research and provides
concluding remarks.
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2 Preliminaries

We introduce basic notions about RDF graphs, RDFS¬ ontologies, and SPARQL
queries. We will use RDF and DL notation interchangeably, treating RDF graphs
without non-standard RDFS¬ vocabulary use [19] as a sets of TBox and ABox
assertions.

Table 1. DL-Literdfs¬ assertions vs. RDF(S), where A, A′ denote concept (or, class)
names, P , P ′ denote role (or, property) names, Γ is the set of IRI constants (excl. the
OWL/RDF(S) vocabulary) and x, y ∈ Γ . For RDF(S), we use abbreviations (rsc, sp,
dom, rng, a) as introduced in [17].

Definition 1 (RDFS¬ ABox, TBox, Triple Store). We call a set T of
inclusion assertions of the forms 1–5 in Table 1 an (RDFS¬) TBox, a set A of
assertions of the forms 6–7 in Table 1 an (RDF) ABox, and the union G = T ∪A
an (RDFS¬) triple store.

Definition 2 (Interpretation, Satisfaction, Model, Consistency). An
interpretation 〈ΔI , ·I〉 consists of a non-empty set ΔI and an interpretation
function ·I , which maps

– each atomic concept A to a subset AI of ΔI ,
– each negation of atomic concept to (¬AI) = ΔI \ AI ,
– each atomic role P to a binary relation P I over ΔI , and
– each element of Γ to an element of ΔI .

For expressions ∃P and ∃P−, the interpretation function is defined as (∃P )I =
{x ∈ ΔI | ∃y.(x, y) ∈ P I} and (∃P−)I = {y ∈ ΔI | ∃x.(x, y) ∈ P I}, resp. An
interpretation I satisfies an inclusion assertion E1 � E2 (of one of the forms 1–
5 in Table 1), if EI

1 ⊆ EI
2 . Analogously, I satisfies ABox assertions of the form

A(x), if xI ∈ AI , and of the form P (x, y), if (xI , yI) ∈ P I . An interpretation
I is called a model of a triple store G (resp., a TBox T , an ABox A), denoted
I |= G (resp., I |= T , I |= A), if I satisfies all assertions in G (resp., T , A).
Finally, G is called consistent, if it does not entail both C(x) and ¬C(x) for any
concept C and constant x ∈ Γ , where entailment is defined as usual.

As in [1], we treat only ABox updates with WHERE clauses restricted to
unions of conjunctive queries (without projection) over DL ontologies:

Definition 3 (BGP, CQ, UCQ, Query Answer). A conjunctive query (CQ)
q, or basic graph pattern (BGP), is a set of atoms of the form 6–7 from Table 1,
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where now x, y ∈ Γ ∪ V, V a countably infinite set of variables (written as ’?’-
prefixed alphanumeric strings). A union of conjunctive queries (UCQ) Q, or
union pattern, is a set of CQs. We denote with V(q) (or V(Q)) the set of vari-
ables from V occurring in q (resp., Q). An answer (under RDFS¬ Entailment)
to a CQ q over a triple store G is a substitution θ of the variables in V(q) with
constants in Γ such that every model of G satisfies all facts in qθ. We denote
the set of all such answers with ans rdfs(q,G) (or simply ans(q,G)). The set of
answers to a UCQ Q is

⋃
q∈Q ans(q,G).

Query answering in the presence of ontologies is done either by rule-based
pre-materialization of the ABox or by query rewriting. In the RDFS¬ case, mate-
rialization in polynomial time is feasible. Let mat(G) be the triple store obtained
from exhaustive application of the inference rules in Fig. 1 on a consistent triple
store G. We also define a special notation chase(q, T ) to denote the “material-
ization” (also known as chase) of an ABox resp. a BGP q w.r.t. the TBox T . We
call all triples occurring in chase(q, T ) but not in q the effects of q w.r.t. T .

We now adapt the semantics for SPARQL update operations from [1].

Definition 4 (SPARQL Update Operation, Simple Update of a Triple
Store). Let Pd and Pi be BGPs, and Pw a BGP or UNION pattern. Then an
update operation u(Pd, Pi, Pw) has the form

DELETE Pd INSERT Pi WHERE Pw

Let G = T ∪ A be a triple store then the simple update of G w.r.t.
u(Pd, Pi, Pw) is defined as Gu(Pd,Pi,Pw) = (G \ Ad) ∪ Ai, where Ad =⋃

θ∈ans(Pw,G) gr(Pdθ), Ai =
⋃

θ∈ans(Pw,G) gr(Piθ), and gr(P ) denotes the set
of ground triples in pattern P .

