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Abstract
Temporal Regular Path Queries (TRPQs) are a recent extension of regular path queries over a graph where facts
are annotated with time intervals. They enable navigation both in time and over the structure of the graph.
TRPQs return pairs of entities, each associated with a binary temporal relation, which relates the two entities
through time. This allows modelling phenomena phenomena such as virus propagation or mapping possible trip
departures to arrival times when there is uncertainty about traffic.

A key challenge of TRPQs is representing binary temporal relations in a compact way, and ensuring that
these compact representations can be computed efficiently. While these problems have been recently investigated
from the theoretical side, little attention has been paid to corresponding implementation techniques. In this
work, we address this gap by introducing the first SQL-based implementation of TRPQ answering that produces
compact answers. We investigate two alternative formats for compact answers. For each format, we first lay
the foundations for an efficient implementation by translating TRPQ operations into operations over compact
answers, thus preserving compactness during the evaluation process. In addition, we apply state-of-the-art
interval coalescing techniques to reduce the cost of temporal joins and ensure that our results have minimal
cardinality.

We also present a dedicated benchmark and parameterized experiments that illustrate the trade-offs between
the two compact representations, depending on the length of intervals in the input data and query. Our empirical
findings also reveal the critical role of coalescing for efficient query answering.
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1. Introduction

With the growing popularity of graph database (DB) engines, several proposals have been made recently
to extend graphs with temporal properties, in order to store and access information about the evolution
of data over time [1, 2, 3, 4, 5, 6]. We focus here on Temporal Graphs (TGs), where each fact is labeled
with a set of time intervals that specify its validity. Equivalently, a TG can be viewed as a sequence
of “snapshot” graphs, one for each time point, which consists of all facts that hold at that time point.
Figure 1 represents a TG with time unit one hour. For conciseness, we represent it as a so-called Property
Graph, one of the most popular graph data models [7]. In such a graph, both vertices (like n1) and edges
(like e1) can carry attributes. However, without loss of expressivity, the same data could be represented
as a (less concise) edge-labelled graph (e.g. an RDF graph) with time intervals associated to each edge.

In order to query such a graph, a sensible approach consists in extending a graph query language
with temporal operators. Graph query languages, such as Cypher [7] or SPARQL [8], are based on
navigational queries, whose basic form are so-called Regular Path Queries (RPQs). An RPQ 𝑞 is a regular
expression, and a pair ⟨𝑜1, 𝑜2⟩ of objects in a graph is in the answer to 𝑞 if there exists a path from 𝑜1 to
𝑜2 whose concatenated labels match this regular expression.

A natural extension of such queries consists in allowing navigation not only through the graph, but
also through time. To this end, we consider Temporal RPQs (TRPQs), originally proposed by [1], which
extend RPQs with a temporal navigation operator, allowing navigation from one object in a snapshot
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n1

name = Alice [0, 600]
temp = 38 [290, 310]
pos = true [300, 300]

e1

meets [200, 204]

n2

name = Bob [0, 600]
temp = 39 [110, 120]
temp = 38 [230, 270]

n4

name = David [0, 600]
temp = 38 [320, 330]

e3

meets [100, 101]

n3

name = Carol [0, 600]

e2

meets [320, 330]

Figure 1: A Temporal Property Graph (TPG) with a time unit of one day, where 𝑛1, . . . , 𝑛4 represent nodes, and
𝑒1, . . . , 𝑒3 represent edges.

graph to the same object in a past or future snapshot graph. Hence, the answer to a TRPQ is a set of
pairs ⟨⟨𝑜1, 𝑡1⟩, ⟨𝑜2, 𝑡2⟩⟩, where 𝑜1 and 𝑜2 are associated with a time point each, respectively 𝑡1 and 𝑡2.

As an illustration, consider the TRPQ 𝑞1 below that retrieves all pairs
⟨︀
⟨𝑜1, 𝑡1⟩, ⟨𝑜2, 𝑡2⟩

⟩︀
such that

person 𝑜1 tested positive at time 𝑡1, 𝑜1 met 𝑜2 within a week prior to 𝑡1, and 𝑜2 had high temperature
at time 𝑡2, less than two days after the meeting:

𝑞1 := (pos = true)/T[−168,0]/F/meets/F/T[0,48]/(temp ≥ 38 )

The expressions pos = true , meets and temp ≥ 38 “locally” check whether a node or edge satisfies
a certain property. The operator F stands for (atemporal) forward navigation, either from a node to
an edge or conversely. The symbol “/” represents a join that connects navigation steps. The operator
T[−168,0] stands for temporal navigation in the past by at most a week (168 hours), and T[0,48] for
temporal navigation in the future by at most two days. There are 23 answers to 𝑞1 over the TPG of
Figure 1, precisely one tuple

⟨︀
⟨𝑛1, 300⟩, ⟨𝑛2, 𝑡2⟩

⟩︀
for each integer 𝑡2 in the interval [230, 252].

Surprisingly, this simple idea is an important departure from the way query answers are traditionally
represented in temporal databases, where each tuple is instead associated with a single time point
or interval for validity.1 In particular, a central problem for traditional temporal query answering is
producing answers in a compact form, using time intervals. A natural solution to this problem consists
in computing answers in so-called coalesced form, using time intervals. This approach has long been
adopted by temporal DB engines (e.g., [11, 12]) and also adapted for graph query languages such as a
T-GQL [2]. In those approaches, the time points assigned to each tuple are coalesced into intervals, so
that temporal joins only require computing intersections of intervals. However, the analogous problem
for the case where each answer is associated with a pair of time points (for validity) is significantly
more involved. And to our knowledge, it has only been investigated very recently, in our previous
work [13].

Another interesting feature of TRPQs is the transitive closure operator (written [𝑘, ]), inherited from
RPQs. When applied to a temporal domain, this operator offers a natural way to express reachability
under certain temporal constraints. For instance, let us assume that our virus may be carried at most
one week by the same person. Then the query

𝑞2 := (T[0,168]/F/meets/F)[1, ]

returns all pairs
⟨︀
⟨𝑜1, 𝑡1⟩, ⟨𝑜2, 𝑡2⟩

⟩︀
such that if 𝑜1 was carrying the virus at time 𝑡1, then it may have

transitively transmitted it to person 𝑜2 at time 𝑡2. So the query

𝑞3 := (pos = true)/T[−168,0]/F/meets/F/𝑞2
1Bitemporal databases [9, 10] do associate two timepoints (or intervals) to each tuple, but only one of these stands for validity,
while the other one represents the (orthogonal) notion of transaction time.



identifies people at risk (namely Alice, Bob, and Carol).
As we showed above, the 23 answers to the TRPQ 𝑞1 can be coalesced with a single time interval for

𝑡2. And similarly, for 𝑞3, the 16 answers can be coalesced with only two time intervals. It is easy to see
that computing all answers before summarizing them may be inefficient. For instance, a naive evaluation
of query 𝑞1 over the TPG of Figure 1 may join the 169 answers to the subquery (pos = true)/T[0,−168]

with the 20 answers to the subquery F/meets. Worse, a change of time granularity may have a dramatic
impact on performance. E.g., the TPG of Figure 1 does not allow representing meetings shorter than an
hour. But adopting minutes as a time unit instead of hours would multiply by 60 the cardinality of the
operands of each join. So it is essential to not only represent answers in a compact way, but also to
maintain compactness during query evaluation.

