Compact Answers to Temporal Path Queries

Muhammad Adnan, Diego Calvanese, Julien Corman, Anton
Dign@sl0000-0002-7621-967X] \Werper Nutt0000-0002-9347-1885] anq Ognjen

Savkovié [0000—0002—9141—3008]

Free University of Bozen-Bolzano, Italy

Abstract. We study path-based graph queries that, in addition to nav-
igation through edges, also perform navigation through time. This allows
asking questions about the dynamics of networks, like traffic movement,
cause-effect relationships, or the spread of a disease. In this setting, a
graph consists of triples annotated with validity intervals, and a query
produces pairs of nodes where each pair is associated with a binary re-
lation over time. For instance, such a pair could be two airports, and
the temporal relation could map potential departure times to possible
arrival times. An open question is how to represent such a relation in a
compact form, and maintain this property during query evaluation. To
address this, we investigate four compact representations of answers to a
such queries. We discuss their respective advantages and drawbacks, in
terms of conciseness, uniqueness, and computational cost. Notably, the
most refined encoding guarantees that query answers over dense time
can be finitely represented.

Keywords: graph databases - temporal databases - regular path queries

1 Introduction

Temporal databases [5] have traditionally focused on computing relations where
each tuple is annotated with a set of time points (or a set of intervals) for validity.
In comparison, little attention has been paid to the case where each tuple is
annotated with a relation over time points, which indicates how different events
are related temporally. This is the focus of this paper, more precisely binary
relations over time points.

One application is linking potential departure times of a road trip to their
corresponding arrival times, e.g. considering uncertainties like traffic. Such a
relation maps each departure time to a range of possible arrival times (or equiv-
alently each arrival time to possible departures). Another example is modelling
cause-effect scenarios with uncertain delays. For instance, one may compute the
relation that associates (in time) the potential malfunction a component in an
airplane to the subsequent malfunction of another component. A third appli-
cation of binary temporal relations, which we will use as a running example
(inspired by [2]), is modeling the spread of phenomena such as messages or dis-
eases. For instance, in epidemiology, the latency and infectiousness periods of a

2 M. Adnan et al.

virus induce a temporal relation that maps potential infection times to possible
subsequent transmissions, which allows modeling disease propagation within a
population.

These examples suggest at least three elementary operations that one may
want to perform over binary temporal relations: (i) filtering such a relation
(based on some knowledge about events that took place), (i) combining two
such relations, and (iii) composing them (e.g. to model transitive cause-effect
or spread). Or in database terms, selection, union and join respectively. These
operations can be seen as a natural generalization of their counterparts in clas-
sical temporal databases (if we abstract away from non-temporal data). Indeed,
in these systems, the set of time points associated to a fact (for validity) can be
viewed as a unary relation over time, which we generalize here to a binary one.

However, prior to performing such operations, a fundamental question is how
to represent their input and output. This is the main problem addressed in this
paper. Precisely, how to represent a binary temporal relation in a compact way
(or even finitely over dense time), and ensure that compactness (resp. finiteness)
is preserved by selection, union and/or join. To our knowledge, this has not been
addressed in the literature, and as we will see, the answer to this (apparently
simple) question is not trivial. In particular, such a relation cannot be represented
as a set of intervals, as opposed to the sets of time points (a.k.a. unary relations)
that temporal databases traditionally focus on.

attends [104, 106] —— attends [102, 107
Alice [:]=\ISWC}: [: : éo:)b

tests [112, 112]

attends [100, 102]
|

\> positive

Fig. 1: A temporal graph

Concretely, we focus on the query language recently introduced in [2], which
computes and performs operations on binary temporal relations, along with a
graph data model used to filter such relations. To our knowledge, this is the first
query language that manipulates such relations. For presentation purposes, we
simplify this language and data model to a fragment that is essentially Regular
Path Queries (RPQS)E extended with a temporal navigation operator, and eval-
uated over a time-labeled graphs. RPQs are used to navigate through the graph,
whereas the temporal operator enables navigation in time, by a certain range.

An RPQ ¢ is a regular expression, and a pair (ni,ns2) of nodes is an answer
to q over a graph G if there exists a path from n; to ne in G whose concatenated
labels match this regular expression. The language of [2], called Temporal RPQs

1 RPQs are a central building block of navigational graph query languages such as
Cypher [I5] and SPARQL [I7].

Compact Answers to Temporal Path Queries 3

(TRPQs), extends RPQs with a temporal operator that allows navigation from
one node at a certain time to the same node in past or future moments. Accord-
ingly, an answer is a pair {(n1,t1), (na,t2)), where n; and ny are each associated
with a time point, which mark the starting and arrival time of the temporal
navigation respectively.

More precisely, this temporal operator, which we denote as Ty here, allows
navigation in time within the range specified as the interval 6. For instance,
the latency and infectiousness periods of a virus may imply that a person can
only become infectious at least three days after the infection time ¢, and remain
infectious at most five days after t. If 7 is our temporal domain, this induces a
binary temporal relation

R={(t,t+d)|teT and d € [3,5]}.

Accordingly, if Mg is the set of nodes in the queried graph G, then the query
T35 outputs all pairs ((n,t1), (n,t2)) such that n € Ng and (t1,t2) € R. This
output can be joined and filtered based on events registered in G, effectively
restricting the initial temporal relation R, and associating each returned time
point with a meaningful node. For instance, the graph of Figure[I]represents data
about attendance at a conference, where each fact is a labelled edge, annotated
with an interval for validity. We can extend our query as follows

q1 = T[35/attends/attends™ .

