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In April 2016, a community of researchers work-
ing in the area of Principles of Data Management
(PDM) joined in a workshop at the Dagstuhl Castle
in Germany. The workshop was organized jointly
by the Executive Committee of the ACM Sympo-
sium on Principles of Database Systems (PODS)
and the Council of the International Conference on
Database Theory (ICDT). The mission of the work-
shop was to identify and explore some of the most
important research directions that have high rele-
vance to society and to Computer Science today,
and where the PDM community has the potential to
make significant contributions. This article presents
a summary of the report created by the workshop
[4]. That report describes the family of research
directions that the workshop focused on from three
perspectives: potential practical relevance, results
already obtained, and research questions that ap-
pear surmountable in the short and medium term.
The report organizes the identified research chal-
lenges for PDM around seven core themes, namely
Managing Data at Scale, Multi-model Data, Uncer-
tain Information, Knowledge-enriched Data, Data
Management and Machine Learning, Process and
Data, and Ethics and Data Management. Since new
challenges in PDM arise all the time, we note that
this list of themes is not intended to be exclusive.

The Dagstuhl report is intended for a diverse
audience, ranging from funding agencies, to universi-
ties and industrial research labs, to researchers and
scientists who are exploring the many issues that
arise in modern data management. The report is
also intended for policy makers, sociologists, and
philosophers, because it re-iterates the importance
of considering ethics in many aspects of data cre-
ation, access, and usage, and suggests how research
can help to find new ways for maximizing the bene-
fits of massive data while nevertheless safeguarding
the privacy and integrity of citizens and societies.

The field of PDM is broad. It has ranged from the
development of formal frameworks for understanding
and managing data and knowledge (including data
models, query languages, ontologies, and transaction
models) to data structures and algorithms (includ-
ing query optimizations, data exchange mechanisms,
and privacy-preserving manipulations). Data man-
agement is at the heart of most IT applications today,
and will be a driving force in personal life, social
life, industry, and research for the foreseeable future.
We anticipate on-going expansion of PDM research
as the technology and applications involving data
management continue to grow and evolve.

PDM played a foundational role in the relational
database model, with the robust connection be-
tween algebraic and calculus-based query languages,
the connection between integrity constraints and
database design, key insights for the field of query
optimization, and the fundamentals of consistent
concurrent transactions. This early work included
rich cross-fertilization between PDM and other disci-
plines in mathematics and computer science, in-
cluding logic, complexity theory, and knowledge
representation. Since the 1990s we have seen an
overwhelming increase in both the production of
data and the ability to store and access such data.
This has led to a phenomenal metamorphosis in the
ways that we manage and use data. During this
time, we have gone (1) from stand-alone disk-based
databases to data that is spread across and linked
by the Web, (2) from rigidly structured towards
loosely structured data, and (3) from relational data
to many different data models (hierarchical, graph-
structured, data points, NoSQL, text data, image
data, etc.). Research on PDM has developed during
that time, too, following, accompanying and influ-
encing this process. It has intensified research on
extensions of the relational model (data exchange,
incomplete data, probabilistic data, . . . ), on other

SIGMOD Record, December 2016 (Vol. 45, No. 4) 5



data models (hierachical, semi-structured, graph,
text, . . . ), and on a variety of further data man-
agement areas, including knowledge representation
and the semantic web, data privacy and security,
and data-aware (business) processes. Along the way,
the PDM community expanded its cross-fertilization
with related areas, to include automata theory, web
services, parallel computation, document processing,
data structures, scientific workflow, business process
management, data-centered dynamic systems, data
mining, machine learning, information extraction,
etc.

Looking forward, three broad themes in data man-
agement stand out where principled, mathematical
thinking can bring new approaches and much-needed
clarity. The first relates to the overall lifecycle of
so-called “Big Data Analytics”, that is, the applica-
tion of statistical and machine learning techniques
to make sense out of, and derive value from, mas-
sive volumes of data. As documented in numerous
sources, so-called “data wrangling” can form 50%
to 80% of the labor costs in an analytics investi-
gation. As discussed in the Dagstuhl report, the
PDM research areas of Managing Data at Scale,
Knowledge-enriched Data, Multi-model Data, Un-
certain Information, and Data Management and
Machine Learning are all relevant to supporting
Big Data Analytics. The second broad theme of
data management where principled thinking can
help stems from new forms of data creation and pro-
cessing, especially as it arises in applications such as
web-based commerce, social media applications, and
data-aware workflow and business process manage-
ment. The PDM research areas of Multi-model Data,
Knowledge-enriched Data, Uncertain Information,
and Process and Data are all relevant to this theme.
These are providing approaches that make it easier
to understand and process the myriad kinds of data
and updates involved, and to enable higher degrees
of confidence in transactional software that is used
to process the data. The third broad theme, which is
just beginning to emerge, is the development of new
principles and approaches in support of ethical data
management. Emerging research suggests that the
use of mathematical principles in research on Ethics
and Data Management can lead to new approaches
to ensure data privacy for individuals, a broader
perspective on notions of “fair” data dissemination
and analysis, and compliance with government and
societal regulations at the corporate level.