We call a triple store G (resp. the ABox of G) materialized if the equal-
ity G \ T = mat(G) \ T holds. In this paper, we will always consider G to be
materialized and focus on “materialization preserving” semantics for SPARQL
update operations, which we dubbed Semmat

2 in [1] and which preserves a mate-
rialized triple store. We recall the intuition behind Semmat

2 , given an update
u = (Pd, Pi, Pw): (i) delete the instantiations of Pd along with all their causes;
(ii) insert the instantiations of Pi plus all their effects.

The notion of “causes” is made precise as follows. Given an ABox assertion
A, Acaus = {B | A ∈ chase({B}, T )}. In the definition of Acaus, if A is a class

Fig. 1. Minimal RDFS rules from [17]plus class disjointness “clash” rule from OWL2
RL [16].
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membership (x a C) where x ∈ Γ ∪V, then B is one of (x a C’), (x P ?Y),
(?Y P x) for some fresh variable ?Y , class C’ and role P. If A is a role par-
ticipation assertion (x R z), B is of the form (x P z), for some role P. For
a SPARQL triple (possibly with variables) C we use Ccaus to denote a BGP
computed in the same way as for the ABox assertion A above.

Definition 5 (Semmat
2 [1]). Let u(Pd, Pi, Pw) be an update operation. Then

G
Semmat

2
u(Pd,Pi,Pw) = Gu(P caus

d , P eff
i , {Pw}{P fvars

d })

Here, P caus
d =

⋃
A∈atoms(Pd) Acaus; P eff = chase(P, T ) and P fvars

d is a pattern
that binds variables occurring in P caus

d but not in Pd to the constants from Γ
occurring in G.

We refer to [1] for further details, but stress that as such, Semmat
2 is not able

to detect or deal with inconsistencies arising from extending G with instantia-
tions of Pi. In what follows, we will discuss how this can be remedied.

Remark 1. Note that although the DELETE clause Pd is syntactically a BGP, its
semantics is different. Namely, triples occurring in Pd are mutually independent
(cf. Definition 4), so that for every θ ∈ ans(Pw, G), each atom in Pdθ ∩ G is
deleted from G no matter which other atoms of Pdθ occur in G. Therefore, P caus

d

is computed atom-wise, unlike CQ rewriting [4]. Note that |Acaus| = O(||T ||)
where ||T || denotes the vocabulary size of T : in each RDFS¬ derivation, a class
membership assertion can occur at most once for each class in T , and a role
membership assertion can occur at most twice for every role in T . Thus, |P caus

d | ≤
2|Pd| · ||T || and |P eff

i | ≤ |Pi| · ||T ||, so both can be computed in poly-time. This
underpins the polynomial complexity of our rewritings.

3 Checking Consistency of a SPARQL Update

In the literature on the evolution of DL-Lite knowledge bases [5,7], updates
represented by pairs of ABoxes Ad,Ai have been studied. However, whereas such
update might be viewed to fit straightforwardly to the corresponding Ad,Ai in
Definition 4, it is typically assumed that Ai is consistent with the TBox, and thus
one only needs to consider how to deal with inconsistencies between the update
and the old state of the knowledge base. However, this a priori assumption may
be insufficient for SPARQL updates, where concrete values for inserted triples
are obtained from variable bindings in the WHERE clause, and depending on
the bindings, the update can be either consistent or not. This is demonstrated
by the update u from Sect. 1 which, when applied to the ABox A1, results in
an inconsistent set Ai of insertions. We call this intrinsic inconsistency of an
update relative to a triple store G = T ∪ A.

Definition 6. Let G be a triple store. The updateu is said to be intrinsically consis-
tent w.r.t. G if the set of new assertions Ai from Definition 4 generated by applying
u to G, taken in isolation from the ABox of G, does not contradict the TBox of G.
Otherwise, the update is said to be intrinsically inconsistent w.r.t. G.
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Algorithm 1. constructing a SPARQL ASK query to check intrinsic incon-
sistency (for the definition of P eff

i , cf. Definition 5)
Input: RDFS¬ TBox T , SPARQL update u(Pd, Pi, Pw)
Output: A SPARQL ASK query returning True if u is intrinsically inconsistent

1 if ⊥ ∈ P eff
i then

2 return ASK {} //u contains clashes in itself, i.e., is inconsistent for any
triple store

3 else
4 W := {FILTER(False)}; //neutral element w.r.t. union

5 foreach pair of triple patterns (?X a P ), (?Y a R) in P eff
i do

6 if P � ¬R ∈ T then
7 W := W UNION {{Pwθ1[?X �→?Z]} . {Pwθ2[?Y �→?Z]}} for a fresh

?Z
8 return ASKWHERE {W}

Intrinsic inconsistency of the update differs crucially from the inconsistency
w.r.t. the old state of the knowledge base, illustrated by the ABox A2 from
Sect. 1. This latter case can be addressed by adopting an update policy that
prefers newer assertions in case of conflicts, as studied in the context of DL-Lite
KB evolutions [5], which we will discuss in Sect. 4 below. Intrinsic inconsistencies
however are harder to deal with, since there is no cue which assertion should
be discarded in order to avoid the inconsistency. Our proposal here is thus to
discard all mutually inconsistent pairs of insertions.