This query outputs all pairs ((ni,t1), (ne, t2)) such that n; and ny attended
a same event, and n; may have transmitted the virus to ny (during this event)
at time o if n; got infected at time ¢;. These include the two pairs ({Alice, 100),
(Bob, 104)), and ({Alice, 100), (Bob, 105)), meaning that if Alice contracted the
virus on day 100, then she may have transmitted it to Bob during day 104 or
day 105 (among other possibilities). In this query, the “/” operator is a join,
and the subqueries attends and attends™ act as filters on our initial temporal
relation R, restricting it based on the time intervals contained in the graph. We
can further restrict this relation by requiring that person no tested positive at
most a week after the possible transmission, with

G =q/? (T[O’ﬂ/tests/(: positive)).

In this query, the operator 7q acts as an existential quantifier: it only requires
the existence of a match for the subquery ¢, so that the output of ¢ is a subset
of the output of ¢;.

As we have seen above, the initial temporal relation R can be easily rep-
resented in a compact way, using the temporal domain 7 for the set of initial
infection points, and a single interval of temporal distances [3, 5] that indicates by
how much each initial time point can be shifted. This holds regardless of whether
T is discrete or continuous. However, this does not hold anymore for the outputs
of our queries. For instance, the temporal relation induced by the answers to ¢
(which all have Alice and Bob as first and second node respectively) is uneven:

4 M. Adnan et al.

over discrete time (and with a granularity of one day), 100 is associated with
a single day 105, whereas 101 is associated with both 105 and 106. Moreover,
without a compact representation of query answers, altering the time granular-
ity (e.g. from days to hours) may significantly increase the number of output
tuples (exponentially in the size of the input, assuming that interval boundaries
are encoded in binary). Besides, even in the case where the output of a query
can be represented compactly, computing all answers before summarizing them
may be prohibitive, because the number of intermediate results may impact the
performance of (worst-case quadratic) join operations. Hence the need to not
only represent answers in a compact way, but also maintain compactness during
query evaluation. This is even a necessity over dense time, where the lack of a
finite representation may forbid query evaluation. To our knowledge, these are
still open questions (in particular, left open in [2]), which effectively rule out
arbitrary selection, union and joins over binary temporal relations.

Contributions and Organization. In this work, we propose four alternative
compact representations of answers to TRPQs. In Section [2| we provide an in-
formal, graphical overview of each of them. In Section [3] we define the syntax
and semantics of the query language that we study. In Section [@ we formally
define and study our four representations: first, in Section [{.I] we present the
two simpler ones, which aggregate tuples along a single temporal dimension,
either starting points or distances; then, in Section we present the two
more complex representations, which aggregate tuples along both dimensions.
We analyze the respective advantages and drawbacks of each representation in
terms of finiteness (over dense time), compactness (when finite), uniqueness, and
the computational cost of query answering and minimizing a set of tuples. No-
tably, the fourth (more complex) representation guarantees that compactness
and finiteness are maintained throughout query evaluation. In Section 5] we dis-
cuss related work. An extended version of this paper, with full definitions and
proofs, is available at https://arxiv.org/abs,/2507.22143.

2 Overview

This section provides a high-level overview of the four compact representations
of answers to TRPQs defined and studied in this article. As a running example,
the following query g3 outputs all pairs ((ny, t1), (ne, t2)) such that, if Alice got
infected at time t; while attending event n;, then she may have transmitted the
virus at time to while attending event ns:

g3 = attends™ /(= Alice)/ T35 /attends.

Over discrete time, with days as temporal granularity, evaluating g3 over
the graph G of Figure [l| outputs a set [gs]¢ of 7 pairs, each of the form
((ICDT,t1), (ISWC,t2)). Since the two nodes (ICDT and ISWC) are identi-
cal for all answers, we can focus on the binary temporal relation induced by
these, i.e. the relation R = {(t1,t2) | ((ICDT,t1), (ISWC,t3)) € [gs]lc}- Each

https://arxiv.org/abs/2507.22143

Compact Answers to Temporal Path Queries 5

pair (t1,t2) € R can equivalently be represented as the pair (¢1,ts — t1), where
the second component is the temporal distance between t; and ¢5. Accordingly,
Figure [2al displays these 7 pairs over the Euclidean plane of (discrete) time per
distance.

d
5 5 5
4 4 4
3 3 3
t t
100 101 102 100 101 102 100 101 102
(a) U (o) u* (c) U®
d
51\
5 5
&
4 4 4
3 3 b{
t t 3
100 101 102 100 101 102 100 101 102
(d) ut? (e) U° (f) U over dense time

Fig. 2: Alternative representations of the answers to Query ¢s, in the plane of time
per distance

Each of the four compact representations that we study in this article is an
alternative way to reduce the number of such pairs. The first representation,
which we call U?, groups these pairs by distance (i.e. horizontally in our figure),
while aggregating time points as intervals. In this example, this yields three
compact answers, namely ([100,101],5), ([100,102],4), and ([101,102], 3). Each
of these is a rectangle with height 1 in our plane, as illustrated with Figure
and their union is indeed the area of interest. The second representation, called
U?, is symmetric, in the sense that it groups results by time points and aggregates
distances, so that compact answers are now rectangle with width 1, as illustrated
with Figure The first representation U ensures that the number of compact
answers is independent of the size of the intervals present in the graph. However,
this number is linear in the size of the intervals used in the query (via the
temporal navigation operator). And conversely for ¢/.

A third natural attempt (which we call U*?) consists in aggregating tuples
along both dimensions, representing our binary relation R as a set of pairs of
intervals, one of time points, the other of distances. These correspond to arbitrary
rectangles in our plane. As can be seen on Figure[2d] two such rectangles are still
needed to cover the whole area (or three if we forbid overlapping rectangles).
Besides, some desirable properties of the first two representations are lost: the
most compact representation (i.e. smallest set of rectangles needed to cover the
area) is not unique anymore (e.g. if the area is an “L”-shaped polygon), and

6 M. Adnan et al.

minimizing the number of answers (i.e. finding a minimal set of such rectangles)
becomes intractable (if we allow rectangles to overlap).

