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Abstract. Updates in RDF stores have recently been standardised in the
SPARQL 1.1 Update specification. However, computing entailed answers by on-
tologies is usually treated orthogonally to updates in triple stores. Even the W3C
SPARQL 1.1 Update and SPARQL 1.1 Entailment Regimes specifications ex-
plicitly exclude a standard behaviour for entailment regimes other than simple
entailment in the context of updates. In this paper, we take a first step to close this
gap. We define a fragment of SPARQL basic graph patterns corresponding to (the
RDFS fragment of) DL-Lite and the corresponding SPARQL update language,
dealing with updates both of ABox and of TBox statements. We discuss possible
semantics along with potential strategies for implementing them. In particular,
we treat both, (i) materialised RDF stores, which store all entailed triples explic-
itly, and (ii) reduced RDF Stores, that is, redundancy-free RDF stores that do not
store any RDF triples (corresponding to DL-Lite ABox statements) entailed by
others already. We have implemented all semantics prototypically on top of an
off-the-shelf triple store and present some indications on practical feasibility.

1 Introduction

The availability of SPARQL as a standard for accessing structured Data on the Web may
well be called one of the key factors to the success and increasing adoption of RDF and
the Semantic Web. Still, in its first iteration the SPARQL [24] specification has neither
defined how to treat ontological entailments with respect to RDF Schema (RDFS) and
OWL ontologies, nor provided means how to update dynamic RDF data. Both these
gaps have been addressed within the recent SPARQL 1.1 specification, which provides
both means to define query answers under ontological entailments (SPARQL 1.1 Entail-
ment Regimes [9]), and an update language to update RDF data stored in a triple store
(SPARQL 1.1 Update [8]). Nonetheless, these specifications leave it open how SPARQL
endpoints should treat entailment regimes other than simple entailment in the context
of updates; the main issue here is how updates shall deal with implied statements:

– What does it mean if an implied triple is explicitly (re-)inserted (or deleted)?
– Which (if any) additional triples should be inserted, (or, resp., deleted) upon up-

dates?

For the sake of this paper, we address such questions with the focus on a deliber-
ately minimal ontology language, namely the minimal RDFS fragment of [19].1 As
it turns out, even in this confined setting, updates as defined in the SPARQL 1.1 Update

1 We ignore issues like axiomatic triples [13], blank nodes [17], or, in the context of OWL,
inconsistencies arising through updates [5]. Neither do we consider named graphs in SPARQL,
which is why we talk about “triple stores” as opposed to “graph stores” [8].
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Table 1. DL-LiteRDFS assertions vs. RDF(S), where A, A′ denote concept (or, class) names, P , P ′

denote role (or, property) names, Γ is a set of constants, and x, y ∈ Γ . For RDF(S) vocabulary,
we make use of similar abbreviations (sc, sp, dom, rng, a) introduced in [19].

TBox RDFS

1 A′ � A A′ sc A.
2 P ′ � P P ′ sp P .

TBox RDFS

3 ∃P � A P dom A.
4 ∃P − � A P rng A.

ABox RDFS

5 A(x) x a A.
6 P (x, y) x P y.

specification impose non-trivial challenges; in particular, specific issues arise through
the interplay of INSERT, DELETE, and WHERE clauses within a single SPARQL up-
date operation, which —to the best of our knowledge— have not yet been considered
in this combination in previous literature on updates under entailment (such as for in-
stance [5, 11]).

Example 1. As a running example, we assume a triple store G with RDF (ABox)
data and an RDFS ontology (TBox) Ofam about family relationships (in Turtle syn-
tax [2]), where :hasP, :hasM, and:hasF, resp., denote the parent, mother, and father
relations.

ABox: :joe :hasP :jack. :joe :hasM :jane.
TBox: :Father sc :Parent. :Mother sc :Parent.

:hasF sp :hasP. :hasM sp :hasP.
:hasF rng :Father; dom :Child. :hasM rng :Mother; dom :Child.
:hasP rng :Parent; dom :Child.

The following query should return :jack and :jane as (RDFS entailed) answers:
SELECT ?Y WHERE { :joe :hasP ?Y. }

SPARQL engines supporting simple entailment would only return :jack, though.

The intended behaviour for the query in Ex. 1 is typically achieved by either (i) query
rewriting techniques computing entailed answers at query run-time, or (ii) by ma-
terialising all implied triples in the store, normally at loading time. That is, on the
one hand, borrowing from query rewriting techniques from DL-Lite (such as, e.g.,
PerfectRef [4]2) one can reformulate such a query to return also implied answers.
While the rewritten query is worst case exponential wrt. the length of the original query
(and polynomial in the size of the TBox), for moderate size TBoxes and queries rewrit-
ing is quite feasible.

Example 2 (cont’d). The rewriting of the query in Ex. 1 according to PerfectRef [4]
with respect to Ofam as a DL TBox in SPARQL yields

SELECT ?Y WHERE { {:joe :hasP ?Y}
UNION {:joe :hasF ?Y} UNION {:joe :hasM ?Y}}

Indeed, this query returns both :jane and :jack.

On the other hand, an alternative3 is to materialise all inferences in the triple store,
such that the original query can be used ’as is’, for instance using the minimalistic
inference rules for RDFS from [19]4 shown in Fig. 1.

2 Alg. 1 in the Appendix shows a version of PerfectRef reduced to the essentials of RDFS.
3 This alternative is viable for RDFS, but not necessarily for more expressive DLs.
4 These rules correspond to rules 2), 3), 4) of [19]; they suffice since we ignore blank nodes.

:jack
:jane
:jack
:jane
:jack
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Example 3 (cont’d). The materialised version of G would contain the following
triples—for conciseness we only show assertional implied triples here, that is triples
from the four leftmost rules in Fig. 1.

