
Managing Change in Graph-Structured Data Using Description Logics

Shqiponja Ahmetaj
Institute of Information Systems

Vienna Univ. of Technology, Austria

Diego Calvanese
KRDB Research Centre

Free Univ. of Bozen-Bolzano, Italy

Magdalena Ortiz
Mantas Šimkus

Institute of Information Systems
Vienna Univ. of Technology, Austria

Abstract

In this paper, we consider the setting of graph-structured data
that evolves as a result of operations carried out by users or
applications. We study different reasoning problems, which
range from ensuring the satisfaction of a given set of integrity
constraints after a given sequence of updates, to deciding the
(non-)existence of a sequence of actions that would take the
data to an (un)desirable state, starting either from a specific
data instance or from an incomplete description of it. We
consider an action language in which actions are finite se-
quences of conditional insertions and deletions of nodes and
labels, and use Description Logics for describing integrity
constraints and (partial) states of the data. We then formalize
the above data management problems as a static verification
problem and several planning problems. We provide algo-
rithms and tight complexity bounds for the formalized prob-
lems, both for an expressive DL and for a variant of DL-Lite.

1 Introduction
The complex structure and increasing size of information
that has to be managed in today’s applications calls for flex-
ible mechanisms for storing such information, making it eas-
ily and efficiently accessible, and facilitating its change and
evolution over time. The paradigm of graph structured data
(GSD) (Sakr and Pardede 2011) has gained popularity re-
cently1 as an alternative to traditional relational DBs that
provides more flexibility and thus can overcome the limita-
tions of an a priori imposed rigid structure on the data. In-
deed, differently from relational data, GSD do not require a
schema to be fixed a priori. This flexibility makes them well
suited for many emerging application areas such as man-
aging Web data, information integration, persistent storage
in object-oriented software development, or management of
scientific data. Concrete examples of models for GSD are
RDFS (Brickley and Guha 2004), object-oriented data mod-
els, and XML.

In GSD, information is represented by means of a node
and edge labeled graph, in which the labels convey semantic
information. The representation structures underlying many

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Graph structured data models have their roots in work done in
the early ’90s, see, e.g., (Consens and Mendelzon 1990).

standard knowledge representation formalisms, and in par-
ticular Description Logics (DLs) (Baader et al. 2003) are
paradigmatic examples of GSD. Indeed, in DLs the domain
of interest is modeled by means of unary relations (a.k.a.
concepts) and binary relations (a.k.a. roles), and hence the
first-order interpretations of a DL knowledge base (KB) can
be viewed as node and edge labeled graphs. DLs have been
advocated as a proper tool for data management (Lenzerini
2011), and are very natural for describing complex knowl-
edge about domains represented as GSD. A DL KB com-
prises an assertional component, called ABox, which is of-
ten viewed as a possibly incomplete instance of GSD, and
a logical theory called terminology or TBox, which can be
used to infer implicit information from the assertions in the
ABox. An alternative possibility is to view the finite struc-
tures over which DLs are interpreted as (complete) GSD,
and the KB as a description of constraints and properties of
the data. Taking this view, DLs have been applied, for exam-
ple, for the static analysis of traditional data models, such as
UML class diagrams (Berardi, Calvanese, and De Giacomo
2005) and Entity Relationship schemata (Artale et al. 2007).
Problems such as the consistency of a diagram are reduced
to KB satisfiability in a suitable DL, and DL reasoning ser-
vices become tools for managing GSD.

In this paper, we follow the latter view, but aim at us-
ing DLs not only for static reasoning about data models,
but also for reasoning about the evolution and change over
time of GSD that happens as the result of executing actions.
The development of automated tools to support such tasks is
becoming a pressing problem, given the large amounts and
complexity of GSD currently available. Having tools to un-
derstand the properties and effects of actions is important
and provides added value for many purposes, including ap-
plication development, integrity preservation, security, and
optimization. Questions of interest are, e.g.:
• Will the execution of a given action preserve the in-

tegrity constraints, for every initial data instance?
• Is there a sequence of actions that leads a given data

instance into a state where some property (either desired or
not) holds?
• Does a given sequence of actions lead every possible

initial data instance into a state where some property neces-
sarily holds?

The first question is analogous to a classic problem in re-

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

966



lational databases: verifying consistency of database trans-
actions. The second and third questions are classic questions
in AI (called planning and projection, respectively).

In this paper we address these and other related questions,
develop tools to answer them, and characterize the compu-
tational properties of the underlying problems. The role of
DLs in our setting is manifold, and we propose a very ex-
pressive DL that is suitable for: (i) modeling sophisticated
domain knowledge, (ii) specifying conditions on the state
that should be reached (goal state), and (iii) specifying ac-
tions to evolve GSD over time. For the latter, we introduce
a simple yet powerful language in which actions are finite
sequences of (possibly conditional) insertions and deletions
performed on concepts and roles, using complex DL con-
cepts and roles as queries. Our results are quite general
and allow for analyzing data evolution in several practically
relevant settings, including RDF data under constraints ex-
pressed in RDFS or OWL. Via the standard reification tech-
nique (Berardi, Calvanese, and De Giacomo 2005), they also
apply to the more traditional setting of relational data under
schemas expressed in conceptual models (e.g., ER schemas,
or UML class diagrams), or to object-oriented data.