Moreover, for all three representations, the number of tuples needed to ag-
gregate all answers to g3 may grow with a change of time granularity. This can
once again be seen in Figure if we adopt hours rather than days, then the
number of “steps” (bottom left and top right of the area) gets multiplied by 24.
At the limit (i.e. when granularity approaches 0), we reach dense time, and the
area to cover becomes a rectangle cropped by two lines with slope -1 (drawn in
Figure . Clearly, such an area cannot be covered by finitely many rectangles.

This is why we introduce a fourth representation, which we call &¢. Over
dense time, a tuple in U precisely stands for an area like the one of Figure [2] by
means of two intervals (one for times, the other for distance), which intuitively
represent the rectangle to be cropped, together with two values b and e that
specify where the two cropping lines intersect respectively with this rectangle.
This representation is also useful over discrete time: in our example, the whole
area can be captured with a single tuple that consists of the interval [100,102]
for times, as illustrated with Figure the interval [3,5] for distance, and the
values 1 and 1 for b and e. Our most technical result is that binary relations
that can be represented as such geometric shapes are closed under composition.
As a consequence, a TRPQ can only produce a union of such shapes. So this
last format U¢ overcomes the limitations of the previous ones, in the sense that
answers to a TRPQ can always be represented in a finite way. This is also the
most compact of these four representations. However, as for /*%, minimizing a
set of tuples under this view is intractable, and the most compact representation
of a set of answers is not unique.

Our main findings about each of the four representations are summarized
at the end of the dedicated section, in Figure [6] As a brief summary, only the
fourth representation (U'?) guarantees that query answers remain finite and
independent of the sizes of the input intervals. In comparison, the two first
representations U* and U? benefit from a unique compact representation of query
answers, and the fact that computing it (out of a non-compact one) is tractable.
However, these can only be used over discrete time, and if the size of the input
query (resp. graph) intervals remains small.

3 Preliminaries

Temporal Graphs. For maximal generality (and readability), we use a very
simple graph data model, where each fact is a labelled edge, annotated with a set
of time intervals for validity. Formally, we assume two infinite sets A/ of nodes
and & of edge labels. As is conventional (e.g. in RDF), we represent a fact as
a triple (s,p,0) € N x €& x N (where s,p and o intuitively stand for “subject”,
“property” and “object” respectively). In addition, for the temporal dimension
of our data, we assume an underlying temporal domain 7 that may be either
discrete or dense. For simplicity, we will use Z in the former case, and Q in the
latter. We also use intv(7T) for the set of nonempty intervals over T.

Compact Answers to Temporal Path Queries 7

In our model, a database instance simply assigns (finitely many) intervals of
validity to (finitely many) triples. Precisely, a temporal graph G = (Tg, Fa, valg)
consists of a bounded effective temporal domain Te € intv(T), a finite set of
triples Fg¢ C N x & x N, and a function valg: Fg — 2"(76) that maps a triple
to a finite set of intervals over 7¢. For instance, in Figure [1} valg assigns the
(singleton) set of intervals {[104,106]} to the triple (Alice, attends, ISWC).

Temporal Regular Path Queries. We adopt the query language introduced
in [2], but in a simpler form, made possible by the simplified data model defined
above. We emphasise that this is without loss of expressivity.

A Temporal Regular Path Query (TRPQ) is an expression for the symbol
“trpq” in the following grammar:

trpq := edge | node | Ty | (trpa/trpq) | (trpq + trpa) | trpafm, n] | trpq[m, _]
edge ::= label | edge™
node ::= pred | < k| (?7trpq) | = node

with label € £, k € T,6 € intv(T), m,n € NT, and m < n.

Here, edge and node are filters on edges and nodes respectively. The terminal
symbol pred stands for a Boolean predicate that can be evaluated locally for one
node n, which we write n |= pred (for instance, in Figure |1} the node positive
satisfies the predicate (= positive)). Similarly, the Boolean predicate < k eval-
uates whether a time point is less than or equal to k. The expression (?trpq)
filters the nodes that satisfy trpq, and — represents logical negation. The tempo-
ral navigation operator Ts stands for navigation in time by any distance in the
interval ¢, and the remaining operators are regular path query (RPQ) operators:
/ stands for join, + for union, and trpq[m,n] for the “repetition” of trpq from m
to n times. In particular, trpq[0,] represents Kleene closure (equivalent to the
* operator in regular expressions).

The formal semantics of TRPQs is provided in Figure [3] where [¢]¢ is the
evaluation of a TRPQ ¢ over a temporal graph G. In this definition, we use ¢
for the TRPQ defined inductively by ¢! = q and ¢?*! = ¢7 /q. For convenience,
we represent (w.l.o.g.) an answer as two nodes together with a time point and
a distance, rather than two nodes and two time points, i.e. we use tuples of the
form (ny,ng,t,d) rather than ((ni,t), (na,t+d)). We also use Ng to denote the
set of nodes that intuitively appear in G, i.e. all n such that the triple (n,p,0)
or (s,p,n) is in F¢g for some s, p and o.

Operations on intervals. For two intervals «, 8 € intv(7), we use a ® 8
(resp. @ ©) to denote the interval {a+b|a € o and b € 8} (resp. {a—b|a €
a and b € f}). We also use oo + b (resp. a — b) for a @ [b,b] (resp. a S [b,b]).