:joe a :Child; :hasP :jack; :hasM :jane; :hasP :jane.
:jack a :Parent. :jane a :Mother, :Parent.

On a materialised triple store, the query from Ex. 1 would return the expected results.

However, in the context of SPARQL 1.1 Update, things become less clear.

Example 4 (cont’d). The following operation tries to delete an implied triple and at the
same time to (re-)insert another implied triple.
DELETE {?X a :Child} INSERT {?Y a :Mother} WHERE {?X :hasM ?Y}

Existing triple stores offer different solutions to these problems, ranging from ig-
noring entailments in updates altogether, to keeping explicit and implicit (materialised)
triples separate and re-materialising upon updates. In the former case (ignoring entail-
ments) updates only refer to explicitly asserted triples, which may result in non-intuitive
behaviours, whereas the latter case (re-materialisation) may be very costly, while still
not eliminating all non-intuitive cases, as we will see. The problem is aggravated by
no systematic approach to the question of which implied triples to store explicitly in
a triple store and which not. In this paper we try to argue for a more systematic ap-
proach for dealing with updates in the context of RDFS entailments. More specifically,
we will distinguish between two kinds of triple stores, that is (i) materialised RDF
stores, which store all entailed ABox triples explicitly, and (ii) reduced RDF Stores,
that is, redundancy-free RDF stores that do not store any assertional (ABox) triples
already entailed by others. We propose alternative update semantics that preserve the
respective types (i) and (ii) of triple stores, and discuss possible implementation strate-
gies, partially inspired by query rewriting techniques from ontology-based data access
(OBDA) [15] and DL-Lite [4]. As already shown in [11], erasure of ABox statements
is deterministic in the context of RDFS, but insertion and particularly the interplay of
DELETE/INSERT in SPARQL 1.1 Update has not been considered therein. Finally, we
relax the initial assumption that terminological statements (using the RDFS vocabu-
lary) are static, and discuss the issues that arise when also TBox statement are subject
to updates.

The remainder of the paper continues with preliminaries (RDFS, SPARQL, DL-Lite,
SPARQL update operations) in Sec. 2. We introduce alternative semantics for ABox
updates in materialised and reduced triple stores in Sec. 3, and discuss them in Sec. 4
and Sec. 5, respectively. In Sec. 6, we present our results on TBox updates. After pre-
senting in Sec. 7 an implementation on top of an off-the-shelf triple store along with
experiments, followed in Sec. 8 by a discussion of future and related work, we conclude
in Sec. 9.

?C sc ?D. ?S a ?C.
?S a ?D.

?P sp ?Q. ?S ?P ?O.
?S ?Q ?O.

?P dom ?C. ?S ?P ?O.
?S a ?C.

?P rng ?C. ?S ?P ?O.
?O a ?C.

?C sc ?D. ?D sc ?E.
?C sc ?E.

?P sp ?Q. ?Q sp ?R.
?P sp ?R.

Fig. 1. Minimal RDFS inference rules
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2 Preliminaries

We introduce some basic notions about RDF graphs, RDFS ontologies, and SPARQL
queries. Since we will draw from ideas coming from OBDA and DL-Lite, we introduce
these notions in a way that is compatible with DLs.

Definition 1 (RDFS ontology, ABox, TBox, triple store). We call a set T of inclusion
assertions of the forms 1–4 in Table 1 an RDFS ontology, or (RDFS) TBox, a set A of
assertions of the forms 5–6 in Table 1 an (RDF) ABox, and the union G = T ∪ A an
(RDFS) triple store.

In the context of RDF(S), the set Γ of constants coincides with the set I of IRIs.
We assume the IRIs used for concepts, roles, and individuals to be disjoint from IRIs
of the RDFS and OWL vocabularies.5 In the following, we view RDF and DL notation
interchangeably, i.e., we treat any RDF graph consisting of triples without non-standard
RDFS vocabulary as a set of TBox and ABox assertions. To define the semantics of
RDFS, we rely on the standard notions of (first-order logic) interpretation, satisfaction
of assertions, and model (cf. e.g., [1, Def. 14]).

As for queries, we again treat the cases of SPARQL and DLs interchangeably. Let V
be a countably infinite set of variables (written as ’?’-prefixed alphanumeric strings).

Definition 2 (BGP, CQ, UCQ). A conjunctive query (CQ) q, or basic graph pattern
(BGP), is a set of atoms of the forms 5–6 from Table 1, where now x, y ∈ Γ ∪ V . A
union of conjunctive queries (UCQ) Q, or UNION pattern, is a set of CQs. We denote
with V(q) (or V(Q)) the set of variables from V occurring in q (resp., Q).

Notice that in this definition we are considering only CQs in which all variables are
distinguished (i.e., are answer variables), and that such queries correspond to SPARQL
basic graph patterns (BGPs). From the SPARQL perspective, we allow only for
restricted forms of general SPARQL BGPs that correspond to standard CQs as for-
mulated over a DL ontology; that is, we rule out on the one hand more complex pat-
terns in SPARQL 1.1 [12] (such as OPTIONAL, NOT EXISTS, FILTER), and queries with
variables in predicate positions, and on the other hand “terminological” queries, e.g.,
{?x sc ?y.}. We will relax this latter restriction later (see Sec. 6). Also, we do not con-
sider here blank nodes separately6. By these restrictions, we can treat query answering
and BGP matching in SPARQL analogously and define it in terms of interpretations and
models (as usual in DLs). Specifically, an answer (under RDFS Entailment) to a CQ q
over a triple store G is a substitution θ of the variables in V(q) with constants in Γ such
that every model of G satisfies all facts in qθ. We denote the set of all such answers with
ansrdfs(q, G) (or simply ans(q, G)). The set of answers to a UCQ Q is

⋃
q∈Q ans(q, G).