Contributions. In our recent work [13], we defined and studied four alternative compact repre-
sentations of answers to a TRPQ, which can be viewed as alternative formats for (relational) tuples.
We focused on the worst-case compactness of query answers and primarily addressed computational
cost and the uniqueness of query answering. However, practical implementations of any of those
representations were left open.

In this paper, we focus on the first two of these four representations. Our contributions are the
following:

• We provide a detailed analysis of TRPQ operations over tuples in each of these two formats,
which serves as a basis for our SQL implementation.

• Based on this analysis, we present the first implementation of these two compact representations
for a set of test queries developed using the PostgreSQL database system. For interval coalescing,
we apply state-of-the-art techniques.

• We describe a set of parameterized experiments that are meant to illustrate the trade-off between
our two representations, depending on whether intervals are longer in the input graph or in the
input query. These experiments also highlight the importance of temporal coalescing for efficient
query answering.

Our SQL implementations and guidelines to reproduce our experiments are available in the repository:
https://github.com/osavkovic/CompactTRPQ.

Organization. The remainder of this paper is organized as follows. In Section 1.1, we provide an
informal overview of the two representations that we study, via a running example. Then Section 2
formalizes TGs and TRPQs. In Section 4.2, we discuss our implementation technique, and in Section 5,
we present our experimental evaluation. In Section 6, we review related work, and in Section 7, we
present our conclusions and discuss directions for future work.

1.1. Running Example

This section illustrates the two compact representations of answers to TRPQs investigated in this article.
A key insight to understand these representations is the trade-off between folding either (pairs of) time
points, or distances between time points. Let us consider the query

𝑞4 = (name = Alice)/F/meets/T[2,3]/F

The answers to this query over the graph of Figure 1 (assuming discrete time) are listed in Figure 2,
upper left.

The first compact representation is obtained by folding start time points into intervals, while grouping
answers by objects and distance between start and end point. We use 𝒰 𝑡 to denote this format, which
yields in our example the tuples in Figure 2, upper right. As we will see, this solution is better-suited
to inputs where time intervals in the graph are larger than the ones present in the query (such as the

https://github.com/osavkovic/CompactTRPQ


Start point End point

Object Time Object Time

𝑛1 200 𝑛2 202
𝑛1 201 𝑛2 203
𝑛1 202 𝑛2 204
𝑛1 200 𝑛2 203
𝑛1 201 𝑛2 204

Repr.
Start point End point

Object Time Distance Object

𝒰 𝑡 𝑛1 [200, 202] 2 𝑛2

𝑛1 [200, 201] 3 𝑛2

Repr.
Start point End point

Object Time Object Dist.

𝒰𝑑
𝑛1 200 𝑛2 [2, 3]
𝑛1 201 𝑛2 [2, 3]
𝑛1 202 𝑛2 [2, 2]

Repr.
Start point End point

Object Time Dist. Object

𝒰 𝑡𝑑 𝑛1 [200, 201] [2, 3] 𝑛2

𝑛1 [202, 202] [2, 2] 𝑛2

Figure 2: Answers to Query 𝑞4 in non-compact form (upper left) and in the three compact representations.

interval [2, 3] in Query 𝑞4). For instance, even if one extends the duration of the meeting between Alice
and Bob to 10 hours, from time 200 to 210, there are still only two compact answers under 𝒰 𝑡, one for
each distance in the interval [2, 3], namely ⟨𝑛1, [200, 208], 2, 𝑛2⟩ and ⟨𝑛1, [200, 207], 3, 𝑛2⟩. In contrast,
the number of tuples may grow linearly in the length of the distance interval in the query.

A second, symmetric solution consists in folding distances, while grouping tuples by objects and
starting time (or alternatively, end time). We call this format 𝒰𝑑, which yields in our example the tuples
of Figure 2, bottom left. In contrast to 𝒰 𝑡, this format is better-suited to the case where time intervals
in the query are larger than those in the input graph. In our example, increasing the distance interval
in Query 𝑞4 to [0, 3] would not affect the number of tuples. However, this number grows linearly in the
duration of the meeting between Alice and Bob.

A natural question is whether one can combine these two solutions, i.e., fold both time points and
distances. We call this format 𝒰 𝑡𝑑. In our example, this yields the tuples of Figure 2, bottom right.
However, in [13], we show that the number of tuples in this format is still linear in the length of the
input intervals. Besides, uniqueness of representation is lost, in the sense that there may exist several
(cardinality) minimal sets of tuples under this view that represent the set of answers to a query. More
importantly, for practical purposes, computing one of these minimal sets of tuples becomes intractable.
In contrast, as we will see producing a minimal set of answers in 𝒰 𝑡 or 𝒰𝑑 (out of a non minimal one)
remains in in 𝑂(𝑛 log 𝑛). In [13] we also define a fourth, more complex representation, where the
number of answer tuples is independent of the size of the input (graph and query) intervals. However,
minimization in this format remains intractable. This is why in this paper we focus only on 𝒰 𝑡 and 𝒰𝑑

only.

2. Preliminaries

Temporal Graphs. We adopt the same data model as in [1], with only a slight modification in order to
generalize the approach beyond Property Graphs (PGs). Precisely, we abstract away from the specific
representation of classes, labels, and attributes in PGs. Instead, we use a generic set Pred of boolean
predicates whose validity for a given node (or edge) and time point can be checked locally, meaning
that this verification is independent of the topology of the graph. For instance, over the graph of Figure
1, such predicates may be {name = Alice}, {temp = 38}, or meets (i.e., whether an edge has label
meets).

To simplify definitions, we are going to use a more convenient format ⟨𝑜1, 𝑜2, 𝑡1, 𝑑1⟩ that describes
time per distance instead of ⟨⟨𝑜1, 𝑡1⟩, ⟨𝑜2, 𝑡2⟩⟩, which represents time per time. Here, 𝑡2 = 𝑡1 + 𝑑1.