In this setting, we address first the static verification prob-
lem, that is, the problem of verifying whether for every pos-
sible state satisfying a given set of constraints (i.e., a given
KB), the constraints are still satisfied in the state resulting
from the execution of a given (complex) action. We develop
a novel technique similar in spirit to regression in reasoning
about actions (Levesque et al. 1997), and are able to show
that static verification is decidable. We provide tight com-
plexity bounds for it, using two different DLs as domain
languages. Specifically, we provide a tight CONEXPTIME
bound for the considered expressive DL, and a tight coNP
bound for a variation of DL-Lite (Calvanese et al. 2007).
For our setting, we then study different variants of planning.
We define a plan as a sequence of actions that leads a given
structure into a state where some property (either desired or
not) holds. Then we study problems such as deciding the
existence of a plan, both for the case where the initial struc-
ture is fully known, and where only a partial description of
it is available, and deciding whether a given sequence of ac-
tions is always a plan for some goal. Since the existence
of a plan (of unbounded length) is undecidable in general,
even for lightweight DLs and resctricted actions, we also
study plans of bounded length. We provide tight complexity
bounds for the different considered variants of the problem,
both for lightweight and for expressive DLs. A version of
this paper containing an appendix with proofs is available
(Ahmetaj et al. 2014). Some of the results were published in
preliminary form (Calvanese, Ortiz, and Šimkus 2013).

2 An Expressive DL for Modeling GSD
We now define the DL ALCHOIQbr, used to express con-
straints on GSD. It extends the standard ALCHOIQ with
Boolean combinations of axioms, a constructor for a single-
ton role, union, difference and restrictions of roles, and vari-
ables as place-holders for individuals. The importance of
these constructors will be become clear in Sections 3 and 4.

We assume countably infinite sets NR of role names, NC

of concept names, NI of individual names, and NV of vari-
ables. Roles are defined inductively: (i) if p ∈ NR, then p
and p− (the inverse of p) are roles; (ii) if {t, t′} ⊆ NI ∪ NV,
then {(t1, t2)} is also a role; (iii) if r1, r2 are roles, then
r1 ∪ r2, and r1 \ r2 are also roles; and (iv) if r is a role and
C is a concept, then r|C is a role. Concepts are defined in-
ductively as well: (i) if A ∈ NC, then A is a concept; (ii) if
t ∈ NI ∪ NV, then {t} is a concept (called nominal); (iii) if
C1, C2 are concepts, then C1 u C2, C1 t C2, and ¬C1 are
also concepts; (iv) if r is a role, C is a concept, and n is a
non-negative integer, then ∃r.C, ∀r.C, 6n r.C, and >n r.C
are also concepts.

A concept (resp., role) inclusion is an expression of the
form α1 v α2, where α1, α2 are concepts (resp., roles). Ex-
pressions of the form t : C and (t, t′) : r, where {t, t′} ⊆
NI ∪ NV, C is a concept, and r is a role, are called concept
assertions and role assertions, respectively. Concepts, roles,
inclusions, and assertions that have no variables are called
ordinary. We define (ALCHOIQbr-)formulae inductively:
(i) every inclusion and every assertion is a formula; (ii) if
K1, K2 are formulae, so are K1 ∧K2, K1 ∨K2, and ¬̇K1. A
formula K with no variables is called knowledge base (KB).

As usual in DLs, the semantics is given in terms of inter-
pretations. An interpretation is a pair I = 〈∆I , ·I〉 where
∆I 6= ∅ is the domain, AI ⊆ ∆I for each A ∈ NC,
rI ⊆ ∆I × ∆I for each r ∈ NR, and oI ∈ ∆I for each
o ∈ NI. For the ordinary roles of the form {(o1, o2)}, we let
{(o1, o2)}I = {(oI1 , oI2 )}, and for ordinary roles of the form
r|C , we let (r|C)I = {(e1, e2) | (e1, e2) ∈ rI and e2 ∈
CI}. The function ·I is extended to the remaining ordi-
nary concepts and roles in the usual way, see (Baader et al.
2003). Assume an interpretation I. For an ordinary inclu-
sion α1vα2, I satisfies α1vα2 (in symbols, I |= α1vα2)
if αI1 ⊆ αI2 . For an ordinary assertion β = o : C (resp.,
β = (o1, o2) : r), I satisfies β (in symbols, I |= β) if
oI ∈ CI (resp., (oI1 , o

I
2 ) ∈ rI). The notion of satisfaction

is extended to knowledge bases as follows: (i) I |= K1∧K2

if I |= K1 and I |= K2; (ii) I |= K1 ∨ K2 if I |= K1 or
I |= K2; (iii) I |= ¬̇K if I 6|= K. If I |= K, then I is
a model of K. The finite satisfiability (resp., unsatisfiabil-
ity) problem is to decide given a KB K if there exists (resp.,
doesn’t exist) a model I of K with ∆I finite.

A NEXPTIME lower bound for finite satisfiability in
ALCHOIQbr follows from the work of Tobies (2000).
Using well-known techniques due to Borgida (1996), a
matching upper bound can be shown by a direct translation
into the two variable fragment with counting, for which fi-
nite satisfiability is in NEXPTIME (Pratt-Hartmann 2005).
Hence, the finite satisfiability problem for ALCHOIQbr
KBs has the same computational complexity as for the stan-
dard ALCHOIQ:

Theorem 1. Finite satisfiability of ALCHOIQbr KBs is
NEXPTIME-complete.

We are interested in the problem of effectively managing
GSD satisfying the knowledge represented in a DL KB K.
Hence, we must assume that such data are of finite size, i.e.,
they correspond naturally to finite interpretations that satisfy

967



the constraints in K. In other words, we consider configura-
tions of the GSD that are finite models of K.