From now on, let rewrite(q, T ) be the UCQ resulting from applying PerfectRef (or,
equivalently, the down-stripped version Alg. 1) to a CQ q and a triple store G = T ∪ A,

5 That is, we assume no “non-standard use” [23] of these vocabularies. While we could assume
concept names, role names, and individual constants mutually disjoint, we rather distinguish
implicitly between them “per use” (in the sense of “punning” [18]) based on their position in
atoms or RDF triples.

6 Blank nodes in a triple store may be considered as constants and we do not allow blank nodes
in queries, which does not affect the expressivity of SPARQL.
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and let mat(G) be the triple store obtained from exhaustive application on G of the
inference rules in Fig. 1.

The next result follows immediately from, e.g., [4, 11, 19] and shows that query
answering under RDF can be done by either query rewriting or materialisation.

Proposition 1. Let G = T ∪ A be a triple store, q a CQ, and A′ the set of ABox
assertions in mat(G). Then, ans(q, G) = ans(rewrite(q, T ), A) = ans(q, A′).

Various triple stores (e.g., BigOWLIM [3]) perform ABox materialisation directly
upon loading data. However, such triple stores do not necessarily materialise the TBox:
in order to correctly answer UCQs as defined above, a triple store actually does not need
to consider the two rightmost rules in Fig. 1. Accordingly, we will call a triple store or
(ABox) materialised if in each state it always guarantees G\T = mat(G)\mat(T ). On
the other extreme, we find triple stores that do not store any redundant ABox triples. By
red(G) we denote the hypothetical operator that produces the reduced “core” of G, and
we call a triple store (ABox) reduced if G = red(G). We note that this core is uniquely
determined in our setting whenever T is acyclic (which is usually a safe assumption)7;
it could be naïvely computed by exhaustively “marking” each triple that can be inferred
from applying any of the four leftmost rules in Fig. 1, and subsequently removing all
marked elements of A. Lastly, we observe that, trivially, a triple store containing no
ABox statements is both reduced and materialised.

Finally, we introduce the notion of a SPARQL update operation.

Definition 3 (SPARQL update operation). Let Pd and Pi be BGPs, and Pw a BGP
or UNION pattern. Then an update operation u(Pd, Pi, Pw) has the form

DELETE Pd INSERT Pi WHERE Pw.

Intuitively, the semantics of executing u(Pd, Pi, Pw) on G, denoted as Gu(Pd,Pi,Pw)
is defined by interpreting both Pd and Pi as “templates” to be instantiated with the
solutions of ans(Pw, G), resulting in sets of ABox statements Ad to be deleted from G,
and Ai to be inserted into G. A naïve update semantics follows straightforwardly.

Definition 4 (Naïve update semantics). Let G = T ∪ A be a triple store, and
u(Pd, Pi, Pw) an update operation. Then, naive update of G with u(Pd, Pi, Pw), de-
noted Gu(Pd,Pi,Pw), is defined as (G \ Ad) ∪ Ai, where Ad =

⋃
θ∈ans(Pw ,G) gr(Pdθ),

Ai =
⋃

θ∈ans(Pw,G) gr(Piθ), and gr(P ) denotes the set of ground triples in pattern P .

As easily seen, this naïve semantics neither preserves reduced nor materialised triple
stores. Consider, e.g., the update from Ex. 4, respectively on the reduced triple store
from Ex. 1 and on the materialised triple store from Ex. 3.

3 Defining Alternative Update Semantics

We investigate now alternative semantics for updates that preserve either materialised or
reduced ABoxes, and discuss how these semantics can—similar to query answering—
be implemented in off-the-shelf SPARQL 1.1 triple stores.

7 We note that even in the case when the TBox is cyclic we could define a deterministic way
to remove redundancies, e.g., by preserving within a cycle only the lexicographically smallest
ABox statements. That is, given TBox A � B � C � A and ABox A(x), C(x); we would
delete C(x) and retain A(x) only, to preserve reducedness.
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Definition 5 (Mat-preserving and red-preserving semantics). Let G and
u(Pd, Pi, Pw) be as in Def. 4. An update semantics Sem is called mat-
preserving, if GSem

u(Pd,Pi,Pw) = mat(GSem
u(Pd,Pi,Pw)), and it is called red-preserving, if

GSem
u(Pd,Pi,Pw) = red(GSem

u(Pd,Pi,Pw)).

Specifically, we consider the following variants of materialised ABox preserving
(or simply, mat-preserving) semantics and reduced ABox preserving (or simply, red-
preserving) semantics, given an update u(Pd, Pi, Pw):
Semmat

0 : As a baseline for a mat-preserving semantics, we apply the naïve semantics,
followed by (re-)materialisation of the whole triple store.

Semmat
1 : An alternative approach for a mat-preserving semantics is to follow the so-
called “delete and rederive” algorithm [10] for deletions, that is: (i) delete the in-
stantiations of Pd plus “dangling” effects, i.e., effects of deleted triples that after
deletion are not implied any longer by any non-deleted triples; (ii) insert the instan-
tiations of Pi plus all their effects.

Semmat
2 : Another mat-preserving semantics could take a different viewpoint with re-
spect to deletions, following the intention to: (i) delete the instantiations of Pd plus
all their causes; (ii) insert the instantiations of Pi plus all their effects.