We first present an algorithm for checking intrinsic inconsistency by means
of SPARQL ASK queries and then a safe rewriting algorithm. This rewriting is
based on an observation that clashing triples can be introduced by a combination
of two bindings of variables in the WHERE clause, as the example in the Sect. 1
(the ABox A1) illustrates. To handle such cases, two copies of the WHERE
clause Pw are created by the rewriting in Algorithms 1 and 2, for each pair of
disjoint concepts according to the TBox of the triple store. These algorithms use
notation described in Remark 2 below.

Remark 2. Our rewriting algorithms rely on producing fresh copies of the
WHERE clause. Assume θ, θ1, θ2, . . . to be substitutions replacing each vari-
able in a given formula with a distinct fresh one. For a substitution σ, we
also define θ[σ] resp. θi[σ] to be an extension of σ, renaming each variable at
positions not affected by σ with a distinct fresh one. For instance, let F be a
triple (?Z :studentOf ?Y ). Now, Fθ makes a variable disjoint copy of F : ?Z1

:studentOf ?Y1 for fresh ?Z1, ?Y1. F [?Z �→?X] is just a substitution of ?Z by
?X in F . Finally, Fθ[?Z �→?X] results in ?X :studentOf ?Y2 for fresh ?Y2.
We assume that all occurrences of Fθ[σ] stand for syntactically the same query,
but that Fθ[σ1] and Fθ[σ2], for distinct σ1 and σ2, can only have variables in
range(σ1)∩range(σ2) in common. That is, the choice of fresh variables is defined
by the parameterizing substitution σ. �
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Algorithm 2. Safe rewriting safe(u)
Input: RDFS¬ TBox T , SPARQL update u(Pd, Pi, Pw)
Output: SPARQL update safe(u)

1 if ⊥ ∈ P eff
i then

2 return u(Pd, Pi, FILTER(False))

3 W := {FILTER(False)}; //neutral element w.r.t. union

4 foreach pair of triple patterns (?X a P ), (?Y a R) in P eff
i do

5 if P � ¬R ∈ T then
6 //cf. Remark 2 for notation θ[. . . ]
7 W := W UNION {Pwθ1[?X �→?Y ]}UNION {Pwθ2[?Y �→?X]}}
8 return u(Pd, Pi, Pw MINUS {W})

Using this notation, the possibility of unifying two variables ?X and ?Y in Pw on
a given triple store can be tested with the query {Pwθ1[?X �→?Z]}{Pwθ2[?Y �→
?Z]} where θ1 and θ2 are variable renamings as in Remark 2 and ?Z is a fresh
variable.

In order to check the intrinsic consistency of an update, this condition should
be evaluated for every pair of variables of Pw, the unification of which leads to
a clash. A SPARQL ASK query based on this idea is produced by Algorithm
1. Note that it suffices to check only triples of the form {?X a ?C} at line 5 of
Algorithm 1, since disjointness conditions can only be formulated for concepts,
according to the syntax in Table 1. Furthermore, since we are taking the facts
in P eff

i extended by all facts implied by T , at line 6 of Algorithm 1 it suffices
to check the disjointness conditions explicitly mentioned in T and not all those
which are implied by T . Note also that the DELETE clause Pd plays no role in
this case, since we only consider clashes within inserted facts.

Example 1. Consider the update u from Sect. 1, in which the INSERT clause Pi

can create clashing triples. To identify potential clashes, Sect. 1 first applies the
inference rule for the range constraint, and computes P eff

i ={?X a :Student .
?Y a :Professor}. Now both variables ?X, ?Y occur in the triples of type (6)
from Sect. 1 with clashing concept names. The following ASK query is produced
by Sect. 1.
ASK WHERE { ?X :attendsClassOf ?Y . ?Y :attendsClassOf ?X1 }

(In this and subsequent examples we omit the trivial FILTER(False) union
branch used in rewritings to initialize variables with disjunctive conditions, such
as W in Algorithm 1) �

Suppose that an insert is not intrinsically consistent for a given triple store.
One solution would be to discard it completely, should the above ASK query
return True. Another option which we consider here is to only discard those
variable bindings from the WHERE clause, which make the INSERT clause
Pi inconsistent. This is the task of the safe rewriting safe(·) in Algorithm 2,
removing all variable bindings that participate in a clash between different triples
of Pi. Let Pw be a WHERE clause, in which the variables ?X and ?Y should



394 A. Ahmeti et al.

not be unified to avoid clashes. With θ1, θ2 being “fresh” variable renamings as
in Remark 2, Algorithm 2 uses the union of Pwθ1[?X �→?Y ] and Pwθ2[?Y �→?X]
to eliminate unsafe bindings that send ?X and ?Y to the same value.