3 Updating Graph Structured Data
We now define an action language for manipulating GSD,
i.e., finite interpretations. The basic actions allow one to in-
sert or delete individuals from extensions of concepts, and
pairs of individuals from extensions of roles. The can-
didates for additions and deletions are instances of com-
plex concepts and roles. Since our DL supports nominals
{o} and singleton roles {(o, o′)}, actions can be defined to
add/remove a single individual to/from a concept, or a pair
of individuals to/from a role. We allow also for action com-
position and conditional actions. Note that the action lan-
guage introduced here is a slight generalization of the one in
(Calvanese, Ortiz, and Šimkus 2013).

Definition 1 (Action language). A basic action β is defined
by the following grammar:

β −→ (A⊕ C) | (A	 C) | (p⊕ r) | (p	 r),

where A is a concept name, C is an arbitrary concept, p
is a role name, and r is an arbitrary role. Then (complex)
actions are given by the following grammar:

α −→ ε | β · α | (K ?αJαK) · α

where β is a basic action, K is an arbitraryALCHOIQbr-
formula, and ε denotes the empty action.

A substitution is a function σ from NV to NI. For a for-
mula, an action or an action sequence Γ, we use σ(Γ) to
denote the result of replacing in Γ every occurrence of a
variable x by the individual σ(x). An action α is ground if
it has no variables. An action α′ is called a ground instance
of an action α if α′ = σ(α) for some substitution σ.

Intuitively, an application of an action (A ⊕ C) on an in-
terpretation I stands for the addition of the content of CI to
AI . Similarly, (A 	 C) stands for the removal of CI from
AI . The two operations can also be performed on exten-
sions of roles. Composition stands for successive action ex-
ecution, and a conditional action K ?α1Jα2K expresses that
α1 is executed if the interpretation is a model ofK, and α2 is
executed otherwise. If α2 = ε then we have an action with a
simple pre-condition as in classical planning languages, and
we write it as K ?α1, omitting α2.

To formally define the semantics of actions, we first intro-
duce the notion of interpretation update.

Definition 2 (Interpretation update). Assume an interpre-
tation I and let E be a concept or role name. If E is
a concept, let W ⊆ ∆I , otherwise, if E is a role, let
W ⊆ ∆I × ∆I . Then, I ⊕E W (resp., I 	E W ) denotes
the interpretation I ′ such that ∆I

′
= ∆I , and

- EI
′

= EI ∪W (resp., EI
′

= EI \W ), and
- EI

′

1 = EI1 , for all symbols E1 6= E.

Now we can define the semantics of ground actions:

Definition 3. Given a ground action α, we define a mapping
Sα from interpretations to interpretations as follows:

Sε(I) = I
S(A⊕C)·α(I) = Sα(I ⊕A CI)
S(A	C)·α(I) = Sα(I 	A CI)
S(p⊕r)·α(I) = Sα(I ⊕p rI)
S(p	r)·α(I) = Sα(I 	p rI)

S(K ?α1Jα2K)·α(I) =

{
Sα1·α(I), if I |= K,
Sα2·α(I), if I 6|= K.

In the following, we assume that interpretations are up-
dated using the above language.
Example 1. The following interpretation I1 represents
(part of) the project database of some research institute.
There are two active projects, and there are three employ-
ees that work in the active projects.

PrjI1 = {p1, p2}, ActivePrjI1 = {p1, p2},
EmplI1 = {e1, e3, e7}, FinishedPrjI1 = {},

worksForI1 = {(e1, p1), (e3, p1), (e7, p2)}.

We assume constants pi with pi
I = pi for projects, and anal-

ogously constants ei for employees. The following action
α1 captures the termination of project p1, which is removed
from the active projects and added to the finished ones. The
employees working only for this project are removed.

α1 = ActivePrj	 {p1} · FinishedPrj⊕ {p1} ·
Empl	 ∀worksFor.{p1}

The interpretation Sα1
(I1) that reflects the status of the

database after action α1 looks as follows:

PrjI1 = {p1, p2}, ActivePrjI1 = {p2},
EmplI1 = {e7}, FinishedPrjI1 = {p1},

worksForI1 = {(e1, p1), (e3, p1), (e7, p2)}.

Note that we have not defined the semantics of actions
with variables, i.e., for non-ground actions. In our approach,
all variables of an action are seen as parameters whose val-
ues are given before execution by a substitution with actual
individuals, i.e., by grounding.
Example 2. The following action α2 with variables x, y, z
transfers the employee x from project y to project z:

α2 = (x :Empl ∧ y :Prj ∧ z :Prj ∧ (x, y) :worksFor) ?
(worksFor 	 {(x, y)} · worksFor ⊕ {(x, z)})

Under the substitution σ with σ(x) = e1, σ(y) = p1, and
σ(z) = p2, the action α2 first checks whether e1 is an (in-
stance of) employee, p1, p2 are projects, and e1 works for
p1. If yes, it removes the worksFor link between e1 and p1,
and creates a worksFor link between e1 and p2. If any of the
checks fails, it does nothing.

4 Capturing Action Effects
In this section we present our core technical tool: a transfor-
mation TRα(K) that rewrites K incorporating the possible
effects of an action α. Intuitively, the models of TRα(K)
are exactly the interpretations I such that applying α on I

968



leads to a model of K. In this way, we can effectively re-
duce reasoning about changes in any database that satisfies
a given K, to reasoning about a single KB. In the next sec-
tion we use this transformation to solve a wide range of data
management problems by reducing them to standard DL rea-
soning services, such as finite (un)satisfiability. This trans-
formation can be seen as a form of regression (Levesque et
al. 1997), which incorporates the effects of a sequence of
actions ‘backwards’, from the last one to the first one.