Semmat
3 : Finally, a mat-preserving semantics could combine Semmat

1 and Semmat
2 , by

deleting both causes of instantiations of Pd and (recursively) “dangling” effects.8

Semred
0 : Again, the baseline for a red-preserving semantics would be to apply the naïve
semantics, followed by (re-)reducing the triple store.

Semred
1 : This red-preserving semantics extends Semred

0 by additionally deleting the
causes of instantiations of Pd.

The definitions of semantics Semmat
0 and Semred

0 are straightforward.

Definition 6 (Baseline mat-preserving and red-preserving update semantics). Let
G and u(Pd, Pi, Pw) be as in Def. 4. Then, we define Semmat

0 and Semred
0 as follows:

G
Semmat

0
u(Pd,Pi,Pw) = mat(Gu(Pd,Pi,Pw)) G

Semred
0

u(Pd,Pi,Pw) = red(Gu(Pd,Pi,Pw))

Let us proceed with a quick “reality-check” on these two baseline semantics by
means of our running example.

Example 5. Consider the update from Ex. 4. It is easy to see that neither under Semmat
0

executed on the materialised triple store of Ex. 3, nor under Semred
0 executed on the

reduced triple store of Ex. 1, it would have any effect.

This behaviour is quite arguable. Hence, we proceed with discussing the implications
of the proposed alternative update semantics, and how they could be implemented.

4 Alternative Mat-Preserving Semantics

We consider now in more detail the mat-preserving semantics. As for Semmat
1 , we rely

on a well-known technique in the area of updates for deductive databases called “delete

8 Note the difference to the basic “delete and rederive” approach. Semmat
1 in combination with

the intention of Semmat
2 would also mean to recursively delete effects of causes, and so forth.
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and rederive” (DRed) [6,10,16,26,27]. Informally translated to our setting, when given
a logic program Π and its materialisation T ω

Π , plus a set of facts Ad to be deleted and a
set of facts Ai to be inserted, DRed (i) first deletes Ad and all its effects (computed via
semi-naive evaluation [25]) from T ω

Π , resulting in (T ω
Π)′, (ii) then, starting from (T ω

Π)′,
re-materialises (Π \ Ad) ∪ Ai (again using semi-naive evaluation).

The basic intuition behind DRed of deleting effects of deleted triples and then re-
materialising can be expressed in our notation as follows; as we will consider a variant
of this semantics later on, we refer to this semantics as Semmat

1a .

Definition 7. Let G = T ∪ A, u(Pd, Pi, Pw), Ad, and Ai be defined as in Def. 4. Then

G
Semmat

1a
u(Pd,Pi,Pw) = mat(T ∪ (A \ mat(T ∪ Ad)) ∪ Ai).

As opposed to the classic DRed algorithm, where Datalog distinguishes between
view predicates (IDB) and extensional knowledge in the Database (EDB), in our set-
ting we do not make this distinction, i.e., we do not distinguish between implicitly and
explicitly inserted triples. This means that Semmat

1a would delete also those effects that
had been inserted explicitly before.

We introduce now a different variant of this semantics, denoted Semmat
1b , that makes

a distinction between explicitly and implicitly inserted triples.

Definition 8. Let u(Pd, Pi, Pw) be an update operation, and G = T ∪Aexpl ∪Aimpl a
triple store, where Aexpl and Aimpl respectively denote the explicit and implicit ABox

triples. Then G
Semmat

1b
u(Pd,Pi,Pw) = T ∪ A′

expl ∪ A′
impl, where Ad and Ai are defined as in

Def. 4, A′
expl = (Aexpl \ Ad) ∪ Ai, and A′

impl = mat(A′
expl ∪ T ) \ T .

Note that in Semmat
1b , as opposed to Semmat

1a , we do not explicitly delete effects of
Ad from the materialisation, since the definition just relies on re-materialisation from
scratch from the explicit ABox A′

expl. Nonetheless, the original DRed algorithm can
still be used for computing Semmat

1b as shown by the following proposition.

Proposition 2. Let us interpret the inference rules in Fig. 1 and triples in G respec-
tively as rules and facts of a logic program Π; accordingly, we interpret Ad and Ai

from Def. 8 as facts to be deleted from and inserted into Π , respectively. Then, the
materialisation computed by DRed, as defined in [16], computes exactly A′

impl.

None of Semmat
0 , Semmat

1a , and Semmat
1b are equivalent, as shown in Ex. 6 below.

Example 6. Given the triple store G = {:C sc :D . :D sc :E}, on which
we perform the operation INSERT{:x a :C, :D, :E.}, explicitly adding three
triples, and subsequently perform DELETE{:x a :C, :E.}, we obtain, according
to the three semantics discussed so far, the following ABoxes:
Semmat

0 : {:x a :D. :x a :E.} Semmat
1a : {}

Semmat
1b : {:x a :D. :x a :E.}

While after this update Semmat
0 and Semmat

1b deliver the same result, the difference
between these two is shown by the subsequent update DELETE{:x a :D.}
Semmat

0 : {:x a :E.} Semmat
1a : {} Semmat

1b : {}
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As for the subtle difference between Semmat
1a and Semmat

1b , we point out that none
of [16, 26], who both refer to using DRed in the course of RDF updates, make it clear
whether explicit and implicit ABox triples are to be treated differently.

Further, continuing with Ex. 5, the update from Ex. 4 still would not have any effect,
neither using Semmat

1a , nor Semmat
1b . That is, it is not possible in any of these update

semantics to remove implicit information (without explicitly removing all its causes).

Semmat
2 aims at addressing this problem concerning the deletion of implicit infor-

mation. As it turns out, while the intention of Semmat
2 to delete causes of deletions can-

not be captured just with the mat operator, it can be achieved fairly straightforwardly,
building upon ideas similar to those used in query rewriting.