Example 2. Algorithm 2 extends the WHERE clause of the update u from Sect. 1
as follows:
INSERT{?X :studentOf ?Y} WHERE{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}

Note that the safe rewriting can make the update void. For instance, safe(u)
has no effect on the ABox A1 from Sect. 1, since there is no cue, which of :jim
:attendsClassOf :ann, :ann :attendsClassOf :jim needs to be dis-
missed to avoid the clash. However, if we extend this ABox with assertions both
satisfying the WHERE clause of u and not causing undesirable variable uni-
fications, safe(u) would make insertions based on such bindings. For instance,
adding the fact :bob :attendsClassOf :alice to A1 would assert :bob
:studentOf :alice as a result of safe(u). �

A rationale for using MINUS rather than FILTER NOTEXISTS in Algorithm
2 (and also in a rewriting in forthcoming Sect. 4) can be illustrated by an update
in which variables in the INSERT and DELETE clauses are bound in different
branches of a UNION:
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE {{?X :attendsClassOf ?Y} UNION {?V :attendsClassOf ?W}}

A safe rewriting of this update (abbreviating :attendsClassOf as :aCo) is
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE { {{?X :aCo ?Y} UNION {?V :aCo ?W}}

MINUS{ {{?X1 :aCo ?X} UNION {?V1 :aCo ?W1}}
UNION {{?Y :aCo ?Y2} UNION {?V2 :aCo ?W2}} } }

It can be verified that with FILTER NOTEXISTS in place of MINUS this
update makes no insertions on all triple stores: the branches {?V1 :aCo
?W1} and {?V2 :aCo ?W2} are satisfied whenever {?X :aCo ?Y} is, mak-
ing FILTER NOTEXISTS evaluate to False whenever {?X :aCo ?Y} holds.

We conclude this section by formalizing the intuition of update safety. For
a triple store G and an update u = (Pd, Pi, Pw), let �Pw�u

G denote the set of
variable bindings computed by the query “SELECT?X1, . . . , ?Xk WHERE Pw”
over G, where ?X1, . . . , ?Xk are the variables occurring in Pi or in Pd.

Theorem 1. Let T be a TBox, let u be a SPARQL update (Pi, Pd, Pw), and
let query qu and update safe(u) = (Pd, Pi, P

′
w) result from applying Algorithm 1

resp. Algorithm 2 to u and T . Then, the following properties hold for an arbitrary
RDFS¬ triple store G = T ∪ A:

(1) qu(G) = True iff ∃μ, μ′ ∈ �Pw�u
Gs.t. μ(Pi) ∧ μ′(Pi) ∧ T |= ⊥;

(2) �Pw�u
G \ �P ′

w�u
G = {μ ∈ �Pw�u

G | ∃μ′ ∈ �Pw�u
G s.t. μ(Pi) ∧ μ′(Pi) ∧ T |= ⊥}.
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4 Materialization Preserving Update Semantics

In this section we discuss resolution of inconsistencies between triples already
in the triple store and newly inserted triples. Our baseline requirement for each
update semantics is formulated as the following property.

Definition 7 (Consistency-preserving). Let G be a triple store and
u(Pd, Pi, Pw) an update. A materialization preserving update semantics Sem
is called consistency preserving in RDFS¬ if the evaluation of update u, i.e.,
GSem

u(Pd,Pi,Pw), results in a consistent triple store.

Our consistency preserving semantics are respectively called brave, cautious
and fainthearted. The brave semantics always gives priority to newly inserted
triples by discarding all pre-existing information that contradicts the update.
The cautious semantics is exactly the opposite, discarding inserts that are incon-
sistent with facts already present in the triple store; i.e., the cautious seman-
tics never deletes facts unless explicitly required by the DELETE clause of the
SPARQL update. Finally, the fainthearted semantics executes the update par-
tially, only performing insertions for those variable bindings which do not con-
tradict existing knowledge (again, taking into account deletions).

All semantics rely upon incremental update semantics Semmat
2 , introduced

in Sect. 2, which we aim to extend to take into account class disjointness. Note
that for the present section we assume updates to be intrinsically consistent,
which can be checked or enforced beforehand in a preprocessing step by the safe
rewriting discussed in Sect. 3. In this section, we lift our definition of update
operation to include also updates (Pd, Pi, Pw) with Pw produced by the safe
rewriting Algorithm 2 from some update satisfying Definition 4. What remains
to be defined is the handling of clashes between newly inserted triples and triples
already present in the triple store.

The intuitions of our semantics for a SPARQL update u(Pd, Pi, Pw) in the
context of an RDFS¬ TBox are as follows:

– brave semantics Semmat
brave: (i) delete all instantiations of Pd and their causes,

plus all the non-deleted triples in G clashing with instantiations of triples in
Pi to be inserted, again also including the causes of these triples; (ii) insert
the instantiations of Pi plus all their effects.