The findings of the Dagstuhl report differ from,
and complement, the findings of the 2016 Beckman
Report [1] in two main aspects. Both reports stress
the importance of “Big Data” as the single largest

driving force in data management usage and re-
search in the current era. The current report focuses
primarily on research challenges where a mathemat-
ically based perspective has had and will continue
to have substantial impact. This includes for ex-
ample new algorithms for large-scale parallelized
query processing and Machine Learning, and mod-
els and languages for heterogeneous and uncertain
information. The current report also considers ad-
ditional areas where research into the principles of
data management can make growing contributions in
the coming years, including for example approaches
for combining data structured according to different
models, process taken together with data, and ethics
in data management.
The remainder of this article includes overviews

of the seven PDM research areas mentioned above,
and a concluding section with comments about the
road ahead for PDM research. The interested reader
is referred to the full Dagstuhl Report [4] for more
detail and references.

1. MANAGING DATA AT SCALE
Volume is still the most prominent feature of Big

Data. The PDM community, as well as the general
theoretical computer science community, has made
significant contributions to efficient data processing
at scale. Still, however, we face important practical
challenges such as the following:

New Paradigms for Multi-Way Join Processing.
A celebrated result by Atserias, Grohe, and Marx

[17] has sparked a flurry of research efforts in re-
examining how multi-way joins should be computed.
In all current relational database systems, a multi-
way join is processed in a pairwise framework using
a binary tree (plan), which is chosen by the query
optimizer. However, the recent theoretical studies
have discovered that for many queries and data in-
stances, even the best binary plan is suboptimal by
a large polynomial factor. Several worst-case algo-
rithms have been designed in different computation
models [70, 51, 20, 6], all of which have abandoned
the binary tree paradigm, while adopting a more
holistic approach. In particular, leapfrog join [87]
has been implemented inside a full-fledged database
system. We believe that these newly developed al-
gorithms have a potential to change how multi-way
join processing is currently done in database sys-
tems. Of course, this can only be achieved with
significant efforts for designing and implementing
new query optimizers and cost estimation under the
new paradigm.
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Approximate Query Processing.
The area of online aggregation [49] studies new

algorithms that allow to return approximate results
(with statistical guarantees) for analytical queries at
early stages of the processing, so that the user can
terminate it as soon as the accuracy is acceptable.
Recent studies have shown encouraging results [48,
61], but there is still much room for improvement:
(1) The existing algorithms have only used simple
random sampling or sample random walks to sample
from query results. More sophisticated techniques
based on Markov Chain Monte Carlo might be more
effective. (2) The streaming algorithms community
has developed many techniques to summarize large
data sets into compact data structures while pre-
serving properties of the data. These summarization
techniques can also be useful in approximate query
processing. (3) Integrating these techniques into
data processing engines is still a significant chal-
lenge.

These practical challenges raise the following the-
oretical challenges:

The Relationship Among Various Big Data Com-
putation Models.

The theoretical computer science community has
developed many beautiful models of computation
aimed at handling data sets that are too large for the
traditional random access machine (RAM) model,
the most prominent ones including parallel RAM
(PRAM), external memory (EM) model, streaming
model, the BSP model and its recent refinements
to model modern distributed architectures. Several
studies seem to suggest that there are deep connec-
tions between seemingly unrelated Big Data compu-
tation models for streaming computation, parallel
processing, and external memory, especially for the
class of problems interesting to the PDM community
(e.g., relational algebra) [80, 45, 58]. Investigating
this relationship would reveal the inherent nature
of these problems with respect to scalable computa-
tion, and would also allow us to leverage the rich set
of ideas and tools that the theory community has
developed over the decades.

The Communication Complexity of Parallel Query
Processing.

New large-scale data analytics systems use massive
parallelism to support complex queries on datasets.
These systems use clusters of servers and proceed in
multiple communication rounds. In these systems,
the communication cost is usually the bottleneck,
and therefore has become the main measure of com-
plexity for algorithms designed for these models.