Definition 4. Given a KB K, we use KE←E′ to denote the
KB that is obtained from K by replacing every name E by
the (possibly more complex) expression E′. Given a KB K
and an action α, we define TRα(K) as follows:
(a) TRε(K) = K
(b) TR(A⊕C)·α(K) = (TRα(K))A←AtC
(c) TR(A	C)·α(K) = (TRα(K))A←Au¬C
(d) TR(p⊕r)·α(K) = (TRα(K))p←p∪r
(e) TR(p	r)·α(K) = (TRα(K))p←p\r
(f) TR(K1 ?α1Jα2K)·α(K) = (¬̇K1 ∨TRα1·α(K)) ∧

(K1 ∨TRα2·α(K)).

Note that the size of TRα(K) might be exponential in the
size of α. We now show that this transformation correctly
captures the effects of complex actions.

Theorem 2. Assume a ground action α and a KBK. For ev-
ery interpretation I, we have Sα(I) |= K iff I |= TRα(K).

Proof. We define s(α) as follows: s(ε) = 0, s(β · α) =
1 + s(α), and s(K ?α1Jα2K · α3) = 1 + s(α1) + s(α2) +
s(α3). We prove the claim by induction on s(α). In the base
case where s(α) = 0 and α = ε, we have Sα(I) = I and
TRα(K) = K by definition, and thus the claim holds.

Assume α = (A ⊕ C) · α′. Let I ′ = I ⊕A CI ,
that is, I ′ coincides with I except that AI

′
= AI ∪ CI .

For every KB K′, I ′ |= K′ iff I |= K′A←AtC (This can
be proved by a straightforward induction on the structure
of the expressions in K′). In particular, I ′ |= TRα′(K)
iff I |= (TRα′(K))A←AtC . Since (TRα′(K))A←AtC =
TRα(K), we get I ′ |= TRα′(K) iff I |= TRα(K). By
the induction hypothesis, I ′ |= TRα′(K) iff Sα′(I ′) |= K,
thus I |= TRα(K) iff Sα′(I ′) |= K. Since Sα′(I ′) =
Sα′(S(A⊕C)(I)) = Sα(I) by definition, we obtain I |=
TRα(K) iff Sα(I) |= K as desired.

For the cases α = (A 	 C) · α′, α = (p ⊕ r) · α′, and
α = (p	 r) · α′, the argument is analogous.

Finally, we consider α = (K1 ?α1Jα2K) · α′, and assume
an arbitrary I. We consider the case where I |= K1; the
case where I 6|= K1 is analogous. By definition Sα(I) =
Sα1·α′(I). By the induction hypothesis we know that
Sα1·α′(I) |= K iff I |= TRα1·α′(K), so Sα(I) |= K iff I |=
TRα1·α′(K). Since I |= K1 and TR(K1 ?α1Jα2K)·α(K) =
(¬̇K1 ∨TRα1·α(K)) ∧ (K1 ∨TRα2·α(K)), it follows that
Sα(I) |= K iff I |= TR(K1 ?α1Jα2K)·α(K).

This theorem will be important for solving the reasoning
problems we study below.

Example 3. The following KB K1 expresses constraints on
the project database of our running example: all projects

are active or finished, the domain of worksFor are the em-
ployees, and its range the projects.

(Prjv ActivePrj t FinishedPrj) ∧
(∃worksFor.>v Empl) ∧
(∃worksFor−.>v Prj)

By applying the transformation above to K1 and α1, we ob-
tain the following KB TRα1

(K1):

(Prjv (ActivePrj u ¬{p1}) t (FinishedPrj t {p1})) ∧
(∃worksFor.>v Empl u ∃worksFor.¬{p1}) ∧
(∃worksFor−.>v Prj)

5 Static Verification
In this section, we consider the scenario where DL KBs
are used to impose integrity constraints on GSD. One of
the most basic reasoning problems for action analysis in
this setting is static verification, which consists in check-
ing whether the execution of an action α always preserves
the satisfaction of integrity constraints given by a KB.
Definition 5 (The static verification problem). Let K be
a KB. We say that an action α is K-preserving if for every
ground instance α′ of α and every finite interpretation I, we
have that I |= K implies Sα′(I) |= K. The static verifica-
tion problem is defined as follows:
(SV) Given an action α and a KB K, is α K-preserving?

Using the transformation TRα(K) above, we can
reduce static verification to finite (un)satisfiability of
ALCHOIQbr KBs: An action α is not K-preserving iff
some finite model ofK does not satisfy TRα∗(K), where α∗
is a ‘canonical’ grounding of α. Formally, we have:
Theorem 3. Assume a (complex) action α and a KB K.
Then the following are equivalent:

(i) The action α is not K-preserving.
(ii) K∧ ¬̇TRα∗(K) is finitely satisfiable, where α∗ is ob-

tained from α by replacing each variable with a fresh indi-
vidual name not occurring in α and K.
Example 4. The action α1 from Example 1 is not K1-
preserving: I1 |= K1, but Sα1

(I1) 6|= K1 since the concept
inclusion ∃worksFor.PrjvEmpl is violated. This is reflected in
the fact that I1 6|= TRα1

(K1), as can be readily checked. In-
tuitively, values removed from Empl should also be removed
from worksFor, as in the following K1-preserving action:

α′1 = ActivePrj	 {p1} · FinishedPrj⊕ {p1} ·
Empl	 ∀worksFor.{p1} · worksFor 	 worksFor|{p1}

The above theorem provides an algorithm for static ver-
ification, which we can also use to obtain tight bounds on
the computational complexity of the problem. Indeed, even
though K ∧ ¬̇TRα∗(K) may be of size exponential in α, we
can avoid to generate it all at once. More precisely, we use a
non-deterministic polynomial time many-one reduction that
builds only K ∧ ¬̇TRcα∗(K) for a fragment ¬̇TRcα(K) of
¬̇TRα∗(K) that corresponds to one fixed way of choosing
one of α1 or α2 for each conditional actionK′ ?α1Jα2K in α
(intuitively, we can view ¬̇TRcα∗(K) as one conjunct of the
DNF of ¬̇TRα(K), where axioms and assertions are treated
as propositions). Such a ¬̇TRcα(K) has polynomial size, and

969



it can be built non-deterministically in polynomial time. It
is not hard to show that K∧¬̇TRα∗(K) is finitely satisfiable
iff there is some choice TRcα∗(K) such that K ∧ ¬̇TRcα∗(K)
is finitely satisfiable. By Theorem 1, the latter test can
be done in non-deterministic exponential time, hence from
Theorem 3 we obtain:
Theorem 4. The problem (SV) is coNEXPTIME-complete
in case the input KB is expressed in ALCHOIQbr.