4 Compact answers

In this section, we define and study the four representations of answers to a
TRPQ sketched in Section[2] Let ¢ denote the universe of all tuples that may be

8 M. Adnan et al.

[labell¢ = {(n1,mn2,t,0) | t € T for some 7 € valg(n1, label, n2)}
[edge]a = {(n2,n1,¢,0) | (n1,n2,t,0) € [edge]c}
[pred]c =

[€kle = {{n,n,t,0) | n€Ng,t € Tg and ¢t < k}
[Ts]le ={(n,n,t,d) | neNg,t€Tg,dedandt+de Ta}
[?trpa]e = {(n,n,t,0) | (n,n’,t,d) € [trpq]c for some n’ € N and d € T}
[-node]c = ({(n,n) | n € Na} x Ta x {0}) \ [node]
[trpay/trpas]e = {(n1,ns,t, d1 + d2) |
Ing: (n1,ne,t,d1) € trpa;J¢ and (n2,ns, t + di,d2) € [trpg,]ct
[trpa; + trpay]e = [trpa;Je U [trpa,]e

n

(
(
{{n,n,t,0) | n |= pred and t € T}
(
(

[trpa[m, n]le = L:J [trpa*]c
[trpalm, _Jle = kL>J [trpa*]e

Fig. 3: Semantics of TRPQs

output by TRPQs, i.e. Y = N XN xT xT. Then each of our four representations
can be viewed as an alternative format to encode subsets of U. We specify each
of these four formats as a set of admissible tuples, denoted U, U¢, U'? and U¢
respectively.

Definition 1 (Unfolding, compact set of tuples, finite representation).
Let U be one of U, UL, UM or UC. A tuple u in U® represents a subset of U,
which we call the unfolding of u. And the unfolding of a set U C U of such
tuples is the union of the unfoldings of the elements of U. We say that U is
compact if it is finite and if no strictly smaller (w.r.t. cardinality) subset of U®
has the same unfolding. A set V.C U can be finitely represented (in U”) if there
is a finite U CU" with unfolding V.

4.1 Folding time points (U?) or distances (U?)

Each of our two first compact representations aggregates tuples in I/ along one
dimension: either the time point associated to the first node, or the distance
between times points associated to each node. The corresponding universes U*
and U4 of tuples are N'x N xintv(T)xT and N'x N x T xintv(T) respectively. The
unfolding of a tuple (ny,n2,7,d) € Ut is {{n1,n2,t,d) | t € 7}, and analogously
{{ny,na,t,d) | d € 6} for a tuple (ny,na,t,8) € U

Inductive representation. In order to understand when the answers [¢] ¢ to
a TRPQ ¢ over a temporal graph G can be finitely represented in 4* or ¢, and
what the size of such representations may be, we define by structural induction on
q two (not necessarily compact) representation of [¢]¢ in U* and U, noted (q)%,
and (]q[)dG respectively (these representations also pave the way for implementing
query evaluation). For instance, in the case where ¢ is of the form pred, we define

(pred)t, as {(n,n,T,0) | n = pred}.

Compact Answers to Temporal Path Queries 9

T1 71+ d1
} | } 1 ds

T2 To + do
[l] [l]
r 1

di + do

— — —
(m+d)Nm)—di (mn+di)Nm((nn+di)N7)+de

Fig. 4: Join of two tuples (n1, n2, 71,d1) and (n2, n3, 72, dz2) in U*. Each tuple is depicted
as two intervals 7; and 7; 4+ d;. The two corresponding intervals 7, and 7, + d, for the
output tuple (ni,ns, 7, do) are in violet.

Due to space limitations, we only provide the full definition of (g)%, and (g)%
in the extended version of this paper (together with proofs of correctness). We
highlight here the least obvious operators. The first one is the temporal join
trpq, /trpgsy, which intuitively composes temporal relations. If we assume (by
induction) that the answers to each operand (trpq; and trpq,) are represented in
U*, then the representation of trpq, /trpq, in U! can be computed as a regular join
together with simple arithmetic operations on interval boundaries, as follows:

(trpa /trpaolls = { (n1, ma, (71 + i) N72) = di, dy + d) | Fn:
(n1,n9,m,d1) € (]trpqll)ta, (ng,ng, Ta,da) € (]trquDtG and (11 +dy) Ny £ 0 }

This observation also holds for ¢4¢, but with different operations on interval
boundaries:

qtrpql/‘trpq2DéV = {<n1)n3at17t2 - tl + 62> | Ean: <n17n27t1761> S (]trpqll)éa
<n27n3,t2,62) S (]trquDdG and t5 —t; € (51}

The less obvious of these two operations is (trpq; /trpg,),, which we illustrate
with Figure [4]).

Another case of interest is the temporal navigation operator Ty, for the
second representation U¢ (the case of U? is trivial). Consider a query of the form
q/Ts (or symmetrically Ty5/q). If the subquery T is evaluated independently,
then the output of this subquery may be infinite over dense time, which rules
out in practice an inductive evaluation:

(Ts)d = {(n,n,t, (6 +)NTg) —t) | n € Ng,t € Tg, (6 +) N Tg # 0}

However, if (g)¢ is finite, then the output of the whole query ¢/Ts can be
represented finitely, and effectively computed as follows:

la/Ts)é; = {(n1,n2,t, (8" © 0) N Ta) | {na,ma,1,8') € (@), (t+ (8" @ 6)) N Te # 0}

Finiteness over dense time. Over discrete time, trivially, [¢]¢ can be finitely
represented in U E| therefore as well in any of our four compact representations.

2 Recall that we assume the effective temporal domain T¢ of G to be bounded.

10 M. Adnan et al.

But over dense time, this is not always possible. For instance, if ¢; is the query
(= positive) /tests™ /T|_7), and if the graph G of Figure [1|is interpreted over
dense time, then (positive, Bob,112,d) € [q:]¢ for every rational number d in
[~7,0]. And no tuple in U* can represent more than one of these tuples. From
the definition of (g)%, the only possible source of non-finiteness for U* is the
temporal navigation operator Ts, and only if § is not a singleton interval (i.e.,
if it specifies a certain range rather than a fixed distance).