Recent studies (e.g., [20]) have established tight
bounds on the communication cost for computing
join queries, but many questions remain open: (1)
The existing bounds are tight only for one-round
algorithms. However, new large-scale systems like
Spark have greatly improved the efficiency of multi-
round iterative computation, thus the one-round
limit seems unnecessary. The communication com-
plexity of multi-round computation remains largely
open. (2) The existing work has only focused on a
small set of queries (full conjunctive queries), while
many other types of queries remain unaddressed.
Broadly, there is great interest in large-scale machine
learning using these systems, thus it is important
to study the communication complexity of classical
machine learning tasks under these models. This is
developed in more detail in Section 5, which sum-
marizes research opportunites at the crossroads of
data management and machine learning.

We think that the following techniques will be use-
ful in handling these challenges: statistics, sampling
and approximation theory, communication complex-
ity, information theory, and convex optimization.

2. MULTI-MODEL DATA: AN OPEN
ECOSYSTEM OF DATA MODELS

Over the past 20 years, the landscape of available
data has dramatically changed. While the huge
amount of available data is perceived as a clear
asset, exploiting this data meets the challenges of
the “4 V’s” mentioned in the Introduction.
One particular aspect of the variety of data is

the existence and coexistence of different models for
semi-structured and unstructured data, in addition
to the widely used relational data model. Examples
include tree-structured data (XML, JSON), graph
data (RDF, property graphs, networks), tabular
data (CSV), temporal and spatial data, text, and
multimedia. We can expect that in the near future,
new data models will arise in order to cover particu-
lar needs. Importantly, data models include not only
a data structuring paradigm, but also approaches
for queries, updates, integrity constraints, views,
integration, and transformation, among others.

Following the success of the relational data model,
originating from the close interaction between theory
and practice, the PDM community has been working
for many years towards understanding each one of
the aforementioned models formally. Classical DB
topics—schema and query languages, query evalu-
ation and optimization, incremental processing of
evolving data, dealing with inconsistency and incom-
pleteness, data integration and exchange, etc.—have
been revisited. This line of work has been successful
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from both the theoretical and practical points of
view. As these questions are not yet fully answered
for the existing data models and will be asked again
whenever new models arise, it will continue to offer
practically relevant theoretical challenges. But what
we view as a new grand challenge is the coexistence
and interconnection of all these models, complicated
further by the need to be prepared to embrace new
models at any time.
The coexistence of different data models resem-

bles the fundamental problem of data heterogeneity
within the relational model, which arises when se-
mantically related data is organized under different
schemas. This problem has been tackled by data
integration and data exchange, but since these clas-
sical solutions have been proposed, the nature of
available data has changed dramatically, making the
questions open again. This is particularly evident
in the Web scenario, where not only the data comes
in huge amounts, in different formats, is distributed,
and changes constantly, but also it comes with very
little information about its structure and almost no
control of the sources. Thus, while the existence and
coexistence of various data models is not new, the
recent changes in the nature of available data raise
a strong need for a new principled approach for deal-
ing with different data models: an approach flexible
enough to allow keeping the data in their original
format (and be open for new formats), while still
providing a convenient unique interface to handle
data from different sources. It faces the following
four specific practical challenges.

Modelling Data.
How does one turn raw data into a database?

Could we create methodologies allowing engineers
to design a new data model?

Understanding Data.
How does one make sense of the data? Could we

help the user and systems to understand the data
without first discovering its structure in full?

Accessing Data.
How does one extract information? How can we

help users formulate queries in a more uniform way?

Processing Data.
How does one evaluate queries efficiently?

These practical challenges raise concrete theoret-
ical problems, some of which go beyond the tradi-
tional scope of PDM. Within PDM, the key theoret-
ical challenges are the following.

Schema Languages.
Design flexible and robust multi-model schema

languages. Multi-model schema languages should
offer a uniform treatment of different models, the
ability to describe mappings between models (im-
plementing different views on the same data, in
the spirit of data integration), and the flexibility to
seamlessly incorporate new models as they emerge.

Schema Extraction.
Provide efficient algorithms to extract schemas

from the data, or at least discover partial struc-
tural information (cf. [23, 26]). The long-standing
challenge of entity resolution is exacerbated in the
context of finding correspondences between data sets
structured according to different models [85].

Visualization of Data and Metadata.
Develop user-friendly paradigms for presenting

the metadata information and statistical properties
of the data in a way that helps in formulating queries.
This requires understanding and defining what the
relevant information in a given context is, and rep-
resenting it in a way allowing efficient updates as
the context changes (cf. [30, 15]).

Query Languages.
Go beyond bespoke query languages for the spe-

cific data models [13] and design a query language
suitable for multi-model data, either incorporating
the specialized query languages as sub-languages or
offering a uniform approach to querying, possibly
at the cost of reduced expressive power or higher
complexity.