– cautious semantics Semmat
caut: (i) delete all instantiations of Pd and their

causes; (ii) insert all instantiations of Pi plus all their effects, unless they
clash with some non-deleted triples in G: in this latter case, do not perform
the update.

– fainthearted semantics Semmat
faint: (i) delete all instantiations of Pd and their

causes; (ii) insert those instantiations of Pi (plus all their effects) which do
not clash with non-deleted triples in G.

Remark 3. Note that Semmat
2 is not able to cope with so called “dangling”

effects – that is, triples inserted at some point for the sake of materialization,
whose causes have been subsequently deleted. As pointed out in [1], one way to
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Algorithm 3. Brave semantics Semmat
brave

Input: Materialized triple store G = T ∪ A, SPARQL update u(Pd, Pi, Pw)

Output: G
Semmat

brave
u(Pd,Pi,Pw)

1 P ′
d := P caus

d ;

2 foreach triple pattern (?X a C) in P eff
i do

3 foreach C′ s.t. C � ¬C′ ∈ T or C′ � ¬C ∈ T do
4 if (?X a C′) /∈ P ′

d then
5 P ′

d := P ′
d . {?X a C′}caus

6 return G
u(P ′

d
,P eff

i ,{Pw}P
fvars
d

)

deal with this issue is to combine Semmat
2 with marking of explicitly inserted

triples. This approach was implemented as a semantics Semmat
1b in [1], splitting

the ABox A into the explicit part Aex and the implicit part Aim = A \ Aex.
Aex can be maintained, e.g., in a separate RDF graph using a straightforward
update rewriting. Now, deleting Pd would not only retract P caus

d from A, but
also the triples in chase(P caus

d , T ) \ chase(Aex \ P caus
d , T ). That is, the effects of

P caus
d are removed unless they can be derived from facts remaining in A after

enforcing the deletion Pd. Such an aggressive removal of dangling triples can lead
to counterintuitive behavior (cf. Example 9 in [1]), and requires maintaining the
explicit ABox Aex, which is why we opted to preserve dangling effects in our
rewritings.

We will now describe implementations of the three semantics above via SPARQL
rewritings, which can be shown to be materialization preserving and consistency
preserving.

4.1 Brave Semantics

The rewriting in Algorithm 3 implements the brave update semantics Semmat
brave;

it can be viewed as combining the idea of FastEvol [5] with Semmat
2 to handle

inconsistencies by giving priority to triples that ought to be inserted, and deleting
all those triples from the store that clash with the new ones.

Example 3. Example 2 in Sect. 3 provided a safe rewriting safe(u) of the update
u from Sect. 1. According to Algorithm 3, this safe update is rewritten to:
DELETE {?X a :Professor . ?X1 :studentOf ?X .

?Y a :Student . ?Y :studentOf ?Y1}
INSERT {?X :studentOf ?Y . ?X a :Student . ?Y a :Professor}
WHERE {{?X :attendsClassOf ?Y
MINUS{{?X2 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
OPTIONAL {?X1 :studentOf ?X} OPTIONAL {?Y :studentOf ?Y1} }

The DELETE clause removes potential clashes for the inserted triples. Note that
also property assertions implying clashes need to be deleted, which introduces
fresh variables ?X1 and ?Y 1. These variables have to be bound in the WHERE
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clause, and therefore P fvars
d adds two optional clauses to the WHERE clause,

which is a computationally reasonable implementation of the concept P fvars from
Definition 5. �

The DELETE clause P ′
d of the rewritten update is initialized in Algorithm

3 with the set Pd of triples from the input update. Rewriting ensures that also
all “causes” of deleted facts are removed from the store, since otherwise the
materialization will re-insert deleted triples. To this end, line 1 of Algorithm 3
adds to P ′

d all facts from which Pd can be derived. Then, for each triple implied
by Pi (that is, for each triple in P eff

i ) the algorithm computes the patterns of
clashing triples and adds them to the DELETE clause P ′

d, along with their
causes. Note that it suffices to only consider disjointness assertions that are
syntactically contained in T (and not those implied by T ), since we assume that
the store G is materialized. Finally, the WHERE clause of the rewritten update
is extended to satisfy the syntactic restriction that all variables in P ′

d must be
bound: bindings of “fresh” variables introduced to P ′

d due to the domain or
range constraints in T are provided by the part P fvars

d , cf. Definition 5 and
Example 3. The rewritten update is evaluated over the triple store, computing
its new materialized and consistent state.

In the RDFS¬ ontology language and under the restriction that only ABox
updates are allowed, the brave semantics is a belief revision operator [10,20],
performing a minimal change of the RDF graph (which due to materialization
can be seen both as a deductive closure of the formula representing the ABox as
well as the minimal model of this formula). There is a unique way of resolving
inconsistencies since the only deduction rule with more than one ABox assertion
in the premise, is the clash due to class disjointness (Fig. 1): assuming intrinsic
consistency, the choice of which class membership assertion to remove in order
to avoid clash is univocal (new knowledge is always preferred).