Similarly, if g4 is the query (= Bob)/attends, then (Bob, ISWC,t,0) € [¢]c,
for every rational number ¢ in [102, 107], and no tuple in A% can represent more
than one of these.

Compactness. If [¢]¢ can be finitely represented in 4! or Y%, then a natural
requirement on these representations is conciseness. It is easy to see that a finite
set U C U? is compact iff all time intervals for the same nq,n, and d within
U are coalesced. Formally, let ~ denote the binary relation over U! defined
by <n1, no, 71, d1> ~ <TL3, Ny, T2, d2> iff <n1, na, d1> = <n3, N4, d2> and 1 UTe €
intv(7). Then U is compact iff uy; o uy for all uj,uy € U s.t. uy # us. More,
there is a unique way to coalesce a finite set of intervals. Therefore if V' C U can
be finitely represented in U, then V also has a unique compact representation in
Ut. A symmetric observation holds for a set U C Z/ld, where we coalesce distance
intervals rather than time intervals.

Coalescing a set of intervals is known to be in O(nlogn), and efficient im-
plementations have been devised (see Section . For this reason, coalescing
intermediate results in (g)5 or (g)& may be an interesting query evaluation
strategy. For instance, this could reduce the size of the operands of a (worst-case
quadratic) temporal join.

Size of compact answers. Our two representations U and ¢ exhibit an
interesting symmetry when it comes to the size of compact answers to a query,
intuitively growing with the size of the intervals present in ¢ in the case of U?,
and the intervals present in G in the case of ¢?. This suggests that U* is be
better suited to large graphs intervals and small temporal navigation intervals,
and conversely for 9.

Unfortunately, this does not hold for arbitrary queries. Indeed, the size of
a compact representation of [¢]¢ may be affected by the size of the effective
temporal domain 7 alone, even if all time intervals in the query and graph are
singletons, as soon as g contains an occurrence of the closure operator [m, |, as
illustrated with the following example:

Ezample 1. Consider a temporal graph G s.t. valg(ni, e, n2) = {[0,0]} and con-
sider the query ¢ = e/(Tj2))[1, _]. The compact representation of [¢]c is
{{n1,n2,[0,0],d) | d € D} in U?, and {(n1,n2,0,[d,d]) | d € D} in U?, where
D={deTecNN*t|dmod 2 =0}. O

However, for queries without closure operator, which we call closure-free, the
symmetry sketched above holds. To formalize this, we introduce a notation that
we will reuse for the other two representations.

Compact Answers to Temporal Path Queries 11

Definition 2 (Size of compact answers to closure-free queries). Let U”
be one of U, U, U or UC. Consider a temporal graph G and a closure-free
query q, such that [¢]a can be finitely represented in U*. We fix G and q, with
the exception of Ta, and either (i) the intervals present in G, or (ii) the intervals
present in q (with the requirement that [q]c can still be finitely represented in
U®). In case (i), let n be the cumulated length of the intervals in G, and let V' be
a compact representation of [q]a in UT. We use #answers™ (U”) for the function
that maps n to the the cardinality of V. In case (i), we use #answers® (U?) with
an identical meaning, but where n is the cumulated size of the intervals in q.

The following results says that the size of the compact representation of [¢] ¢
in U (when it exists) may be affected by the size of the intervals present in g,
but not the ones used to label triples in G, and conversely for 2%

Proposition 1. In the worst caseﬁ

(fized query intervals) (fized graph intervals)
#answers™ (U') = O(1) #answers® (U!) = 2(n)
#answers™ (U?) = 2(n) #answers® (U?) = O(1)

Complexity of query answering. Let U* be one of U, U?, U or U°. We
formulate a decision problem analogous to the classical boolean query answering
problem (for atemporal databases), in such a way that it remains defined even
if [¢]e does not admit a finite representation in U*. We say that a tuple u in
U is a compact answer to g over G if its unfolding is a subset of [¢]¢ and is
maximal among the tuples in U* that satisfy this condition. We can now define
our (four) problems (where z is either ¢, d, td or c):

COMPACTANSWER®
Input: temporal graph G, TRPQ g, tuple u € U*
Decide: u is a compact answer to g over G

Complexity for these problems is (partly) driven by the size of the input
time intervals, and there is no reason a priori to assume that intervals in the
graphs are larger than the ones in the query. This is why we do not focus on
data complexity (where the query is fixed), but instead on combined complexity,
where the size of the query and data may vary (we leave for future work a finer-
grained analysis). We show in the extended version of this paperthat the results
proven in [3] for answering TRPQs in &/ immediately transfer to U* (resp. U?),
even in the case where [¢]¢ cannot be finitely represented in U* (resp. U?):

Proposition 2.
COMPACTANSWER! and COMPACTANSWER? are PSPACE-complete.

We also observe that hardness can be proven with a graph of fixed size, with the
exception of the effective temporal domain 7. However, the number of operators
of the query used in this reduction is not fixed.

3 We write “wort case” here to clarify that this is for the worst possible inputs with
size n (as opposed to average size for instance).

12 M. Adnan et al.

4.2 TFolding time points and distances (U4!? and U®)

Each of the two compact representations U* and U? defined above aggregates
tuples in U along one dimension (either time points or distances), and both
may fail to represent the answers to a query compactly (or even finitely over
dense time). So a first natural attempt to address this limitation consists in
aggregating tuples along both dimensions. Accordingly, we define the universe
U as N x N x intv(T) x intv(T), and the unfolding of (ny,na,7,d) € U as
{(n1,nq,t,d) |t € 7,d € 0}.