As we have seen, in the setting of RDFS we can use Alg. 1 rewrite to expand a CQ
to a UCQ that incorporates all its “causes”. A slight variation can be used to compute
the set of all causes, that is, in the most naïve fashion by just “flattening” the set of sets
returned by Alg. 1 to a simple set; we denote this flattening operation on a set S of sets
as flatten(S). Likewise, we can easily define a modified version of mat(G), applied to
a BGP P using a TBox T 9. Let us call the resulting algorithm mateff (P, T )10. Using
these considerations, we can thus define both rewritings that consider all causes, and
rewritings that consider all effects of a given (insert or delete) pattern P :

Definition 9 (Cause/Effect rewriting). Given a BGP insert or delete template P for
an update operation over the triple store G = T ∪A, we define the all-causes-rewriting
of P as P caus = flatten(rewrite(P, T )); likewise, we define the all-effects-rewriting
of P as P eff = mateff (P, T ).

This leads (almost) straightforwardly to a rewriting-based definition of Semmat
2 .

Definition 10. Let u(Pd, Pi, Pw) be an update operation. Then

G
Semmat

2
u(Pd,Pi,Pw) = Gu(P caus

d
,P eff

i
,{Pw}{P fvars

d
}),

where P fvars
d = {?v a rdfs:Resource. | for each ?v ∈ Var(P caus

d ) \ Var(Pd)}.

The only tricky part in this definition is the rewriting of the WHERE clause, where
Pw is joined11 with a new pattern P fvars

d that binds “free” variables (i.e., the “fresh”
variables denoted by ‘_’ in Table 2, introduced by Alg. 1, cf. Appendix) in the rewritten
DELETE clause, P caus

d . Here, ?v a rdfs:Resource. is a shortcut for a pattern which
binds ?v to any term occurring in G, cf. Sec. 7 below for details.

Example 7. Getting back to the materialised version of the triple store G from Ex. 3,
the update u from Ex. 4 would, according to Semmat

2 , be rewritten to

9 This could be viewed as simply applying the first four inference rules in Fig. 1 exhaustively to
P ∪ T , and then removing T .

10 Note that it is not our intention to provide optimised algorithms here, but just to convey the
feasibility of this rewriting.

11 A sequence of ’{}’-delimited patterns in SPARQL corresponds to a join, where such joins can
again be nested with UNIONs, with the obvious semantics, for details cf. [12].
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DELETE {?X a :Child. ?X :hasF ?x1. ?X :hasM ?x2. ?X :hasP ?x3.}
INSERT {?Y a :Mother. ?Y a :Parent. }
WHERE {{?X :hasM ?Y.} {?x1 a rdfs:Resource.

?x2 a rdfs:Resource. ?x3 a rdfs:Resource.}}

with G
Semmat

2
u containing :jane a :Mother, :Parent. :jack a :Parent.

It is easy to argue that Semmat
2 is mat-preserving. However, this semantics might still

result in potentially non-intuitive behaviours. For instance, subsequent calls of INSERTs
and DELETEs might leave “traces”, as shown by the following example.

Example 8. Assume G = Ofam from Ex. 1 with an empty ABox. Under Semmat
2 , the

following sequence of updates would leave as a trace —among others— the resulting
triples as in Ex. 7, which would not be the case under the naïve semantics.
DELETE{} INSERT {:joe :hasM :jane; :hasF :jack} WHERE{};
DELETE {:joe :hasM :jane; :hasF :jack} INSERT{} WHERE{}

Semmat
3 tries to address the issue of such “traces”, but can no longer be for-

mulated by a relatively straightforward rewriting. For the present, preliminary paper
we leave out a detailed definition/implementation capturing the intention of Semmat

3 ;
there are two possible starting points, namely combining Semmat

1a + Semmat
2 , or

Semmat
1b + Semmat

2 , respectively. We emphasise though, that independently of this
choice, a semantics that achieves the intention of Semmat

3 would still potentially run
into arguable cases, since it might run into removing seemingly “disconnected” im-
plicit assertions, whenever removed assertions cause these, as shown by the following
example.

Example 9. Assume a materialised triple store G consisting only of the TBox triples
:Father sc :Person, :Male . The behaviour of the following update sequence
under a semantics implementing the intention of Semmat

3 is arguable:
DELETE {} INSERT {:x a :Father.} WHERE {};
DELETE {:x a :Male.} INSERT {} WHERE {}

We leave it open for now whether “recursive deletion of dangling effects” is intuitive: in
this case, should upon deletion of x being Male, also be deleted that x is a Person?

In a strict reading of Semmat
3 ’s intention, :x a :Person. would count as a dan-

gling effect of the cause for :x a :Male., since it is an effect of the inserted triple
with no other causes in the store, and thus should be removed upon the delete opera-
tion.

Lastly, we point out that while implementations of (materialised) triple stores may
make a distinction between implicit and explicitly inserted triples (e.g., by storing ex-
plicit and implicit triples separately, as sketched in Semmat

1b already), we consider the
distinction between implicit triples and explicitly inserted ones non-trivial in the context
of SPARQL 1.1 Update: for instance, is a triple inserted based upon implicit bindings in
the WHERE clause of an INSERT statement to be considered “explicitly inserted” or not?
We tend towards avoiding such distinction, but we have more in-depth discussions of
such philosophical aspects of possible SPARQL update semantics on our agenda. For
now, we turn our attention to the potential alternatives for red-preserving semantics.
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5 Alternative Red-Preserving Semantics

Again, similar to Semmat
3 , for both baseline semantics Semred

0 and Semred
1 we leave

it open whether they can be implemented by rewriting to SPARQL update operations
following the naïve semantics, i.e., without the need to apply red(G) over the whole
triple store after each update; a strategy to avoid calling red(G) would roughly include
the following steps:

– delete the instantiations Pd plus all the effects of instantiations of Pi, which will be
implied anyway upon the new insertion, thus preserving reduced;

– insert instantiations of Pi only if they are not implied, that is, they are not already
implied by the current state of G or all their causes in G were to be deleted.