Theorem 2. Algorithm 3, given a SPARQL update u and a consistent materi-
alized triple store G = T ∪ A, computes a new consistent and materialized state
w.r.t. brave semantics. The rewriting in lines 1–6 takes time polynomial in the
size of u and T .

4.2 Cautious Semantics

Unlike Semmat
brave, its cautious version Semmat

caut always gives priority to triples
that are already present in the triple store, and dismisses any inserts that are
inconsistent with it. We implement this semantics as follows: (i) the DELETE
command does not generate inconsistencies and thus is assumed to be always
possible; (ii) the update is actually executed only if the triples introduced by
the INSERT clause do not clash with state of the triple graph after all deletions
have been applied.

Cautious semantics thus treats insertions and deletions asymmetrically: the
former depend on the latter but not the other way round. The rationale is that
deletions never cause inconsistencies and can remove clashes between the old
and the new data.
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Algorithm 4. Cautious semantics Semmat
caut

Input: Materialized triple store G = T ∪ A, SPARQL update u(Pd, Pi, Pw)

Output: G
Semmat

caut
u(Pd,Pi,Pw)

1 W := {FILTER(False)} // neutral element w.r.t. union

2 foreach (?X a C) ∈ P eff
i do

3 foreach C′ s.t. C � ¬C′ ∈ T or C′ � ¬C ∈ T do
4 Θ−

C′ := {FILTER(False)}
5 foreach (?Y a C′) ∈ P caus

d do
6 Θ−

C′ := Θ−
C′ UNION {Pwθ[?Y �→?X]}

7 W := W UNION {{?X a C′}MINUS {Θ−
C′}}

8 Q := ASKWHERE {{Pw}.{W}};

9 if Q(G) then
10 return G
11 else

12 return G
Semmat

brave
u(Pd,Pi,Pw)

As in the case of brave semantics, cautious semantics is implemented using
rewriting, presented in Algorithm 4. First, the algorithm issues an ASK query
to check that no clashes will be generated by the INSERT clause, provided that
the DELETE part of the update is executed. If no clashes are expected, in which
case the ASK query returns False, the brave update from the previous section
is applied.

For a safe update u = (Pd, Pi, Pw), the ASK query is generated as follows.
For each triple pattern {?X a C} among the effects of Pi, at line 3 Algorithm 4
enumerates all concepts C ′ that are explicitly mentioned as disjoint with C in
T . As in the case of brave semantics, this syntactic check is sufficient due to
the assumption that the update is applied to a materialized store; by the same
reason also no property assertions need to be taken into account.

For each concept C ′ disjoint with C, we need to check that a triple matching
the pattern {?X a C ′} is in the store G and will not be deleted by u. Deletion
happens if there is a pattern {?Y a C ′} ∈ P caus

d such that the variable ?Y can be
bound to the same value as ?X in the WHERE clause Pw. Line 6 of Algorithm 4
produces such a check, using a copy of Pw, in which the variable ?Y is replaced
by ?X and all other variables are replaced with distinct fresh ones. Since there
can be several such triple patterns in P caus

d , testing for clash elimination via the
DELETE clause requires a disjunctive graph pattern Θ−

C′ constructed at line 6
and combined with {?X aC ′} using MINUS at line 7.

Finally, the resulting pattern is appended to the list W of clash checks using
UNION . As a result, {Pw}.{W} queries for triples that are not deleted by u and
clash with an instantiation of some class membership assertion {?X a C} ∈ P eff

i .

Theorem 3. Algorithm 4, given a SPARQL update u and a consistent materi-
alized triple store G = T ∪ A, computes a new consistent and materialized state



Handling Inconsistencies Due to Class Disjointness in SPARQL Updates 399

Algorithm 5. Fainthearted semantics Semmat
faint

Input: Materialized triple store G = T ∪ A, SPARQL update u(Pd, Pi, Pw)

Output: G
Semmat

faint

u(Pd,Pi,Pw)

1 W := Pw

2 foreach triple pattern (x a C) in P eff
i do

3 foreach C′ s.t. C � ¬C′ ∈ T or C′ � ¬C ∈ T do
4 Θ−

C′ := {FILTER(False)};
5 foreach (z a C′) ∈ P caus

d do
6 Θ−

C′ := Θ−
C′ UNION {Pwθ[z �→ x]};

7 W := {W}MINUS {x a C′ MINUS {Θ−
C′}};

8 W := {W}UNION {Pwθ1 . P fvars
d θ1} ;

9 return Gu(P caus
d

θ1, P eff
i , W )

w.r.t. cautious semantics. The rewriting in lines 1–8 takes time polynomial in
the size of u and T .