This representation is more compact than the two previous ones, since unfold-
ing a tuple in U* or U? yields a subset of some unfolded tuple of U/*¢. However, as
we will see below, minimizing the cardinality of a set of query answers becomes
intractable. Besides, maybe surprisingly, this new format may also fail to repre-
sent query answers in a compact fashion (or finitely over dense time). To see this,
observe that for two fixed nodes, a tuple in ¢/*? has a natural representation as a
rectangle in the Euclidean plane P of times per distances. The following example
shows a query whose output, depicted in Figure , cannot be represented (over
dense time) as a finite set of rectangles in P. This example also provides insight
about the formalization of our fourth representation (below).

Ezample 2. Consider a temporal graph G with two edges such that valg(ni, e, n2)
= {[0,2]} and valg(nz,e2,n3) = {[1,3]} Let ¢ be the query e;/Tg o /e2. Then
ldle = {{(n1,n2,t,d) | t € [0,2],d € [0,2] and ¢t + d € [1,3]}. So for an answer
(n1,n9,t,d) € [q]a, we have

1<t+d<3, thatis, 1—t<d<3—t.
Besides, from the query g, we get 0 < d < 2. Therefore
max(1 —¢,0) < d < min(3 —t,2).
This observation gives us an interval
d; = [max(1 —¢,0), min(3 — ¢, 2)]

of admissible distances for each ¢ € [0,2], so that [¢]¢ = {(n1,ne,t,d) | t €
[0,2] and d € ¢6;}. Extending this kind of reasoning to the general case, we derive
the formula presented below for &;. a

As shown in Figure[5p, the area covered by the output of this query can be viewed
as a rectangle cropped by two parallel lines, each with slope -1. These cropped
rectangles turn out to have an essential property: if two temporal relations have
such a shape, then their composition also does. As a consequence, associating
each tuple with such a cropped rectangle (as opposed to a regular rectangle in
U*?) allows us to solve our initial problem: compute inductively the output of a
TRPQ g over a graph G in such a way that the number of output tuples remains
independent of the size of the intervals present in either ¢ or G. To represent
these cropped rectangles, we introduce a fourth format, which we call ¢ (where

Compact Answers to Temporal Path Queries 13

“c” stands for “cropped”), where each tuple carries, in addition to a time interval
7 and a distance interval ¢ (a.k.a. a rectangle), the two values b, e € T depicted
in Figure [Bb, which intuitively indicate where the cropping lines intersect the
rectangle induced by 7 and §. For each time point ¢t € T, these define a specific
range of distances §; C 4, as

8 = 4 bs + max(0,b—t) , es — max(0,t —e) s (1)

where 5| and |5 stand for the left and right delimiters of §, and bs and e; for its
left and right boundaries For instance, if § = [2,6), then ;| is “[”, bs is 2, es is 6
and |5 is €)”.

Accordingly, a tuple (ny,ne,7,8,b,e) € N x N X intv(T) x intv(T) x T x T

is in Y€ iff §; is nonempty for every ¢t € 7. And the unfolding of this tuple is
{(n1,n9,t,d) |t € 7,d € §;}.
Inductive representation. As we did for our first two representations, we
define (in the extended version of this paper) by structural induction on ¢ two
representations (g)%¢ and ()& of [¢]¢ in U!® and U° respectively. Our most
technical result is correctness of this definition for the join operator in &€ (and
to a lesser extent the temporal navigation operator).

We reproduce these definitions here to make apparent the fact these can be
computed by means of simple arithmetic operations on time points and interval
boundaries (together with a regular join on nodes for the join operator). The
inductive evaluation (trpq; /trpg,)¢ in U of the query trpq; /trpg, is defined as:

{u1Buy | uy € (trpg;)&, uz € (trpgy)G, us ~ ug}

where u; ~ uy and u; X us are defined as follows.
For u; = (n1,n2,71,01,b1,e1) and uz = (n3, ng, 72, d2, bz, €2), let

8 = 5| bs, + max(0,b; — by,),es, — max(0,e,, —e1) Js,, and
T=(((11 ®) Nm)©8)NT.

Then the relation ~ C U° x U€ is defined as u; ~ uy iff ng = ng and 7 # 0.
And if u; ~ ug, then u; K uy is defined as (ny,nq4,7,0; @ da,b,€), with b =
max(by,ba — bs,) and e = min(eq, es — €5,).

Similarly, if by, and ey, are the boundaries of the interval 7¢, then (T;)¢
is defined as

{<’I7,,TL,TG,5, bTGaeTG> > <n7n7TG7 [an]achveTG> ‘ ne NG}

Finiteness over dense time. We already illustrated in Figure why [¢] ¢ may
not be finitely representable in 2/*?. In contrast, [¢]¢ can be finitely represented
in U¢, as a direct consequence of the (correctness of the) inductive definition
of (g)¢&, which produces finitely many tuples (notably, the operator trpq; /trpq,
produces at most one tuple per pair (ui,us) € (trpg,)& x (trpas)).

Compactness. Let U C U and V C U be two sets of tuples that share the
same nodes 11 and ng. Then U unfolds as V iff they intuitively cover the same

14 M. Adnan et al.

d d
2 2
1 1
0 t 0 t
0 1 2 0 1 2
Fig.5: (a) Two minimal covers in ¢/*¢ (b) Answers to the query of Example

area in the Euclidean plane of times per distances, i.e. if
U{T x| (ni,ne,7,0) € U} ={(t,d) | (n1,n2,t,d) € V}.

There may be several compact representations in U*® for the same V C U.
For instance, the minimal number of rectangle needed to cover an “L’-shaped
polygon is two, and there are several such covers, as illustrated with Figure [Bh.
This argument easily generalizes to discrete time.