We leave further investigation of whether these steps can be cast into update requests
directly by rewriting techniques to future work. Rather, we show that we can capture
the intention of Semred

1 by a straightforward extension of the baseline semantics.

Definition 11 (Semred
1 ). Let u(Pd, Pi, Pw) be an update operation. Then

G
Semred

1
u(Pd,Pi,Pw) = red(Gu(P caus

d
,Pi,{rewrite(Pw)}{P fvars

d
})),

where P caus
d and P fvars

d are as before.

Example 10. Getting back to the reduced version of the triple store G from Ex. 1, the
update u from Ex. 4 would, according to Semred

1 , be rewritten to
DELETE { ?X a :Child. ?X :hasFather ?x1.

?X :hasMother ?x2. ?X :hasParent ?x3. }
INSERT { ?Y a :Mother. }
WHERE { { ?X :hasMother ?Y. }

{ ?x1 a rdfs:Resource.
?x2 a rdfs:Resource.
?x3 a rdfs:Resource.} }

with G
Semred

1
u containing the triple :jane a :Mother.. Observe here the deletion of

the triple :joe :hasParent :jack., which some might view as non-intuitive.

In a reduced store effects of Pd need not be deleted, which makes the considerations
that lead us to Semmat

3 irrelevant for a red-preserving semantics, as shown next.

Example 11. Under Semred
1 , as opposed to Semmat

2 , the update sequence of Ex. 8
would leave no traces. However, the update sequence of Ex. 9 would likewise result
in an empty ABox, again losing idempotence of single triple insertion followed by
deletion.

Note that, while the rewriting for Semred
1 is similar to that for Semmat

2 , post-processing
for preserving reducedness is not available in off-the-shelf triple stores. Instead,
Semmat

2 could be readily executed by rewriting on existing triple stores, preserving
materialisation.
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6 TBox Updates

So far, we have considered the TBox as static. As already noted in [11], additionally
allowing TBox updates considerably complicates issues and opens additional degrees
of freedom for possible semantics. While it is out of the scope of this paper to explore
all of these, we limit ourselves to sketch these different degrees of freedom and suggest
one pragmatic approach to extend updates expressed in SPARQL to RDFS TBoxes.

In order to allow for TBox updates, we have to extend the update language: in the
following, we will assume general BGPs, extending Def. 2.

Definition 12 (general BGP). A general BGP is a set of triples of any of the forms from
Table 1, where x, y, A, A′, P, P ′ ∈ Γ ∪ V .

We observe that with this relaxation for BGPs, updates as per Def. 3 can query TBox
data, since they admit TBox triples in Pw. In order to address this issue we need to also
generalise the definition of query answers.12

Definition 13. Let Q be a union of general BGPs and [[Q]]G the simple SPARQL se-
mantics as per [21], i.e., essentially the set of query answers obtained as the union of
answers from simple pattern matching of the general BGPs in Q over the graph G.
Then we define ansRDFS(Q, G) = [[Q]]mat(G).

In fact, Def. 13 does not affect ABox inferences, that is, the following corollary
follows immediately from Prop. 1 for non-general UCQs as per Def. 2.

Corollary 1. Let Q be a UCQ as per Def. 2. Then ansRDFS(Q, G) = ansrdfs(Q, G).

As opposed to the setting discussed so far, where the last two rules in Fig. 1 used for
TBox materialisation were ignored, we now focus on the discussion of terminological
updates under the standard “intensional” semantics (essentially defined by the inference
rules in Fig. 1) and attempt to define a reasonable (that means computable) semantics
under this setting. Note that upon terminological queries, the RDFS semantics and DL
semantics differ, since this “intensional” semantics does not cover all terminological
inferences derivable in DL, cf. [7]; we leave the details of this aspect to future work.

Observation 1. TBox updates potentially affect both materialisation and reducedness
of the ABox, that is, (i) upon TBox insertions a materialised ABox might need to be
re-materialised in order to preserve materialisation, and, respectively, a reduced ABox
might no longer be reduced; (ii) upon TBox deletions in a materialised setting, we have
a similar issue to what we called “dangling” effects earlier, whereas in a reduced setting
indirect deletions of implied triples could cause unintuitive behaviour.

Observation 2. Whereas deletions of implicit ABox triples can be achieved determin-
istically by deleting all single causes, TBox deletions involving sc and sp chains
can be achieved in several distinct ways, as already observed by [11].

Example 12. Consider the graph G = {:A sc :B. :B sc :C. :B sc :D.
:C sc :E. :D sc :E. :E sc :F.} with the update DELETE{:A sc :F.}

Independent of whether we assume a materialised TBox, we would have various
choices here to remove triples, to delete all the causes for :A sc :F.

12 As mentioned in Fn. 5, elements of Γ may act as individuals, concept, or roles names in
parallel.
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In order to define a deterministic semantics for TBox updates, we need a canonical
way to delete implicit and explicit TBox triples. Minimal cuts are suggested in [11]
in the sc (or sp , resp.) graphs as candidates for deletions of sc (or sp , resp.)
triples. However, as easily verified by Ex. 12, minimal multicuts are still ambiguous.