Example 4. Algorithm 4 rewrites the safe update safe(u) from Example 2 as
follows:
ASK WHERE{{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
.{{?Y a :Student} UNION {?X a :Professor}}}

Now, consider an update u′ having both INSERT and DELETE clauses:
DELETE {?Y a :Professor} INSERT{?X a :Student}
WHERE {?X :attendsClassOf ?Y}

The update u′ inserts a single class membership fact and thus is always intrin-
sically consistent. The ASK query in Algorithm 4 takes the DELETE clause of
u′ into account:
ASK WHERE {{?X :attendsClassOf ?Y}
.{{?X a :Professor} MINUS {?Z :attendsClassOf ?X }}} �

4.3 Fainthearted Semantics

Our third, fainthearted semantics is meant to take an intermediate position
between the cautious semantics and the brave one. A shortcoming of the cau-
tious semantics is that massive update can be retracted because of only a few
clashing triples. Not to discard an update completely in such a case, the user
can decide either to override the existing knowledge — that is, opt for the brave
semantics — or to apply insertions only for those variable bindings which are
not clashing with the existing state, which is what the fainthearted semantics
does.

Our realization of the idea of accommodating non-clashing inserts is based
on decoupling the insert and the delete part of an update: whereas the delete is
executed for all variable bindings satisfying the WHERE clause, one dismisses
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the inserts for variable bindings that yield clashes with the state of the store
after the delete. That is, we deviate from the notion of update as an atomic
operation in a different way than in the safe rewriting where both deletions and
insertions are dismissed for variable bindings leading to clashes. Our motivation
for such a design decision is explained next.

Assume that for each variable binding μ returned by the WHERE pat-
tern, we want to either insert gr(Piμ) along with deleting gr(Pdμ), or dis-
miss μ altogether. As an example, consider the update u′ from Example 4
and the ABox {:jim :attendsClassOf :ann. :jim a :Professor.
:bob :attendsClassOf :jim}. With the variable binding μ1 = [?X �→
:jim, ?Y �→ :ann] we insert :jim a :Student knowing that the clashing fact
:jim a :Professor will be deleted by the binding μ2 = [?X �→ :bob, ?Y �→
:jim]. However, if the update is atomic, this anticipated deletion will only hap-
pen if gr(Piμ2) does not introduce clashes. Assume this is the case (i.e. also
{:bob a :Professor} is in the ABox): we have to look one more step ahead
and check if this triple will be deleted by some variable binding μ3, and so on.
This behaviour could be realized with SPARQL path expressions, which would
however stipulate severe syntactic restrictions on the WHERE clause Pw of the
original update.

As mentioned above, our interpretation of fainthearted semantics assumes
independence between the INSERT and DELETE parts of the update. To imple-
ment this, we rely on SPARQL’s flexible handling of variable bindings. Namely,
we rename the variables in the DELETE clause apart from the rest of the update,
and put this renamed apart copy of the WHERE clause in a new UNION branch.
The original WHERE clause is then rewritten (using MINUS operator, similarly
to the case of cautious semantics) to ensure that insertions are only done for
variable bindings where clashes are removed by the DELETE clause with some
variable binding. The implementation can be found in Algorithm 5.

Example 5. The update u′ from Example 4 is rewritten as follows by Algorithm 5:

DELETE {?Y1 a :Professor } INSERT {?X a :Student}
WHERE {{?X2 :attendsClassOf ?Y1} UNION {?X :attendsClassOf ?Y.

{MINUS {?X a :Professor MINUS {?X3 :attendsClassOf ?X}}}}}

The first union branch binds the variables in the DELETE clause (both using
fresh variables). The second branch binds the variable ?X in the INSERT clause,
using MINUS to remove variable bindings for which a non-deleted clash exists.
The test that a clash will not be deleted is expressed using the inner MINUS
operator. �

We conclude with a claim of correctness and polynomial complexity of the
rewriting, similar to those made for the brave and cautious semantics.

Theorem 4. Algorithm 5, given a SPARQL update u and a materialized triple
store G = T ∪ A w.r.t. fainthearted semantics, computes a new consistent and
materialized state. The rewriting in lines 1–9 takes time polynomial in the size
of u and T .
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5 Experimental Evaluation

For each of the three semantics discussed in the previous section, we provided a
preliminary implementation using the Jena API (http://jena.apache.org) and
evaluated them against Jena TDB triple store which implements the latest
SPARQL 1.1 specification. As before, for computing the initial materialization
of a triple store mat(G) we rely on-board, forward-chaining materialization in
Jena TDB using the minimal RDFS rules as in Fig. 1.