We note that in our definition of the (SV) problem, in ad-
dition to the action to be verified, one has as input only one
KBK expressing constraints. We can also consider other in-
teresting variations of the problem where, for example, we
have a pair of KBs Kpre and Kpost instead of (or in addition
to)K and we want to decide whether executing the action on
any model of Kpre (and K) leads to a model of Kpost (and
K). The reasoning techniques and upper bounds presented
above also apply to these generalized settings.

Lowering the Complexity
The goal of this section is to identify a setting for which
the computational complexity of static verification is lower.
The natural way to achieve this is to consider as constraint
language a DL with better computational properties, such as
the logics of the DL-Lite family (Calvanese et al. 2007).

Unfortunately, we cannot achieve tractability, since static
verification is coNP hard even in a very restricted setting, as
shown next.
Theorem 5. The static verification problem is coNP-hard
already for KBs of the form (A1v¬A′1)∧· · ·∧(Anv¬A′n),
where eachAi, A′i is a concept name, and ground sequences
of basic actions of the forms (A⊕ C) and (A	 C).

We next present a rich variant of DL-LiteR, which we
call DL-Lite+R, for which the static verification problem is
in coNP. It supports (restricted) Boolean combinations of
inclusions and assertions, and allows for complex concepts
and roles in assertions. As shown below, this allows us to
express the effects of actions inside DL-Lite+R KBs.

Definition 6. The logic DL-Lite+R is defined as follows:
- Concept inclusions have the form C1 v C2 or C1 v ¬C2,

with C1, C2 ∈ NC ∪ {∃p.>,∃p−.> | p ∈ NR}.
- Role inclusions in K have the form r1 v r2 or r1 v ¬r2,

with r1, r2 ∈ NR ∪ {p− | p ∈ NR}.
- Role assertions are defined as for ALCHOIQbr, but in

concept assertions o : C, we require C ∈ B+, where B+

is the smallest set of concepts such that:
(a) NC ⊆ B+,
(b) {o′} ∈ B+ for all o′ ∈ NI,
(c) ∃r.> ∈ B+ for all roles r,
(d) {B1uB2, B1tB2,¬B1} ⊆ B+ for allB1, B2 ∈ B+.

- Formulae and KBs are defined as for ALCHOIQbr, but
the operator ¬̇ may occur only in front of assertions.

A DL-LiteR KB K is a DL-Lite+R KB that satisfies the fol-
lowing restrictions:
- K is a conjunction of inclusions and assertions, and
- all assertions in K are basic assertions of the forms o : A

with A ∈ NC, and (o, o′) : p with p ∈ NR.

We make the unique name assumption (UNA): for every pair
of individuals o1, o2 and interpretation I, we have oI1 6= oI2 .

We need to slightly restrict the action language, which
involves allowing only Boolean combinations of assertions
to express the conditionK in actions of the formK ?α1Jα2K.

Definition 7. A (complex) action α is called simple if (i) no
(concept or role) inclusions occur in α, and (ii) all concepts
of α are from B+.

We next characterize the complexity of finite satisfiability
in DL-Lite+R.

Theorem 6. Finite satisfiability of DL-Lite+R KBs is NP-
complete.

DL-Lite+R is expressive enough to allow us to reduce static
verification for simple actions to finite unsatisfiability, and
similarly as above, we can use a non-deterministic poly-
nomial time many-one reduction (from the complement of
static verification to finite unsatisfiability) to obtain a coNP
upper bound on the complexity of static verification. This
bound is tight, even if we allow only actions with precon-
ditions rather than full conditional actions. We note that all
lower bounds in the next section also hold for this restricted
case.e next characterize the complexity of finite satisfiability
in DL-Lite+R, from which we can then obtain a tight bound
on the complexity of verification.

Theorem 7. The static verification problem for DL-Lite+R
KBs and simple actions is coNP-complete.

6 Planning
We have focused so far on ensuring that the satisfaction of
constraints is preserved when we evolve GSD. But addition-
ally, there may be desirable states of the GSD that we want
to achieve, or undesirable ones that we want to avoid. For
instance, one may want to ensure that a finished project is
never made active again. This raises several problems, such
as deciding if there exists a sequence of actions to reach a
state with certain properties, or whether a given sequence
of actions always ensures that a state with certain properties
is reached. We consider now these problems and formalize
them by means of automated planning.

We use DLs to describe states of KBs, which may act as
goals or preconditions. A plan is a sequence of actions from
a given set, whose execution leads an agent from the current
state to a state that satisfies a given goal.

Definition 8. Let I = 〈∆I , ·I〉 be a finite interpretation,
Act a finite set of actions, andK a KB (the goal KB). A finite
sequence 〈α1, . . . , αn〉 of ground instances of actions from
Act is called a plan forK from I (of length n), if there exists
a finite set ∆ with ∆I ∩∆ = ∅ such that Sα1···αn(I ′) |= K,
where I ′ = 〈∆I ∪∆, ·I〉.