Besides, minimizing the representation of [¢]g in ¢*¢ (i.e. computing a min-
imal set of tuples in ¢* with unfolding [¢]¢) is intractable. To see this, we first
observe that computing such a set is harder than deciding whether there exists
one with size k (for a given k). Next, the following problem is known to be NP-
complete: given a rectilinear polygon r and a number k, decide whether there
is a set of at most k (possibly overlapping) rectangles that exactly cover r [9/4].
This problem reduces to ours, observing that for any rectilinear polygon r, a
query ¢ (with only unions) and graph G can be constructed in polynomial time
so that [¢]¢ covers exactly r. This hardness result also immediately translates
to U°: a rectangle is a specific case of a cropped rectangle, therefore the same
reduction can be used, and if there is a minimization with at most & tuples in
U, then there is also one in .

An important difference though between these two representations and the
two previous ones (4! and U?) is that a compact set U of answers in U*? or U¢
may be redundant, meaning that two tuples u; and us in U may have overlapping
unfoldings. This can for instance be seen in Figure for Y. If we require tuples
to be non-redundant, then the representations of answers to a query is in general
less concise. But it may be better suited for downstream tasks, such as aggrega-
tion. Besides, tractability of minimization in U*? is regained, because finding a
cover with a minimal number of non-overlapping rectangles is tractable [20/T4].
However, uniqueness is not regained, as shown in Fig. [Fp.

Size of compact answers. If V C U/ can be finitely represented in U*?, then
trivially, a compact representation of V in 2/*® must be smaller than the compact
representation of V in U (resp. U?), if the latter exists. So compact answers
under this representation must be smaller than under the two previous ones.
However, the size of a compact representation may still be affected by the size of
time intervals in ¢ (for a closure-free ¢ already). In contrast, for U¢, immediately
from the definition of (g)g, the number of tuples in (g)¢ (for a closure-free g)

Compact Answers to Temporal Path Queries 15

Size (closure-free q) Query

Finite Unique Minimization
(dense time) graph intervals query intervals answering
ut no yes o(1) 2(n) O(nlogn) PSPACE-c
us no yes 2(n) o(1) O(nlogn) PSPACE-c
utd no no o(1) 2(n) NP-h / O(n*®%) PSpacE-c
ue yes no 0(1) o(1) NP-h PSpacE-h

Fig. 6: Summary of results. For applications with discrete time and short intervals
in the query (resp. graph), U* (resp. U?) provides an efficient solution. U*¢ is more
compact than both, and therefore potentially more efficient. However, minimizing the
number of query answers is more expensive, which makes it less suitable for applications
requiring aggregation. For applications with dense time or long intervals in both the
graph and the query, Y€ is the only viable option.

is independent of the size of the intervals in G or ¢ (even though (g)¢ is not
necessarily compact).

Proposition 3. In the worst case,

(fized query intervals) (fized graph intervals)
#answers™ (U) = O(1) #answers® (U'?) = 02(n)
#answers™ (U°) = O(1) #answers® (U°) = O(1)

Complexity of query answering. The hardness results of [3] over U can also
be lifted to 4*® and U¢, and this bound is tight for 2/*?:

Proposition 4.
COMPACTANSWER'® is PSPACE-complete, COMPACTANSWER® is PSPACE-hard.

5 Related work

In temporal relational databases, tuples (or attributes) are most commonly as-
sociated with a single time interval that represents either validity or transaction
time [5]. Intervals are commonly used instead of time points as a compact repre-
sentation. To maintain a compact and unique representation through operations,
the coalescing operator, which merges value-equivalent tuples over consecutive
or overlapping time intervals, has received a lot of attention. Bohlen et al. [6]
showed that coalescing can be implemented in SQL, and provided a comprehen-
sive analysis of various coalescing algorithms. Al-Kateb et al. [I] investigated
coalescing in the attribute timestamped CME temporal relational model and
the work of [I2] defines coalescing for temporal multi-set relations. Zhou et
al. [23] exploited SQL:2003’s analytical functions for the computation of coa-
lescing, which to date, is the state-of-the-art technique and can be computed
efficiently in O(nlogn). In our first two representations U* and U?, which use
a single interval, coalescing can be used to achieve a compact representation.
However, this is not applicable for U*? and U¢. Bitemporal databases [I8] use

16 M. Adnan et al.

two intervals (or rectangles) as a compact representation for two time points,
typically one for validity and one for transaction times. Our third representa-
tion U also uses two intervals. but both are used for (a generalized form of)
validity (we are not modeling transaction times). In bitemporal databases, coa-
lescing does not provide a unique representation [22] and, since it is designed as
a non-redundant operation, may not provide the most compact representation.

Also relevant to our work is the efficient computation of temporal joins over
intervals. There has been a long line of research on temporal joins [I6], ranging
from partition-based [10/8], index-based [I3I19], and sorting based [21I7] tech-
niques. Recently, in [T1] it has been shown that a temporal join with the overlap
predicate can be transformed into a sequence of two range joins. Our inductive
representations of answers require temporal joins and range joins (e.g. for U?
and U? respectively).

Finally, this paper builds upon the original proposal made in [2] to extend
regular path queries over property graphs with a temporal navigation opera-
tor—effectively allowing selection, join, and union of binary temporal relations.
Our work focuses on producing compact answers that are finite even in the case
of continuous time, a problem that was left open in [2].

6 Conclusions

We investigated how to compactly represent answers to queries over binary tem-
poral relations in the TRPQ setting, where both data and queries may include
time intervals for validity and temporal navigation, respectively. To our knowl-
edge, this question was previously open. We defined and analyzed four alterna-
tive representations of compact answers to TRPQs, varying in conciseness and
potential use. Notably, the fourth representation ensures that query answers
are always finitely representable, and that their number is independent of the
length of the input (graph and query) intervals. We see this as a useful step
towards integrating temporal navigation into database systems. An open ques-
tion is whether non-redundancy is tractable under this fourth representation, in
particular whether tractability for minimizing compact answers is regained.