Further, as in [1], we assume discrete time. For simplicity, we chose Z as our underlying temporal



JpredK𝐺 = {⟨𝑜, 𝑜, 𝑡, 0⟩ | 𝑡 ∈ 𝜏 for some 𝜏 ∈ val𝐺(𝑜, pred)}
JT𝛿K𝐺 = {⟨𝑜, 𝑜, 𝑡, 𝑑⟩ | 𝑜 ∈ (𝑁 ∪ 𝐸), 𝑡 ∈ 𝒯𝐺, 𝑑 ∈ 𝛿}
JFK𝐺 = {⟨𝑣, 𝑒, 𝑡, 0⟩ | src(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺} ∪ {⟨𝑒, 𝑣, 𝑡, 0⟩ | tgt(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺}
JBK𝐺 = {⟨𝑣, 𝑒, 𝑡, 0⟩ | tgt(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺} ∪ {⟨𝑒, 𝑣, 𝑡, 0⟩ | src(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺}

Jpath1/path2K𝐺 = {⟨𝑜1, 𝑜3, 𝑡, 𝑑1 + 𝑑2⟩ |
⟨𝑜1, 𝑜2, 𝑡, 𝑑1⟩ ∈ Jpath1K𝐺 and ⟨𝑜2, 𝑜3, 𝑡+ 𝑑1, 𝑑2⟩ ∈ Jpath2K𝐺 for some 𝑜2}

Jpath1 + path2K𝐺 = Jpath1K𝐺 ∪ Jpath2K𝐺
Jpath[𝑘, _]K𝐺 =

⋃︀
𝑖≥𝑘

Jpath𝑖K𝐺

Figure 3: Semantics of TRPQs

domain, and we use intv(Z) (resp. intv(𝒯 )) for the set of all nonempty intervals over Z (resp. over some
𝒯 ∈ intv(Z)). A Temporal Graph (TG) is a tuple 𝐺 = ⟨𝑁,𝐸, conn, 𝒯𝐺, val𝐺⟩, where:

• 𝑁 and 𝐸 are finite sets of nodes and edges respectively, with 𝑁 ∩ 𝐸 = ∅,
• conn : 𝐸 → 𝑁 ×𝑁 maps an edge to its source and target,
• 𝒯𝐺 is a closed-closed interval over Z, called the active temporal domain, and
• val𝐺 : (𝑁 ∪ 𝐸) × Pred → 2intv(𝒯𝐺) assigns a finite set of disjoint and pairwise non-adjacent

intervals to each object 𝑜 and predicate 𝑝, indicating when 𝑝 holds for 𝑜.

If conn(𝑒) = (𝑛1, 𝑛2), we use src(𝑒) for 𝑛1 and tgt(𝑒) for 𝑛2.
Temporal Regular Path Queries. We focus on a fragment of the query language introduced in [1],
with minor modifications that allow us abstract away from Cypher and Property Graphs, so that our
approach may be applied to other graph data model (with time intervals) and other (RPQ-based) graph
query languages (such as RDF).

A Temporal Regular Path Query (TRPQ) is an expression for the symbol “path” in the following
grammar:

path ::= pred | F | B | T𝛿 | (path/path) | (path+ path) | path[𝑘, _]

with 𝛿 ∈ intv(Z) and 𝑘 ∈ N.
The operator F (resp. B) stands for forward (resp., backward) atemporal navigation within a graph,

either from a node to an edge or from an edge to a node, whereas the temporal navigation operator T𝛿

allows navigation in time by any distance in the interval 𝛿. The terminal symbol pred stands for any
element of Pred , i.e., a Boolean predicate that can be evaluated locally for one object and time point, as
explained above. The other operators are standard RPQ (a.k.a. regular expression) operators. The formal
semantics of TRPQs is provided in Figure 3, where J𝑞K𝐺 is the evaluation of a TRPQ 𝑞 over a TG 𝐺. In
this definition, we use 𝑞𝑖 for the TRPQ defined inductively by 𝑞1 = 𝑞 and 𝑞𝑗+1 = 𝑞𝑗/𝑞. For convenience,
we represent (w.l.o.g.) an answer as two objects, one time point and a distance, rather than two objects
and two time points, i.e. we use tuples of the form ⟨𝑜1, 𝑜2, 𝑡, 𝑑⟩ rather than

⟨︀
⟨𝑜1, 𝑡⟩, ⟨𝑜2, 𝑡+ 𝑑⟩

⟩︀
.

Operations on intervals. For two intervals 𝛼, 𝛽 ∈ intv(Z), we use 𝛼 ⊕ 𝛽 to denote the interval
{𝑎+ 𝑏 | 𝑎 ∈ 𝛼, 𝑏 ∈ 𝛽}. We also use 𝛼+ 𝑏 (resp. 𝛼− 𝑏) for 𝛼⊕ [𝑏, 𝑏] (resp. 𝛼⊕ [−𝑏,−𝑏]).

3. Formal Characterization

In this section, we present a formal characterization of how to compute compact answers in the 𝒰 𝑡 and
𝒰𝑑 formats. We begin by describing these two representation formats in Section 3.1. Next, in Section 3.2,
we show how the operations of our query language can be translated into corresponding operations
over sets of tuples in each format. This will allow us (in Section 4.2) to implement queries that operate
on 𝒰 𝑡 (resp. 𝒰𝑑), rather than 𝒰 .



𝜏 𝜏 + 𝑑

(a) A tuple ⟨𝑜1, 𝑜2, 𝜏, 𝑑⟩ ∈ 𝒰 𝑡 associates each source time point
𝑡 ∈ 𝜏 to exactly one target time point 𝑡+ 𝑑.

𝑡 𝑡+ 𝛿

(b) A tuple ⟨𝑜1, 𝑜2, 𝑡, 𝛿⟩ ∈ 𝒰𝑑 associates the
source time point 𝑡 to every target time point
in the interval 𝑡+ 𝛿.

Figure 4: Graphical representation of the dependencies between time points in our two representations.

3.1. Representations

We use 𝒰 denote the universe of all tuples that may be output by TRPQs, i.e.