Recall that actions in our setting do not modify the do-
main of an interpretation. To support unbounded introduc-
tion of values in the data, the definition of planning above
allows for the domain to be expanded a-priori with a finite
set of fresh domain elements.

We can now define the first planning problems we study:

970



(P1) Given a setAct of actions, a finite interpretation I, and
a goal KB K, does there exist a plan for K from I?

(P2) Given a set Act of actions and a pair Kpre , K of for-
mulae, does there exist a substitution σ and a plan for
σ(K) from some finite I with I |= σ(Kpre)?

(P1) is the classic plan existence problem, formulated in the
setting of GSD. (P2) also aims at deciding plan existence,
but rather than the full actual state of the data, we have as
an input a precondition KB, and we are interested in decid-
ing the existence of a plan from some of its models. To see
the relevance of (P2), consider the complementary problem:
a ‘no’ instance of (P2) means that, from every relevant ini-
tial state, (undesired) goals cannot be reached. For instance,
Kpre = Kic ∧ x : FinishedPrj and K = x : ActivePrj may
be used to check whether starting with GSD that satisfies the
integrity constraints and contains some finished project p, it
is possible to make p an active project again.
Example 5. Recall the interpretation I1 and the action α′1
from Example 4, and the substitution σ from Example 2,
which gives us the following ground instance of α2:

α′2 = (e1 : Empl ∧ p1 : Prj ∧ p2 : Prj ∧ (e1, p1) : worksFor) ?
(worksFor 	 {(e1, p1)} · worksFor ⊕ {(e1, p2)})

The following goal KB requires that p1 is not an active
project, and that e1 is an employee.

Kg = ¬̇(p1 :ActivePrj) ∧ e1 :Empl

A plan for Kg from I1 is the sequence of actions 〈α′2, α′1〉.
The interpretation Sα′2·α′1(I1) that reflects the status of the
data after applying 〈α′2, α′1〉 looks as follows:

Prj
Sα′2·α

′
1
(I1)

= {p1, p2}
ActivePrj

Sα′2·α
′
1
(I1)

= {p2}
Empl

Sα′2·α
′
1
(I1)

= {e1, e7}
FinishedPrj

Sα′2·α
′
1
(I1)

= {p1}
worksFor

Sα′2·α
′
1
(I1)

= {(e1, p2), (e7, p2)}

Clearly, Sα′2·α′1(I1) |= K1.
Unfortunately, these problems are undecidable in general,

which can be shown by a reduction from the Halting prob-
lem for Turing machines.
Theorem 8. The problems (P1) and (P2) are undecidable,
already for DL-Lite+R KBs and simple actions.

Intuitively, problem (P1) is undecidable because we can-
not know how many fresh objects need to be added to the do-
main of I, but it becomes decidable if the size of ∆ in Defi-
nition 8 is bounded. It is not difficult to see that problem (P2)
remains undecidable even if the domain is assumed fixed
(as the problem definition quantifies existentially over inter-
pretations, one can choose interpretations with sufficiently
large domains). However, also (P2) becomes decidable if
we place a bound on the length of plans. More precisely, the
following problems are decidable.

(P1b) Given a set Act of actions, a finite interpretation I, a
goal KB K, and a positive integer k, does there exist
a plan for K from I where |∆| ≤ k?

(P2b) Given a set of actionsAct, a pairKpre ,K of formulae,
and a positive integer k, does there exist a substitution
σ and a plan of length ≤ k for σ(K) from some finite
interpretation I with I |= σ(Kpre)?

We now study the complexity of these problems, assum-
ing that the input bounds k are coded in unary. The prob-
lem (P1b) can be solved in polynomial space, and thus is
not harder than deciding the existence of a plan in stan-
dard automated planning formalisms such as propositional
STRIPS (Bylander 1994). In fact, the following lower bound
can be proved by a reduction from the latter formalism, or
by an adaptation of the Turing Machine reduction used to
prove undecidability in Theorem 8.
Theorem 9. The problem (P1b) is PSPACE-complete for
ALCHOIQbr KBs.

Now we establish the complexity of (P2b), both
in the general setting (i.e., when Kpre and K are in
ALCHOIQbr), and for the restricted case of DL-Lite+R
KBs and simple actions. For (SV), considering the lat-
ter setting allowed us to reduce the complexity from
coNEXPTIME to coNP. Here we obtain an analogous
result and go from NEXPTIME-completeness to NP-
completeness.
Theorem 10. The problem (P2b) is NEXPTIME-complete.
It is NP-complete if Kpre ,K are expressed in DL-Lite+R and
all actions in Act are simple.

Now we consider three problems that are related to ensur-
ing plans that always achieve a given goal, no matter what
the initial data is. They are variants of the so-called con-
formant planning, which deals with planning under various
forms of incomplete information. In our case, we assume
that we have an incomplete description of the initial state,
since we only know it satisfies a given precondition, but have
no concrete interpretation.

The first of such problems is to ‘certify’ that a candidate
plan is indeed a plan for the goal, for every possible database
satisfying the precondition.

(C) Given a sequence P = 〈α1, . . . , αn〉 of actions and for-
mulae Kpre , K, is σ(P ) a plan for σ(K) from every
finite interpretation I with I |= σ(Kpre), for every pos-
sible substitution σ?

Finally, we are interested in the existence of a plan that
always achieves the goal, for every possible state satisfying
the precondition. Solving this problem corresponds to the
automated synthesis of a program for reaching a certain con-
dition. We formulate the problem with and without a bound
on the length of the plans we are looking for.