Here, we suggest two update semantics using rewritings to SPARQL 1.1 property
path patterns [12] that yield canonical minimal cuts.
Definition 14. Let u(Pd, Pi, Pw) be an update operation where Pd, Pi, Pw are general
BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = mat(Gu(P ′

d
,Pi,P ′

w)),
where each triple {A1 scp A2} ∈ Pd such that scp ∈ {sc, sp} is replaced within P ′

d by
{A1 scp ?x.}, and we add to P ′

w the property path pattern {A1 scp ?x. ?x scp∗ A2}.
Analogously, Semmat

incut is defined by replacing {?x scp A2} within P ′
d, and adding

{A1 scp∗ ?x. ?x scp A2} within P ′
w instead.

Both Semmat
outcut and Semmat

incut may be viewed as straightforward extensions of
Semmat

0 , i.e., both are mat-preserving and equivalent to the baseline semantics for non-
general BGPs (i.e., on ABox updates):
Proposition 3. Let u(Pd, Pi, Pw) be an update operation, where Pd, Pi, Pw are (non-
general) BGPs. Then

G
Semmat

outcut
u(Pd,Pi,Pw) = G

Semmat
incut

u(Pd,Pi,Pw) = G
Semmat

0
u(Pd,Pi,Pw).

The intuition behind the rewriting in Semmat
outcut is to delete for every deleted A scp B.

triple, all directly outgoing scp edges from A that lead into paths to B, or, resp., in
Semmat

incut all directly incoming edges to B. The intuition to choose these canonical
minimal cuts is motivated by the following proposition.

Proposition 4. Let u = DELETE {A scp B}, and G a triple store with materialised

TBox T . Then, the TBox statements deleted by G
Semmat

outcut
u(Pd,Pi,Pw) (or, G

Semmat
incut

u(Pd,Pi,Pw), resp.)
form a minimal cut [11] of T disconnecting A and B.

Proof (Sketch). In a materialised TBox, one can reach B from A either directly or via n
direct neighbours Ci �= B, which (in)directly connect to B. So, a minimal cut contains
either the multicut between A and the Cis, or between the Cis and B; the latter multicut
requires at least the same amount of edges to be deleted as the former, which in turn
corresponds to the outbound cut. This proves the claim for Semmat

outcut . We can proceed
analogously for Semmat

incut . ��
The following example illustrates that the generalisation of Prop. 4 to updates in-

volving the deletion of several TBox statements at once does not hold.

Example 13. Assume the materialised triple store G = {:A scp :B,:C,:D. :B
scp :C, :D.} and u = DELETE{:A scp :C. :A scp :D.}. Here, Semmat

incut
does not yield a minimal multicut in G wrt disconnecting (:A,:C) and (:A,:D).13

As the example shows, the extension of the baseline ABox update semantics to TBox
updates already yields new degrees of freedom. We leave a more in-depth discussion of
TBox updates also extending the other semantics from Sec. 3 for future work.
13 We can give an analogous example where Semmat

outcut does not yield a minimal multicut.
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7 Prototype and Experiments

We have implemented the different update semantics discussed above in Jena TDB14

as a triple store that both implements the latest SPARQL 1.1 specification and supports
rule based materialisation: our focus here was to use an existing store that allows us
to implement the different semantics with its on-board features; that is, for computing
mat(G) we use the on-board, forward-chaining materialisation in Jena.15

We have implemented all the above-mentioned mat-preserving semantics, with
two concrete variants of P fvars

d . In the first variant, we replace ?v a rdfs:Resource
by {{?v ?vp ?vo} UNION {?vs ?v ?vo} UNION {?vs ?vp ?v}}, to achieve a
pattern that binds ?v to every possible term in G. This is not very efficient. In fact, note
that P fvars

d is needed just to bind free variables ?v (corresponding to ‘_’ in Table 2) in
patterns P?v of the form P (x, ?v) or P (?v, x) in the rewritten DELETE clause. Thus,

we can equally use P fvars′
d = {OPTIONAL{

⋃
?v∈Var(P caus

d
)\Var(Pd)} P?v}. We denote

implementations using the latter variant Semmat
2′ and Semred

1′ , respectively.
As for reduced semantics, remarkably, for the restricted set of ABox rules in Fig. 1

and assuming an acyclic TBox, we can actually compute red(G) also by “on-board”
means of SPARQL 1.1 compliant triple-stores, namely by using SPARQL 1.1 Update
in combination with SPARQL 1.1 property paths [12, Section 9] with the following
update:
DELETE { ?S1 a ?D1. ?S2 a ?C2. ?S3 ?Q3 ?O3. ?O4 a ?C4. }
WHERE {{ ?C1 sc+ ?D1. ?S1 a ?C1. }

UNION { ?P2 dom/sc* ?C2. ?S2 ?P2 ?O2. }
UNION { ?P3 sp+ ?Q3. ?S3 ?P3 ?O3. }
UNION { ?P4 rng/sc* ?C4. ?S4 ?P4 ?O4. }}

We emphasise that performance results should be understood as providing a general
indication of feasibility of implementing these semantics in existing stores rather than
actual benchmarking: on the one hand, the different semantics are not comparable in
terms of performance benchmarking, since they provide different results; on the other
hand, for instance, we only use naive re-materialisation provided by the triple store in
our prototype, instead of optimised versions of DRed, such as [26].