𝒰 = (𝑁 ∪ 𝐸)× (𝑁 ∪ 𝐸)× Z× Z

Our two representations 𝒰 𝑡 and 𝒰𝑑 can be viewed as alternative formats to encode subsets of 𝒰 . A
tuple u in 𝒰 𝑡 (resp. 𝒰𝑑) represents a subset of 𝒰 , which we call the unfolding of u. And the unfolding
of a set 𝑈 ⊆ 𝒰 𝑡 (resp. 𝒰𝑑) of such tuples is the union of the unfoldings of the elements of 𝑈 .
Folding time points (𝒰 𝑡). Tuples under this view are identical to elements of 𝒰 , but where the time
points associated to source objects are represented as intervals. Accordingly, the universe of tuples is

𝒰 𝑡 = (𝑁 ∪ 𝐸)× (𝑁 ∪ 𝐸)× intv(Z)× Z

and the tuple ⟨𝑜1, 𝑜2, 𝜏, 𝑑⟩ ∈ 𝒰 𝑡 unfolds to {⟨𝑜1, 𝑜2, 𝑡, 𝑑⟩ | 𝑡 ∈ 𝜏}. Intuitively, this representation
associates each source time point 𝑡 ∈ 𝜏 with a unique target time point 𝑡 + 𝑑, as illustrated with
Figure 4a.
Folding distances (𝒰𝑑). This representation is symmetric to the previous one, using now intervals for
distances (rather than time points), i.e.

𝒰𝑑 = (𝑁 ∪ 𝐸)× (𝑁 ∪ 𝐸)× Z× intv(Z)

and the tuple ⟨𝑜1, 𝑜2, 𝑡, 𝛿⟩ ∈ 𝒰𝑑 unfolds to {⟨𝑜1, 𝑜2, 𝑡, 𝑑⟩ | 𝑑 ∈ 𝛿}.
A source time point 𝑡 is now associated with multiple target time points, namely each 𝑡+ 𝑑 such that

𝑑 ∈ 𝛿, as illustrated with Figure 4b.

3.2. Operations in 𝒰 𝑡 and 𝒰𝑑

We show how to translate TRPQ operations (which are defined over 𝒰 ) into operations over 𝒰 𝑡 (resp. 𝒰𝑑),
while preserving their semantics. These two translations (together with proofs of correctness) are
already available online [14]. We reproduce them here to show how they lay the foundation for an
implementation. Besides, for some operators, we show how departing from a literal implementation of
these formal definitions may yield more efficient queries.
In 𝒰 𝑡. For a TRPQ 𝑞 and TG 𝐺, we define by induction on 𝑞 a subset L𝑞M𝑡𝐺 of 𝒰 𝑡 that unfolds to J𝑞K𝐺.
The most interesting operator in this translation is the temporal join 𝑞1/𝑞2, illustrated with Figure 5,
and defined as follows:

Lpath1/path2M
𝑡
𝐺 =

{︁
⟨𝑜1, 𝑜3, ((𝜏1 + 𝑑1) ∩ 𝜏2)− 𝑑1, 𝑑1 + 𝑑2⟩ | ⟨𝑜1, 𝑜2, 𝜏1, 𝑑1⟩ ∈ Lpath1M

𝑡
𝐺

and ⟨𝑜2, 𝑜3, 𝜏2, 𝑑2⟩ ∈ Lpath2M
𝑡
𝐺 and (𝜏1 + 𝑑1) ∩ 𝜏2 ̸= ∅ for some 𝑜2

}︁
(1)

Example 1. As a simple illustration, consider the output tuple ⟨𝑛1, 𝑛2, [200, 203], 2⟩ from our running
example, and assume that we want to compute the join with ⟨𝑛2, 𝑛3, [203, 206], 2⟩. First, we need to



𝜏1 𝜏1 + 𝑑1

𝑑1
𝜏2 𝜏2 + 𝑑2

𝑑2

(𝜏1 + 𝑑1) ∩ 𝜏2((𝜏1 + 𝑑1) ∩ 𝜏2)− 𝑑1 ((𝜏1 + 𝑑1) ∩ 𝜏2) + 𝑑2

𝑑1 + 𝑑2

Figure 5: Join of two tuples in 𝒰 𝑡, whose induced intervals are depicted in blue and red respectively. The pair of
intervals induced by the output tuple is depicted in violet.

𝑡1 𝑡1 + 𝛿1

𝑡2 𝑡2 + 𝛿2

𝑡1 𝑡1 + (𝑡2 − 𝑡1) + 𝛿2 = 𝑡2 + 𝛿2

Figure 6: Join of two tuples in 𝒰𝑑, depicted in blue and red respectively. The output tuple is depicted in violet.

determine which time points for the object 𝑛2 are common to both tuples. These are exactly 203, 204,
and 205. More generally, such points are obtained via the intersection (𝜏1 + 𝑑1) ∩ 𝜏2 (the olive-colored
interval in Fig. 5). Next, we need to project this restriction back onto 𝜏1 to determine the joinable source
interval. This results in [201, 203], which is computed as ((𝜏1 + 𝑑1) ∩ 𝜏2)− 𝑑1. Similarly, we apply a
corresponding restriction to 𝜏2. Finally, the new distance is 5, computed as 𝑑1 + 𝑑2, and the resulting
joined tuple is ⟨𝑛1, 𝑛3, [201, 203], 5⟩.

We complete the definition of L𝑞M𝑡𝐺 with the other (more straightforward) operators of the language:

LpredM𝑡𝐺 = {⟨𝑜, 𝑜, 𝜏, 0⟩ | 𝑛 ∈ 𝑁 ∪ 𝐸 and 𝜏 ∈ val𝐺(𝑜, pred)}

LFM𝑡𝐺 = {⟨𝑣, 𝑒, 𝒯𝐺, 0⟩ | src(𝑒) = 𝑣} ∪ {⟨𝑒, 𝑣, 𝒯𝐺, 0⟩ | tgt(𝑒) = 𝑣}

LBM𝑡𝐺 = {⟨𝑣, 𝑒, 𝒯𝐺, 0⟩ | tgt(𝑒) = 𝑣} ∪ {⟨𝑒, 𝑣, 𝒯𝐺, 0⟩ | src(𝑒) = 𝑣}

LT𝛿M𝑡𝐺 = {⟨𝑜, 𝑜, 𝒯𝐺 − 𝑑 ∩ 𝒯𝐺, 𝑑⟩ | 𝑜 ∈ 𝑁 ∪ 𝐸 and 𝑑 ∈ 𝛿}

Ltrpq1 + trpq2M𝑡𝐺 = Ltrpq1M𝑡𝐺 ∪ Ltrpq2M𝑡𝐺
Ltrpq[𝑘, _]M𝑡𝐺 =

⋃︀
𝑖≥𝑘

Ltrpq𝑖M𝑡𝐺

A key observation can be made from this definition: the size of L𝑞M𝑡𝐺 does not depend on the size of
the intervals used to label data in 𝐺. However, it is linear (in the worst case) in the size of the intervals
used in 𝑞 (for temporal navigation), as can be seen in the definition of LT𝛿M𝑡𝐺. Unfortunately, this is
unavoidable, as we already observed in introduction.
In 𝒰𝑑. Similarly to what we did above for 𝒰 𝑡, we define a subset L𝑞M𝑑𝐺 of 𝒰𝑑 that unfolds to J𝑞K𝐺. We
start once again with the temporal join, illustrated with Figure 6, and defined as follows:

Lpath1/path2M
𝑑
𝐺 =

{︁
⟨𝑜1, 𝑜3, 𝑡1, 𝛿2 + 𝑡2 − 𝑡1⟩ | ⟨𝑜1, 𝑜2, 𝑡1, 𝛿1⟩ ∈ Lpath1M

𝑑
𝐺 and

⟨𝑜2, 𝑜3, 𝑡2, 𝛿2⟩ ∈ Lpath2M
𝑑
𝐺 and 𝑡2 ∈ 𝑡1 + 𝛿1 for some 𝑜2

}︁
(2)

Example 2. Consider the tuple ⟨𝑛1, 𝑛2, 200, [2, 3]⟩ from our running example, and assume that we
want to join it with ⟨𝑛2, 𝑛3, 202, [3, 4]⟩. First, we observe that 202 is in the interval 200 + [2, 3], which
makes the join possible. Then we just need to calculate the output interval of distances, which is
202− 200 + [3, 4] = [5, 6]. Hence, the resulting tuple is ⟨𝑛1, 𝑛3, 200, [5, 6]⟩.



A second interesting operator for 𝒰𝑑 is temporal navigation (T𝛿), with:

LT𝛿M𝑑𝐺 =
{︁
⟨𝑜, 𝑜, 𝑡, ((𝛿 + 𝑡) ∩ 𝒯𝐺)− 𝑡⟩ | 𝑛 ∈ 𝑁 ∪ 𝐸, 𝑡 ∈ 𝒯𝐺 and (𝛿 + 𝑡) ∩ 𝒯𝐺 ̸= ∅

}︁
As can be seen from this definition, the size of LT𝛿M𝑑𝐺 depends on the size of the active temporal domain
𝒯𝐺. And this is unavoidable if JT𝛿K𝐺 is represented in 𝒰𝑑. However, a (sub)query of the form 𝑞/T𝛿 can
be evaluated more efficiently, thanks to the following observation:

L𝑞/T𝛿M𝑑𝐺 =
{︁
⟨𝑜1, 𝑜2, 𝑡, (𝛿′ ⊕ 𝛿) ∩ 𝒯𝐺⟩ | ⟨𝑜1, 𝑜2, 𝑡, 𝛿′⟩ ∈ L𝑞M𝑑𝐺 and (𝑡+ (𝛿′ ⊕ 𝛿)) ∩ 𝒯𝐺 ̸= ∅

}︁
As can be seen from this equation, the cardinality of L𝑞/T𝛿M𝑑𝐺 is bounded by the cardinality of L𝑞M𝑑𝐺,

which makes this query evaluation strategy significantly more efficient (compared to evaluating 𝑞
and T𝛿 independently, and then joining the results). And the same (symmetric) property holds for
(sub)queries of the form T𝛿/𝑞.

An analogous observation can be made for the operators F and B. Evaluated independently, the size
of their output is linear in the size if 𝒯𝐺:

LFM𝑑𝐺 ={⟨𝑣, 𝑒, 𝑡, [0, 0]⟩ | src(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺} ∪ {⟨𝑒, 𝑣, 𝑡, [0, 0]⟩ | tgt(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺}
LBM𝑑𝐺 ={⟨𝑣, 𝑒, 𝑡, [0, 0]⟩ | tgt(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺} ∪ {⟨𝑒, 𝑣, 𝑡, [0, 0]⟩ | src(𝑒) = 𝑣 and 𝑡 ∈ 𝒯𝐺}

In contrast, the size of L𝑞/FM𝑑𝐺, L𝑞/BM𝑑𝐺, LF/𝑞M𝑑𝐺 or LB/𝑞M𝑑𝐺 only depends on L𝑞M𝑑𝐺 and the topology of
the graph (regardless of its intervals), as can been seen for instance with the following equality (the
other three cases are symmetric):

L𝑞/FM𝑑𝐺 = {⟨𝑣, 𝑒, 𝑡, 𝛿⟩ | src(𝑒) = 𝑣 and {⟨𝑣, 𝑒, 𝑡, 𝛿⟩ ∈ L𝑞M𝑑𝐺} ∪ {⟨𝑒, 𝑣, 𝑡, 𝛿⟩ | tgt(𝑒) = 𝑣 and {⟨𝑣, 𝑒, 𝑡, 𝛿⟩ ∈ L𝑞M𝑑𝐺}

For the other operators, L𝑞M𝑑𝐺 is defined as expected:

LpredM𝑑𝐺 ={⟨𝑜, 𝑜, 𝑡, [0, 0]⟩ | 𝑡 ∈ 𝜏 for some 𝜏 ∈ val𝐺(𝑜, pred)}
Ltrpq1 + trpq2M

𝑡𝑑
𝐺 =Ltrpq1M

𝑡𝑑
𝐺 ∪ Ltrpq2M

𝑡𝑑
𝐺

Jtrpq[𝑘, _]K𝐺 =
⋃︁
𝑖≥𝑘

Ltrpq𝑖M𝑡𝑑𝐺

Contrary to what we observed for 𝒰 𝑡, we note that the size of L𝑞M𝑑𝐺 does not depend on the size of
the intervals used in 𝑞. However, it is now linear (in the worst case) in the size of the intervals used to
label data in 𝐺, due to the definition of LpredM𝑑𝐺. And once again, this is unavoidable.

4. Implementation in SQL

We are now ready to present our implementation technique. First, we observe that the characterization
introduced in Section 3 may produce query answers that are not minimal in terms of cardinality. To
overcome this, we introduce coalescing, a key operation that merges overlapping or redundant tuples
in our two representations. This is discussed in Section 4.1. Finally, in Section 4.2, we demonstrate how
these characterizations, including coalescing, can be efficiently implemented in SQL.

4.1. Coalescing Answers

We say that a set of tuples 𝑈 ⊆ 𝒰 𝑡 (resp. 𝒰𝑑) is compact if it is finite and if no strictly smaller
(w.r.t. cardinality) subset of 𝒰 𝑡 (resp. 𝒰𝑑) has the same unfolding.