Supplemental Material Statement. An extended version with proofs of our results
is available online, at https://arxiv.org/abs/2507.22143.

Acknowledgments. This research has been partially supported by the HEU project
CyclOps (GA n. 101135513), by the Province of Bolzano and FWF through project
OnTeGra (DOI 10.55776/PIN8884924), by the Province of Bolzano and EU through
projects ERDF-FESR 1078 CRIMA and ERDF-FESR 1047 Al-Lab, by MUR, through
the PRIN project 2022XERWK9 S-PIC4CHU, and by the EU and MUR through the
PNRR project PE0000013-FAIR.

https://arxiv.org/abs/2507.22143

Compact Answers to Temporal Path Queries 17

References

10.

11.

12.

13.

14.

15.

16.

17.

Al-Kateb, M., Mansour, E., El-Sharkawi, M.E.: CME: A temporal relational model
for efficient coalescing. In: Proc. of the 12th Int. Symp. on Temporal Representation
and Reasoning (TIME). pp. 83-90. IEEE Computer Society (2005)

Arenas, M., Bahamondes, P., Aghasadeghi, A., Stoyanovich, J.: Temporal regular
path queries. In: Proc. of the 38th IEEE Int. Conf. on Data Engineering (ICDE).
pp. 2412-2425. IEEE Computer Society (2022)

. Arenas, M., Bahamondes, P., Stoyanovich, J.: Temporal regular path queries:

Syntax, semantics, and complexity. CoRR Technical Report arXiv:2107.01241,
arXiv.org e-Print archive (2021), https://arxiv.org/abs/2107.01241, available at
https://arxiv.org/abs/2107.01241

Aupperle, L., Conn, H.E., Keil, J.M., O’Rourke, J.: Covering Orthogonal Polygons
with Squares. Johns Hopkins University, Department of Computer Science (1988)
Bohlen, M.H., Dignés, A., Gamper, J., Jensen, C.S.: Temporal data management
— An overview. In: Tutorial Lectures of the 7th European Summer School on Busi-
ness Intelligence and Big Data (eBISS). Lecture Notes in Business Information
Processing, vol. 324, pp. 51-83. Springer (2017)

Bohlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In:
Proc. of the 22nd Int. Conf. on Very Large Data Bases (VLDB). pp. 180-191 (1996)
Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis, M.: In-memory interval joins.
Very Large Database J. 30(4), 667691 (2021)

Cafagna, F., Bohlen, M.H.: Disjoint interval partitioning. Very Large Database J.
26(3), 447-466 (2017)

Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. J. of Algorithms 17(1),
2-44 (1994)

Dignés, A., Bohlen, M.H., Gamper, J.: Overlap interval partition join. In: Proc.
of the 35th ACM Int. Conf. on Management of Data (SIGMOD). pp. 1459-1470
(2014)

Dignoés, A., Bohlen, M.H., Gamper, J., Jensen, C.S., Moser, P.: Leveraging range
joins for the computation of overlap joins. Very Large Database J. 31(1), 75-99
(2022)

Dignés, A., Glavic, B., Niu, X., Gamper, J., Béhlen, M.H.: Snapshot semantics for
temporal multiset relations. Proc. of the VLDB Endowment 12(6), 639-652 (2019)
Enderle, J., Hampel, M., Seidl, T.: Joining interval data in relational databases.
In: Proc. of the 25th ACM Int. Conf. on Management of Data (SIGMOD). pp.
683-694 (2004)

Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In:
Revised Papers the 35th Int. Workshop on Graph-Theoretic Concepts in Computer
Science (WG). Lecture Notes in Computer Science, vol. 5911, pp. 1-16 (2009)
Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.: Cypher: An evolving query
language for property graphs. In: Proc. of the 39th ACM Int. Conf. on Management
of Data (SIGMOD). pp. 1433-1445 (2018)

Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal
databases. Very Large Database J. 14(1), 2-29 (2005)

Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation,
World Wide Web Consortium (Mar 2013), available at http://www.w3.org/ TR/
sparqgll1-query

https://arxiv.org/abs/2107.01241
https://arxiv.org/abs/2107.01241
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query

18

18.

19.

20.

21.

22.

23.

M. Adnan et al.

Jensen, C.S., Snodgrass, R.T.: Bitemporal relation. In: Encyclopedia of Database
Systems. Springer, 2nd edn. (2018)

Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Farber,
F., May, N.: Timeline index: a unified data structure for processing queries on
temporal data in SAP HANA. In: Proc. of the 34th ACM Int. Conf. on Management
of Data (SIGMOD). pp. 1173-1184 (2013)

Keil, J.M.: Minimally covering a horizontally convex orthogonal polygon. In: Proc.
of the 2nd Annual ACM SIGACT/SIGGRAPH Symposium on Computational
Geometry (SCG). pp. 43-51 (1986)

Piatov, D., Helmer, S., Dignos, A.: An interval join optimized for modern hardware.
In: Proc. of the 32th IEEE Int. Conf. on Data Engineering (ICDE). pp. 1098-1109.
IEEE Computer Society (2016)

Toman, D.: Point-based temporal extensions of SQL and their efficient implemen-
tation. In: Temporal Databases, Dagstuhl. Lecture Notes in Computer Science,
vol. 1399, pp. 211-237. Springer (1997)

Zhou, X., Wang, F., Zaniolo, C.: Efficient temporal coalescing query support in re-
lational database systems. In: Proc. of the 17th Int. Conf. on Database and Expert
Systems Applications (DEXA). Lecture Notes in Computer Science, vol. 4080, pp.
676-686. Springer (2006)

	Compact Answers to Temporal Path Queries