(S) Given a set Act of actions and formulae Kpre , K, does
there exist a sequence P of actions such that σ(P ) is
a plan for σ(K) from every finite interpretation I with
I |= σ(Kpre ), for every possible substitution σ?

(Sb) Given a setAct of actions, formulaeKpre ,K, and a pos-
itive integer k, does there exist a sequence P of ac-
tions such that σ(P ) is of length at most k and is a
plan for σ(K) from every finite interpretation I with
I |= σ(Kpre), for every possible substitution σ?

971



We conclude with the complexity of these problems:
Theorem 11. The following hold:
- Problem (S) is undecidable, already for DL-Lite+R KBs

and simple actions.
- Problems (C) and (Sb) are coNEXPTIME-complete.
- If Kpre ,K are expressed in DL-Lite+R and all actions in
Act are simple, then (C) is coNP-complete and (Sb) is
NPNP-complete.

7 Related Work
Using DLs to understand the properties of systems while
fully taking into account both structural and dynamic aspects
is very challenging (Wolter and Zakharyaschev 1999). Rea-
soning in DLs extended with a temporal dimension becomes
quickly undecidable (Artale 2006), unless severe restrictions
on the expressive power of the DL are imposed (Artale et al.
2011). An alternative approach to achieve decidability is to
take a so-called “functional view of KBs” (Levesque 1984),
according to which each state of the KB can be queried
via logical implication, and the KB is progressed from one
state to the next through forms of update (Calvanese et al.
2011). This makes it possible (under suitable conditions)
to statically verify (temporal) integrity constraints over the
evolution of a system (Baader, Ghilardi, and Lutz 2012;
Bagheri Hariri et al. 2013).

Updating databases, and logic theories in general, is a
classic topic in knowledge representation, discussed exten-
sively in the literature, cf. (Fagin et al. 1986; Katsuno and
Mendelzon 1991). The updates described by our action
language are similar in spirit to the knowledge base up-
dates studied in other works, and in particular, the ABox
updates considered by Liu et al. (2011), and Kharlamov,
Zheleznyakov, and Calvanese (2013). As our updates are
done directly on interpretations rather than on (the instance
level of) knowledge bases, we do not encounter the express-
ibility and succinctness problems faced there.

Concerning the reasoning problems we tackle, verifying
consistency of transactions is a crucial problem that has
been studied extensively in Databases. It has been con-
sidered for different kinds of transactions and constraints,
over traditional relational databases (Sheard and Stemple
1989), object-oriented databases (Spelt and Balsters 1998;
Bonner and Kifer 1994), and deductive databases (Kowal-
ski, Sadri, and Soper 1987), to name a few. Most of these
works adopt expressive formalisms like (extensions of) first
or higher order predicate logic (Bonner and Kifer 1994), or
undecidable tailored languages (Sheard and Stemple 1989)
to express the constraints and the operations on the data.
Verification systems are often implemented using theorem
provers, and complete algorithms cannot be devised.

As mentioned, the problems studied in Section 6 are
closely related to automated planning, a topic extensively
studied in AI. DLs have been employed to reason about ac-
tions, goals, and plans, as well as about the application do-
mains in which planning is deployed, see (Gil 2005) and
its references. Most relevant to us is the significant body
of work on DL-based action languages (Baader et al. 2005;
Milicic 2008; Baader, Lippmann, and Liu 2010; Liu et al.

2011; Baader and Zarrie 2013). In these formalisms, DL
constructs are used to give conditions on the effects of ac-
tion execution, which are often non-deterministic. A central
problem considered is the projection problem, which con-
sists in deciding whether every possible execution of an ac-
tion sequence on a possibly incomplete state will lead to a
state that satisfies a given property. Clearly, our certifica-
tion problem (C), which involves an incomplete initial state,
is a variation of the projection problem. However, we do
not face the challenge of having to consider different possi-
ble executions of non-deterministic actions. Many of our
other reasoning problems are similar to problems consid-
ered in these works, in different forms and contexts. A
crucial difference is that our well-behaved action language
allows us to obtain decidability even when we employ full-
fledged TBoxes for specifying goals, preconditions, and do-
main constraints. To the best of our knowledge, previous
results rely on TBox acyclicity to ensure decidability.

8 Conclusions
We have considered graph structured data that evolve as a
result of updates expressed in a powerful yet well-behaved
action language. We have studied several reasoning prob-
lems that support the static analysis of actions and their ef-
fects on the state of the data. We have shown the decidability
of most problems, and in the cases where the general prob-
lem is undecidable, we have identified decidable restrictions
and have characterized the computational complexity for a
very expressive DL and a variant of DL-Lite. We believe
this work provides powerful tools for analyzing the effects
of executing complex actions on databases, possibly in the
presence of integrity constraints expressed in rich DLs. Our
upper bounds rely on a novel KB transformation technique,
which enables to reduce most of the reasoning tasks to fi-
nite (un)satisfiability in a DL. This calls for developing finite
model reasoners for DLs (we note that ALCHOIQbr does
not have the finite model property). It also remains to better
understand the complexity of finite model reasoning in dif-
ferent variations of DL-Lite. E.g., extensions of DL-Lite+R
with role functionality would be very useful in the context of
graph structured data. Generalizing the positive decidability
results to logics with powerful identification constraints, like
the ones considered in (Calvanese et al. 2014), would also be
of practical importance. Given that the considered problems
are intractable even for weak fragments of the core DL-Lite
and very restricted forms of actions, it remains to explore
how feasible these tasks are in practice, and whether there
are meaningful restrictions that make them tractable.

Acknowledgments
This research has been partially supported by FWF
projects T515-N23 and P25518-N23, by WWTF
project ICT12-015, by EU IP Project Optique FP7-318338,
and by the Wolfgang Pauli Institute.