For initial experiments we have used data generated by the LUBM generator for 5, 10
and 15 Universities, which correspond to different ABox sizes merged together with an
RDFS version of the LUBM ontology as TBox; this version of LUBM has no complex
restrictions on roles, no transitive roles, no inverse roles, and no equality axioms, and
axioms of type A � B � C are split into two axioms A � B and A � C. Besides, we
have designed a set of 7 different ABox updates in order to compare the proposed mat-
preserving and red-preserving semantics. Both our prototype, as well as files containing
the data, ontology, and the updates used for experiments are available on a dedicated
Web page.16

We first compared, for each update semantics, the time elapsed for rewriting and ex-
ecuting the update. Secondly, in order to compare mat-preserving and red-preserving
semantics, we also need to take into account that red-preserving semantics imply

14 http://jena.apache.org/documentation/tdb/
15 http://jena.apache.org/documentation/inference/
16 http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-rewriter/

http://jena.apache.org/documentation/tdb/
http://jena.apache.org/documentation/inference/
http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-rewriter/
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additional effort on subsequent querying, since rewriting is required (cf. Prop. 1). In
order to reflect this, we also measured the aggregated times for executing an update and
subsequently processing the standard 14 LUBM benchmark queries in sequence.

Details of the results can be found on the above-mentioned Web page, we only pro-
vide a brief summary here: In general, among the mat-preserving semantics, the se-
mantics implementable in terms of rewriting (Semmat

2 ) perform better than those that
need rematerialisation (Semmat

1a,b), as could be expected. There might be potential for
improvement here on the latter, when using tailored implementaions of DRed. Also,
for both mat-preserving (Semmat

2′ ) and red-preserving (Semred
1′ ) semantics that rely on

rewritings for deleting causes, the optimisation of using variant P fvars′
d instead of P fvars

d
paid off for our queries. As for a comparison between mat-preserving vs. red-preserving,
in our experiments re-reduction upon updates seems quite affordable, whereas the addi-
tionally needed query rewriting for subsequent query answering does not add dramatic
costs. Thus, we believe that, depending on the use case, keeping reduced stores upon
updates is a feasible and potentially useful strategy, particularly since – as shown above
– red(G) can be implemented with off-the-shelf feratures of SPARQL 1.1.

While further optimisations, and implementations in different triple stores remain on
our agenda, the experiments confirm our expectations so far.

8 Further Related Work and Possible Future Directions

Previous work on updates in the context of tractable ontology languages such as
RDFS [11] and DL-Lite [5] typically has treated DELETEs and INSERTs in isolation, but
not both at the same time nor in combination with templates filled by WHERE clauses, as
in SPARQL 1.1; that is, these approaches are not based on BGP matching but rather on a
set of ABox assertions to be updated, known a priori. Pairing both DELETE and INSERT,
as in our case, poses new challenges, which we tried to address here in the practically
relevant context of both materialised and reduced triple stores. In the future, we plan to
extend our work in the context of DL-Lite, where we could build upon thoroughly stud-
ied query rewriting techniques (not necessarily relying on materialisation), and at the
same time benefit from a more expressive ontology language. Expanding beyond our
simple minimal RDFS language towards more features of DL-Lite or coverage of unre-
stricted RDF graphs would impose new challenges: for instance, consistency checking
and consistency-preserving updates (as those treated in [5]), which do not yet play a role
in the setting of RDFS, would become relevant; extensions in these directions, as well as
practically evaluating the proposed semantics on existing triple stores is on our agenda.

As for further related works, in the context of reduced stores, we refer to [22], where
the cost of redundancy elimination under various (rule-based) entailment regimes, in-
cluding RDFS, is discussed in detail. In the area of database theory, there has been a
lot of work on updating logical databases: Winslett [28] distinguishes between model-
based and formula-based updates. Our approach clearly falls in the latter category; more
concretely, ABox updates could be viewed as sets of propositional knowledge base up-
dates [14] generated by SPARQL instantiating DELETE/INSERT templates. Let us fur-
ther note that in the more applied area of databases, there are obvious parallels between
some of our considerations and CASCADE DELETEs in SQL (that is, deletions under
foreign key constraints), in the sense that we trigger additional deletions of causes/ef-
fects in some of the proposed update semantics discussed herein.
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9 Conclusions

We have presented possible semantics of SPARQL 1.1 Update in the context of RDFS.
To the best of our knowledge, this is the first work to discuss how to combine RDFS
with the new SPARQL 1.1 Update language. While we have been operating on a very
restricted setting (only capturing minimal RDFS entailments, restricting BGPs to dis-
allow non-standard use of the RDFS vocabulary), we could demonstrate that even in
this setting the definition of a SPARQL 1.1 Update semantics under entailments is a
non-trivial task. We proposed several possible semantics, neither of which might seem
intuitive for all possible use cases; this suggests that there is no “one-size-fits-all” up-
date semantics. Further, while ontologies should be “ready for evolution” [20], we
believe that more work into semantics for updates of ontologies alongside with data
(TBox & ABox) is still needed to ground research in Ontology Evolution into standards
(SPARQL, RDF, RDFS, OWL), particularly in the light of the emerging importance of
RDF and SPARQL in domains where data is continuously updated (dealing with dy-
namics in Linked Data, querying sensor data, or stream reasoning). We have taken a
first step in this paper.

Acknowledgments. This work has been funded by WWTF (project ICT12-015), by the
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Appendix

Algorithm 1: rewrite(q, T )
Input: Conjunctive query q, TBox T
Output: Union (set) of conjunctive queries

1 P := {q}
2 repeat
3 P ′ := P
4 foreach q ∈ P ′ do
5 foreach g in q do // expansion
6 foreach inclusion assertion I in T

do
7 if I is applicable to g then
8 P := P ∪

{
q[g/ gr(g, I)]

}

9 until P ′ = P
10 return P

Table 2. Semantics of gr(g, I) in Alg.1

g I gr(g/I)
A(x) A′ � A A′(x)
A(x) ∃P � A P (x, _)
A(x) ∃P − � A P (_, x)

P1(x, y) P2 � P1 P2(x, y)
Here, ‘_’ stands for a “fresh” variable.
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