Unfortunately, the operations L𝑞M𝑡𝐺 and L𝑞M𝑑𝐺 defined above may produce a set 𝑈 that is not compact.
However, compactness can be regained by applying a so-called coalescing operation to𝑈 . Coalescing [15]
intuitively consists in merging intervals that can be represented as a single one. In our representations
𝒰 𝑡 and 𝒰𝑑, a tuple consists of two objects, an interval and an integer. Two such tuples can be represented
as a single one if their intervals overlap (or are contiguous) and they agree on all three other values. A
simple illustration is provided in Figure 7 for 𝒰𝑑 (where we omit the two objects, for conciseness).

Efficient interval coalescing relies on the use of window functions in SQL, which allow for detecting
and merging contiguous or overlapping intervals within partitions (based on non-temporal attributes)
of tuples. In contrast, graph query languages like Cypher do not support expressive window functions,
making them unsuitable for implementing coalescing in an efficient way. As a result, SQL remains the
preferred choice for such temporal operations, and we decided to use it as well for or experiments.

The state-of-the-art technique for temporal coalescing in SQL based on window functions, which we
adopt in this work, was originally proposed by Zhou et.al. [16]. It performs coalescing in 𝑂(𝑛 log 𝑛)
(which is optimal), and was adopted by all recent approaches in temporal databases that require
coalescing or cumulative aggregates [17, 18, 12, 19, 20]. The general approach to coalescing using this
technique is very similar for both representations 𝒰 𝑡 and 𝒰𝑑, with the only difference that we coalesce
time intervals in 𝒰 𝑡, against distance intervals in 𝒰𝑑. For the detailed implementation, we refer to [16]
and our repository, which contains our SQL queries.

𝑡1 𝑡1 + 𝛿1

𝑡2 𝑡2 + 𝛿2

𝑡3 𝑡3 + 𝛿3

𝑡4 𝑡4 + 𝛿4

(a) Before coalescing

𝑡1(= 𝑡2) 𝑡1 + (𝛿1 ∪ 𝛿2)

𝑡3 𝑡3 + 𝛿3

𝑡4 𝑡4 + 𝛿4

(b) After coalescing

Figure 7: Tuples in 𝒰𝑑 before and after coalescing. For conciseness, we omit the two objects 𝑜1 and 𝑜2 (assumed
to be identical for each tuple).

4.2. Implementing Query Answering in 𝒰 𝑡 and 𝒰𝑑

We now show how to implement query answering in our two representations 𝒰 𝑡 (folded time points)
and 𝒰𝑑 (folded distances) in SQL (specifically PostgreSQL), based on state-of-the-art techniques from
the field of temporal databases. The resulting SQL queries are long and complex, so we only provide
the full queries in our repository (https://github.com/osavkovic/CompactTRPQ). Instead, we describe
here step by step how these queries compute answers to a TRPQ.

We represent data and query outputs as sets of records, each labeled with a time interval [21]. For
the data, we store nodes and edges in a format similar to the one used by Arenas et al. [1]. Figure 8
shows the base tables that correspond to the graph of Figure 1.

In what follows, as an illustration, we show how compact answers to the following query 𝑞5 over 𝐺
can be produced in 𝒰 𝑡 and 𝒰𝑑, starting from the base tables of Figure 8:

𝑞5 = (pos = true)/T[−168,0]/F/meets

In particular, we illustrate the effect of temporal joins (a.k.a. the path1/path2 operator) and coalescing.
Folding time points (𝒰 𝑡). In this representation, time points are folded into intervals, while distances
consist of scalar values. We start from base data in tables with an interval-based representation
(cf. Figure 8). First, we transform our base data into tuples in 𝒰 𝑡.

https://github.com/osavkovic/CompactTRPQ


nodes
𝑜 name temp pos Time
𝑛1 𝐴𝑙𝑖𝑐𝑒 - - [ 0, 289]
𝑛1 𝐴𝑙𝑖𝑐𝑒 38 - [290, 299]
𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 [300, 300]
𝑛1 𝐴𝑙𝑖𝑐𝑒 38 - [301, 310]
𝑛1 𝐴𝑙𝑖𝑐𝑒 - - [311, 600]
𝑛2 𝐵𝑜𝑏 - - [ 0, 109]
𝑛2 𝐵𝑜𝑏 39 - [110, 120]
𝑛2 𝐵𝑜𝑏 - - [121, 229]
𝑛2 𝐵𝑜𝑏 38 - [230, 270]
𝑛2 𝐵𝑜𝑏 38 - [271, 600]
𝑛3 𝐶𝑎𝑟𝑜𝑙 - - [ 0, 600]
𝑛4 𝐷𝑎𝑣𝑖𝑑 - - [ 0, 319]
𝑛4 𝐷𝑎𝑣𝑖𝑑 38 - [320, 330]
𝑛4 𝐷𝑎𝑣𝑖𝑑 - - [301, 600]

edges
𝑜1 𝑜2 label Time
𝑛1 𝑛2 meets [200, 204]
𝑛2 𝑛3 meets [320, 330]
𝑛3 𝑛4 meets [100, 101]

Figure 8: Relational representation of the graph of Figure 1

For nodes, we duplicate identifiers, i.e. we produce tuples of the form ⟨𝑜, 𝑜, 𝜏, 𝑑⟩. Since our temporal
data already consists of intervals over time points, no operation on time intervals (𝜏 ) is needed, so we
can extract them from the base tables. Finally, we initialize the distance 𝑑 in each tuple with the value 0.

For edges, we now have a composite identifier with two attributes (source 𝑜1 and destination 𝑜2).
Then similarly to nodes, no operations on time intervals needs to be performed, and we initialize the
distance 𝑑 with 0.

Finding nodes that match pos = true (in query 𝑞5) corresponds to a Boolean condition in a SQL
WHERE clause, and similarly for edges with label “meets” (which match meets in 𝑞5). The result is
shown in Figure 9.

pos = true in 𝒰 𝑡

𝑜1 𝑜2 name temp pos 𝜏 𝑑
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 [300, 300] 0

meets in 𝒰 𝑡

𝑜1 𝑜2 label 𝜏 𝑑
𝑛1 𝑛2 meets [200, 204] 0
𝑛2 𝑛3 meets [320, 330] 0
𝑛3 𝑛4 meets [100, 101] 0

Figure 9: Outputs of the subqueries pos = true and meets in 𝒰 𝑡

Consider now the operator T[−168,0] in our query 𝑞5. Because we are in 𝒰 𝑡, we have to introduce
all distances from −168 to 0 to each record in the answers to pos = true . We do so in SQL using
PostgreSQL’s generate_series function.2 Each record is replicated 169 times, once for each integer
in [-168,0], and its initial distance (which was 0 in this case) is added to this number. This yields the
output to the subquery (pos = true)/T[−168,0], shown in Figure 10.