References
Ahmetaj, S.; Calvanese, D.; Ortiz, M.; and Šimkus, M.
2014. Managing change in Graph-structured Data using De-

972



scription Logics (long version with appendix). CoRR Tech-
nical Report arXiv:1404.4274, arXiv.org e-Print archive.
Available at http://arxiv.org/abs/1404.4274.
Artale, A.; Calvanese, D.; Kontchakov, R.; Ryzhikov, V.;
and Zakharyaschev, M. 2007. Reasoning over extended ER
models. In Proc. of ER, volume 4801 of LNCS, 277–292.
Springer.
Artale, A.; Kontchakov, R.; Ryzhikov, V.; and Za-
kharyaschev, M. 2011. Tailoring temporal description logics
for reasoning over temporal conceptual models. In Proc. of
FroCoS, 1–11. Springer.
Artale, A. 2006. Reasoning on temporal class diagrams:
Undecidability results. AMAI 46(3):265–288.
Baader, F., and Zarrie, B. 2013. Verification of Golog pro-
grams over description logic actions. In Proc. of FroCoS,
volume 8152 of LNCS. Springer. 181–196.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.
Baader, F.; Lutz, C.; Milicic, M.; Sattler, U.; and Wolter, F.
2005. Integrating description logics and action formalisms:
First results. In Proc. of AAAI, 572–577.
Baader, F.; Ghilardi, S.; and Lutz, C. 2012. LTL over de-
scription logic axioms. ACM TOCL 13(3):21:1–21:32.
Baader, F.; Lippmann, M.; and Liu, H. 2010. Using causal
relationships to deal with the ramification problem in action
formalisms based on description logics. In Proc. of LPAR 17,
volume 6397 of LNCS. Springer. 82–96.
Bagheri Hariri, B.; Calvanese, D.; Montali, M.; De Gia-
como, G.; De Masellis, R.; and Felli, P. 2013. Description
logic Knowledge and Action Bases. JAIR 46:651–686.
Berardi, D.; Calvanese, D.; and De Giacomo, G. 2005. Rea-
soning on UML class diagrams. AIJ 168(1–2):70–118.
Bonner, A. J., and Kifer, M. 1994. An overview of Transac-
tion Logic. TCS 133(2):205–265.
Borgida, A. 1996. On the relative expressiveness of descrip-
tion logics and predicate logics. AIJ 82(1–2):353–367.
Brickley, D., and Guha, R. V. 2004. RDF vocabulary de-
scription language 1.0: RDF Schema. W3C Recommenda-
tion, W3C. Available at http://www.w3.org/TR/rdf-schema/.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. AIJ 69:165–204.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. JAR
39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Rosati,
R. 2011. Actions and programs over description logic
knowledge bases: A functional approach. In Knowing, Rea-
soning, and Acting: Essays in Honour of Hector Levesque.
College Publications.
Calvanese, D.; Fischl, W.; Pichler, R.; Sallinger, E.; and
Šimkus, M. 2014. Capturing relational schemas and func-
tional dependencies in rdfs. In Proc. of AAAI 2014.

Calvanese, D.; Ortiz, M.; and Šimkus, M. 2013. Evolving
graph databases under description logic constraints. In Proc.
of DL, volume 1014 of CEUR Workshop Proceedings, 120–
131.
Consens, M. P., and Mendelzon, A. O. 1990. GraphLog: a
visual formalism for real life recursion. In Proc. of PODS,
404–416.
Fagin, R.; Kuper, G. M.; Ullman, J. D.; and Vardi, M. Y.
1986. Updating logical databases. In Advances in Comput-
ing Research, 1–18. JAI Press.
Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.
Katsuno, H., and Mendelzon, A. O. 1991. On the difference
between updating a knowledge base and revising it. In Proc.
of KR, 387–394.
Kharlamov, E.; Zheleznyakov, D.; and Calvanese, D. 2013.
Capturing model-based ontology evolution at the instance
level: The case of DL-Lite. JCSS 79(6):835–872.
Kowalski, R. A.; Sadri, F.; and Soper, P. 1987. Integrity
checking in deductive databases. In Proc. of VLDB, 61–69.
Lenzerini, M. 2011. Ontology-based data management. In
Proc. of CIKM, 5–6.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming language
for dynamic domains. JLP 31:59–84.
Levesque, H. J. 1984. Foundations of a functional approach
to knowledge representation. AIJ 23:155–212.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F. 2011. Foun-
dations of instance level updates in expressive description
logics. AIJ 175(18):2170–2197.
Milicic, M. 2008. Action, Time and Space in Description
Logics. Ph.D. Dissertation, TU Dresden.
Pratt-Hartmann, I. 2005. Complexity of the two-variable
fragment with counting quantifiers. JLLI 14(3):369–395.
Sakr, S., and Pardede, E., eds. 2011. Graph Data Manage-
ment: Techniques and Applications. IGI Global.
Sheard, T., and Stemple, D. 1989. Automatic verification of
database transaction safety. ACM TODS 14(3):322–368.
Spelt, D., and Balsters, H. 1998. Automatic verification
of transactions on an object-oriented database. In Proc. of
DBPL, volume 1369 of LNCS, 396–412. Springer.
Tobies, S. 2000. The complexity of reasoning with car-
dinality restrictions and nominals in expressive description
logics. JAIR 12:199–217.
Wolter, F., and Zakharyaschev, M. 1999. Temporalizing
description logic. In Gabbay, D., and de Rijke, M., eds.,
Frontiers of Combining Systems. Studies Press/Wiley. 379–
402.

973