For our experiments, we used the data generated by the EUGen generator [15]
of for the size range of 5 to 50 Universities. We opted for using this generator as it
extends the LUBM ontology [9] with chains of subclasses, making the rewritings
more challenging. In our case we have used the default of i = 20 subclasses for
each LUBM concept (e.g., SubjiStudents) and made such subclasses pairwise
disjoint. Moreover, we have added more disjointness axioms where appropriate,
e.g., :AssociateProfessor dw :FullProfessor. All these TBox axioms
are merged with our previous reduced RDFS version of LUBM used in our
previous work [1]. To compare the experimental results with the previous work,
for our experiments we adapted the seven updates from [1]. Our prototype, as
well as files containing the data, ontology, and the updates used for experiments,
are made available on a dedicated Web page1.

The results summarized in Table 2 show that the LUBM 50 dataset (507 MB
uncompressed, 8.7 M triples after materialization) can be handled in seconds on
a quad-core Intel i7 3.20 GHz machine with 16 GB RAM. For each of the three
semantics, we have compared the time elapsed for rewriting and for the evalua-
tion of the resulting update. The last line in Table 2 is the evaluation time for the
original, non-rewritten update. One can notice that brave semantics Semmat

brave

is often the most expensive one, since it performs most modifications. When
the number of inconsistent inserts is low though, the situation is different, and
the brave semantics slightly outperforms the fainthearted semantics Semmat

faint

(Update #6 and #7), due to the more complex checks in the WHERE clause
produced by Algorithm 5. For the cautious semantics Semmat

caut, the numbers in
the table are construction and evaluation time of the ASK query checking for the
feasibility of update (cf. Algorithm 4). In case this ASK query returns False, the
runtime of brave semantics should be added in order to obtain the total runtime
of the update. Update #4 demonstrates that Semmat

caut can perform significantly
worse than Semmat

faint when the number of instantiations in the original WHERE
clause is high. This is because the ASK query in Semmat

caut looks for instantiations
of the WHERE clause which can lead to clashes with the existing tuples (using
a conjunctive condition), whereas Semmat

faint reduces the set of solutions of the
original WHERE clause using MINUS, which is apparently more efficient in the
Apache TDB.

1 http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver/.

http://jena.apache.org
http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver
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Table 2. Evaluation results in seconds for LUBM 50

Update # 1 2 3 4 5 6 7

Semmat
brave 12,4 14,8 0,1 22,1 46,0 15,3 13,6

Semmat
caut 0,3 0,2 0,2 44,0 0,2 3,9 2,3

Semmat
faint 2,2 2,8 0,01 17,4 3,3 16,7 15,3

Original 0,2 0,2 0,2 10,2 0,2 6,6 5,4

6 Related Work and Conclusions

In this paper we have taken a step further from our previous work, in combining
SPARQL Update and RDFS entailment by adding concept disjoints as a first
step towards dealing with inconsistencies in the context of SPARQL Updates.
We distinguish the case of intrinsic inconsistency, localized within instantiations
of the INSERT clause of a SPARQL update, and the usual case when the new
information is inconsistent with the old knowledge. In the former case, our solu-
tion was to discard all solutions of the WHERE query that participate in an
inconsistency. For the latter case, we discussed several reconciliation strategies,
well suited for efficient implementation in SPARQL. Our preliminary implemen-
tation shows the feasibility of all proposed approaches on top of an off-the-shelf
triple store supporting SPARQL and SPARQL update (Apache TDB).

The problem of knowledge based update and belief revision has been exten-
sively studied in the literature, although not in the context of SPARQL updates
where facts to be deleted or inserted come from a query. As argued in Sect. 4.1,
brave semantics implements the most established approach of adapting the new
information fully via a minimal change, which is feasible in the setting of fixed
RDFS¬ TBoxes. Also semantics deliberating between accepting and discarding
change are known (see [10] for a survey). In [18] an approach involving user inter-
action to decide whether to accept or reject an individual axiom is considered,
with some part of the update being computed automatically in order to ensure
its consistency. We do not consider interactive procedures here (although they
clearly make sense in the case of more complex TBoxes or for TBox updates).
Instead, we rely on the resolution strategies which are simple for the user to
understand and can be efficiently encoded in SPARQL. In a practical KB edit-
ing system, one should probably combine the two approaches, e.g. for resolving
the intrinsic inconsistency. Likewise, the approaches [3,7,13] consider grounded
updates only, whereas our focus is on implementation of updates in SPARQL.
The approach in [7] captures RDFS and several additional types of constraints
and is close in spirit to our brave semantics.

Intrinsic consistency of an update is a common assumption in knowledge
base update (e.g. [5–7,14]), which can be easily violated in the case of SPARQL
updates. It is worth noting that our resolution strategy for intrinsic inconsistency
called safe rewriting can be combined with all three update semantics using just
the basic SPARQL operators.
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Much interesting work remains to be done in order to optimize rewritten
updates. Moreover, we plan to further extend our work towards increasing cov-
erage of more expressive logics and OWL profiles, namely additional axioms from
OWL2 RL or OWL 2 QL [16].
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