𝑜1 𝑜2 name temp pos 𝜏 𝑑
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 [300, 300] −168
. . .
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 [300, 300] −1
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 [300, 300] 0

Figure 10: Output of the subquery (pos = true)/T[−168,0] in 𝒰 𝑡

Finally, we perform a temporal join between the subqueries (pos = true)/T[−168,0] and meets.
Following Equation (1) (illustrated with Figure 5), a temporal join in 𝒰 𝑡 is computed as a join where
the second object 𝑜2 of the left input 𝑙 is equal to the first object 𝑜1 of the right input 𝑟, and the time
2https://www.postgresql.org/docs/current/functions-srf.html

https://www.postgresql.org/docs/current/functions-srf.html


interval in 𝑙 shifted by its distance overlaps with the time interval in 𝑟. This is a so-called overlap join in
temporal databases [22, 23, 24, 25], but can also be executed using traditional hash or merge joins in
traditional database systems. After this operation, we can apply coalescing on the time intervals. The
final output of query 𝑞5 is shown in Figure 11.

𝑜1 𝑜2 𝜏 𝑑
𝑛1 𝑛2 [300, 300] −100
𝑛1 𝑛2 [300, 300] −99
𝑛1 𝑛2 [300, 300] −98
𝑛1 𝑛2 [300, 300] −97
𝑛1 𝑛2 [300, 300] −96

Figure 11: Output of the query 𝑞5 = (pos = true)/T[−168,0]/F/meets in 𝒰 𝑡

Folding distances (𝒰𝑑). In this representation, distances are folded into intervals, while (starting) time
points are scalar values. We start from the same base data as in the previous case and transform these
base records into tuples in 𝒰𝑑. For nodes, similarly to what we did for 𝒰 𝑡, we duplicate identifiers. But
this time, we initialize distances to a singleton interval [0, 0], and we use the generate_series
function to replicate each base record, once for each time point within its original interval. We proceed
analogously for edges, and filter records matching pos = true or meets like we did for 𝒰 𝑡. The result
is shown in Figure 12.

pos = true in 𝒰𝑑

𝑜1 𝑜2 name temp pos 𝑡 𝛿
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 300 [0, 0]

meets in 𝒰𝑑

𝑜1 𝑜2 label 𝑡 𝛿
𝑛1 𝑛2 meets 200 [0, 0]
. . .
𝑛1 𝑛2 meets 204 [0, 0]
𝑛2 𝑛3 meets 320 [0, 0]
. . .
𝑛2 𝑛3 meets 330 [0, 0]
𝑛3 𝑛4 meets 100 [0, 0]
𝑛3 𝑛4 meets 101 [0, 0]

Figure 12: Outputs of the subqueries pos = true and meets in 𝒰𝑑

To apply the T[−168,0] operator, we shift the start of the distances interval by −168 and its end by 0
in each record of the output to pos = true . The result is shown in Figure 13.

𝑜1 𝑜2 name temp pos 𝑡 𝛿
𝑛1 𝑛1 𝐴𝑙𝑖𝑐𝑒 38 𝑡𝑟𝑢𝑒 300 [−168, 0]

Figure 13: Output of the subquery (pos = true)/T[−168,0] in 𝒰𝑑

A temporal join in 𝒰𝑑 (cf. Equation (2) and Figure 6) is computed as a join where the second object 𝑜2
of the left input 𝑙 is equal to the first object 𝑜1 of the right input 𝑟, and the time point of 𝑙 shifted by its
distance interval contains the time point of 𝑟. This is a so-called range join in temporal databases [25],
but can also be executed using traditional hash or merge joins. After this operation, we can apply
coalescing on the distance intervals. The result is shown in Figure 14.

𝑜1 𝑜2 𝑡 𝛿
𝑛1 𝑛2 300 [−100,−96]

Figure 14: Output of the query 𝑞5 = (pos = true)/T[−168,0]/F/meets in 𝒰𝑑



5. Data Set and Experiments

We conducted experiments to investigate (i) how compact query answers can be in 𝒰 , 𝒰 𝑡 and 𝒰𝑑 and,
for the two latter representations, (𝑖𝑖) how the size of input intervals in graph and query affect the size
of compact answers, and (𝑖𝑖𝑖) to what extent coalescing L𝑞M𝑡𝐺 and L𝑞M𝑑𝐺 affects compactness.

We used the dataset provided in [1], which represents a graph of people and rooms with meetings
for contact tracing. The TG 𝐺 consists of 24, 990 nodes and 2, 638, 623 edges over a domain of 52 time
points. The minimum, average, and maximum interval duration in nodes (resp., edges) are 1, 19.7, and
52 (resp., 1, 2.2, and 5). The number of different time points in this dataset (52) is extremely small (and
arguably unrealistic) when compared to the size of the graph. This is why we used in our experiments
a factor 𝑘 (described below) that scales the size of all intervals. This allowed us to test the impact of
large graph intervals, which in theory should penalize 𝒰𝑑 more than 𝒰 𝑡.

We used the SQL implementation described in Section 4.2, and PostgreSQL as a backend. As a query,
we retrieve all people that had a positive contact up to a certain time period in the past, with duration
𝑥, i.e.,

𝑞6 := (pos = true)/T[−𝑥,0]/F/meets

Our experiments have two parameters: 𝑥, which increases the distance interval [−𝑥, 0] in 𝑞6, and
the scaling factor 𝑘 that multiplies the size of all intervals in 𝐺. In our first experiment, we compared
the size of J𝑞6K𝐺 to its compact representations in 𝒰 𝑡 and 𝒰𝑑, denoted with [𝑞6]

𝑡
𝐺 and [𝑞6]

𝑑
𝐺 below.

The results for varying distances in the query (i.e., values for 𝑥) are shown in Figure 15, left. We see
that [𝑞6]𝑡𝐺 and [𝑞6]

𝑑
𝐺 provide a compression ratio of about 2.2 for this dataset, which has a very small

temporal domain (the curve becomes flat for 𝑥 ≥ 52 because the interval [−𝑥, 0] is longer than the
whole temporal domain). The results for varying durations of time intervals in the graph (i.e., values
for 𝑘) are shown in Figure 15, right. With more time points in the graph, the differences between J𝑞6K𝐺
and the compact representations [𝑞6]𝑡𝐺 and [𝑞6]

𝑑
𝐺 increases dramatically, with a compression factor of

22 for [𝑞6]𝑡𝐺 and 12.6 for [𝑞6]𝑑𝐺 when 𝑘 = 10.
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Figure 15: Result sizes for varying 𝑥 and fixed 𝑘 = 1 (left), or varying 𝑘 and fixed 𝑥 = 25 (right)

From both plots, we see that the difference between the sizes of [𝑞6]𝑡𝐺 and [𝑞6]
𝑑
𝐺 is relatively small.

However, for smaller values of 𝑥, [𝑞6]𝑡𝐺 is more compact, while [𝑞6]
𝑑
𝐺 is more compact for a larger 𝑥.

To illustrate this behavior, we plot the ratio |[𝑞6]𝑑𝐺|/|[𝑞6]𝑡𝐺|, in Figure 16 (left), for a fixed 𝑘 = 5 and
varying 𝑥, and in Figure 16 (right) for a fixed 𝑥 = 25 and varying 𝑘.
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We also performed experiments to show the impact of coalescing on compactness. Figure 17 shows
result sizes with (left) and without coalescing (right), for a fixed 𝑘 = 5 and different values for 𝑥. In the
coalesced representation, we see that L𝑞6M𝑡𝐺 and [𝑞6]

𝑑
𝐺 have comparable sizes, much smaller than the

size of J𝑞6K𝐺. For the non-coalesced result, or prior to coalescing (right), [𝑞6]𝑡𝐺 maintains a compact
result during computation, while [𝑞6]

𝑑
𝐺 produces a result similar to J𝑞6K𝐺 (approx. 10 times larger than

L𝑞6M𝑡𝐺). This can be explained by the fact that in this dataset the number of edges (approx. 2.6M) is
much larger than the number of nodes (approx. 25k) and even more if we focus on nodes that match
pos = true (approx. 2k). While [𝑞6]

𝑡
𝐺 only increases the number of nodes by applying T[−𝑥,0] by a

factor of 𝑥 (cf. Figure 10), [𝑞6]𝑑𝐺 increases the (already large) number of edges when replicating records
for each time point (cf. Figure 12, right) by a factor of 10, which is the average duration of time intervals
of edges for 𝑘 = 5.

To see the impact on runtime of these large intermediate results, we also ran experiments where
we measured the processing time. We used 𝑘 = 5 and 𝑥 = 300, i.e., the right-most data point in
Figure 17, and measure the wall-clock time on an Intel(R) Xeon(R) Gold 6246R CPU @ 3.40GHz machine
running Ubuntu Linux. The runtime for L𝑞6M𝑡𝐺 was 154 seconds, while the runtime for [𝑞6]𝑑𝐺 was 1, 390
seconds due to the large intermediate result that needs to be processed (cf. Figure 17 (right)), which
also emphasizes the fact that compactness has a large impact on query performance.
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Figure 17: Result sizes for varying 𝑥 and fixed 𝑘 = 5, with coalescing (left) and without (right)

To summarize, we can see from the experiments that both 𝒰 𝑡 and 𝒰𝑑, when coalesced, provide a
much more compact representation than 𝒰 . When intervals in the query are smaller than in the graph,
𝒰 𝑡 is the most compact representation, while 𝒰𝑑 is the most compact in the opposite case. Besides,
coalesced representations are substantially more compact than their non coalesced counterparts, which
affects not only data storage, but also the performance of join operations, because the cardinality of
their operands is reduced.

6. Related work
Temporal relational DBs. In temporal relational DBs, tuples are most commonly associated with a
single time interval, viewed as a compact representations of time points at which the tuple holds [21].
The coalescing operator, which merges value-equivalent tuples over consecutive or overlapping time
intervals, has received a lot of attention. Böhlen et al. [15] showed that coalescing can be implemented
in SQL, and provided a comprehensive analysis of various coalescing algorithms and their performance.
Later on, Al-Kateb et al. [26] investigated coalescing in the attribute timestamped CME temporal
relational model, before Zhou et al. [16] exploited SQL:2003’s analytical functions for the computation
of coalescing. Their technique is the state-of-the-art, requiring a single scan over the ordered input
and can be computed in 𝒪(𝑛 log 𝑛). Also relevant to our work is the efficient computation of temporal
joins over intervals. There has been a long line of research on temporal joins [27], ranging from
partition-based [22, 28], index-based [29, 30], and sorting based [23, 24] techniques. Recently, in [25] it
has been shown that a temporal join with the overlap predicate can be transformed into a sequence
of two range joins. Our inductive representations of answers require overlap joins and range joins
(cf. Section 4.2) that could potentially benefit from these approaches.
Temporal graphs. Temporal graph models vary in terms of temporal semantics, time representation



(time point, interval), timestamped entities (graphs, nodes, edges, or attribute-value assignments), and
whether they represent evolution of topology alone, or also of attributes. A sequence of snapshots is
the simplest representation, in which a state of a graph is associated with either a time point or an
interval during which it was in that state [31, 32]. Among recent proposals (and aside from [1]), Byun et
al. [4] developed ChronoGraph, which is both a temporal graph model and a graph traversal language,
with dedicated aggregation techniques; Johnson et al. [5] developed Nepal, a query language scalable
for large networks; Debrouvier et al. [2] introduced T-GQL, a Cypher-like query language for TPGs;
Moffitt et al. [3] suggested an algebraic framework for analyzing temporal graphs, and Labouseur et
al. [6] developed the graph DB system G* for storing and managing dynamic graphs in distributed
environments. To our knowledge, the problem we address, namely producing compact answers to a
TRPQ, is new.

7. Conclusions and Future Work

We provided in this paper implementation techniques to compute compact answers to a TRPQ over
a TG, using two alternative compact representations. In theory, the first technique is better-suited to
large intervals in the TG, and the second for large intervals in the TRPQ. We put this hypothesis into
practice and observed that it was partially verified. Our experiments also reveal the importance of
temporal coalescing (i.e. merging time intervals when possible).

As a continuation of this work, we want to investigate implementation techniques for the two more
complex representations that we defined in [14]. These may require techniques that go beyond SQL,
due to the intractability of coalescing. Alternatively, tractability can be regained if minimality is not
a requirement, or if one disallows overlapping compact representations. But in SQL, this would still
require developing techniques that have not been investigated yet in the field of temporal databases.

Another interesting open question is the efficient implementation of the “star” operator trpq[𝑛, _]. A
natural candidate here would be SQL CTEs (or possibly Datalog engines).

Finally, we would like to test answering TRPQs over real-world datasets, potentially extracted from
general purpose knowledge graphs, such as Wikidata.
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