Evaluation and Optimization.
Provide efficient algorithms for computing mean-

ingful answers to a query, based on structural in-
formation about data, both inter-model and intra-
model; this can be tackled either directly [56, 46] or
via static optimization [21, 33].

All these problems require strong tools from PDM
and theoretical computer science in general (com-
plexity, logic, automata, etc.). But solving them will
also involve knowledge and techniques from neigh-
boring communities. For example, the second, third
and fifth challenges naturally involve data mining
and machine learning aspects (see Section 5). The
first, second, and third raise knowledge representa-
tion issues (see Section 4). The first and fourth will
require expertise in programming languages. The
fifth is at the interface between PDM and algorithms,
but also between PDM and systems. The third raises
human-computer interaction issues.

8 SIGMOD Record, December 2016 (Vol. 45, No. 4)



3. UNCERTAIN INFORMATION
Incomplete, uncertain, and inconsistent informa-

tion is ubiquitous in data management applications.
This was recognized already in the 1970s [32], and
since then the significance of the issues related to
incompleteness and uncertainty has been steadily
growing: it is a fact of life that data we need to han-
dle on an everyday basis is rarely complete. How-
ever, while the data management field developed
techniques specifically for handling incomplete data,
their current state leaves much to be desired, both
theoretically and practically. Even after 40+ years of
relational technology, when evaluating SQL queries
over incomplete databases one gets results that make
people say “you can never trust the answers you get
from [an incomplete] database” [34]. In fact we know
that SQL can produce every type of error imaginable
when nulls are present [63].

On the theory side, we appear to have a good
understanding of what is needed in order to pro-
duce correct results: computing certain answers to
queries. These are answers that are true in all com-
plete databases that are compatible with the given
incomplete database. This idea, that dates back to
the late 1970s as well, has become the way of provid-
ing query answers in all applications, from classical
databases with incomplete information [53] to new
applications such as data integration and exchange
[59, 14], consistent query answering [22], ontology-
based data access [29], and others. The reason these
ideas have found limited application in mainstream
database systems is their complexity. Typically, an-
swering queries over incomplete databases with cer-
tainty can be done efficiently for conjunctive queries
or some closely related classes, but beyond the com-
plexity quickly grows to intractable – and sometimes
even undecidable, see [62]. Since this cannot be tol-
erated by real life systems, they resort to ad hoc
solutions, which go for efficiency and sacrifice correct-
ness; thus bizarre and unexpected behavior occurs.

While even basic problems related to incomplete-
ness in relational databases remain unsolved, we now
constantly deal with more varied types of incomplete
and inconsistent data. A prominent example is that
of probabilistic databases [81], where the confidence
in a query answer is the total weight of the worlds
that support the answer. Just like certain answers,
computing exact answer probabilities is usually in-
tractable, and yet it has been the focus of theoretical
research.
The key challenge in addressing the problem of

handling incomplete and uncertain data is to pro-
vide theoretical solutions that are usable in practice.
Instead of proving more impossibility results, the

field should urgently address what can actually be
done efficiently.

Making theoretical results applicable in practice
is the biggest practical challenge for incomplete and
uncertain data. To move away from the focus on
intractability and to produce results of practical
relevance, the PDM community needs to address
several challenges.

RDBMS Technology in the Presence of Incomplete
Data.
It must be capable of finding query answers one

can trust, and do so efficiently. But how do we
find good quality query answers with correctness
guarantees when we have theoretical intractability?
For this we need new approximation schemes, quite
different from those that have traditionally been
used in the database field. Such schemes should
provide guarantees that answers can be trusted, and
should also be implementable using existing RDBMS
technology.

Models of Uncertainty.
What is provided by current practical solutions

is rather limited. Looking at relational databases,
we know that they try to model everything with
primitive null values, but this is clearly insufficient.
We need to understand types of uncertainty that
need to be modeled and introduce appropriate rep-
resentation mechanisms.

Benchmarks for Uncertain Data.
What should we use as benchmarks when working

with incomplete/uncertain data? Quite amazingly,
this has not been addressed; in fact standard bench-
marks tend to just ignore incomplete data, making
it hard to test efficiency of solutions in practice.

Handling Inconsistent Data.
How do we make handling inconsistency (in partic-

ular, consistent query answering) work in practice?
How do we use it in data cleaning? Again, there
are many strong theoretical results here, but they
concentrate primarily on tractability boundaries and
various complexity dichotomies for subclasses of con-
junctive queries, rather than practicality of query
answering techniques. There are promising works
on enriching theoretical repairs with user prefer-
ences [78], or ontologies [44], along the lines of ap-
proaches described in Section 4, but much more
foundational work needs to be done before they can
get to the level of practical tools.

Handling Probabilistic Data.
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The common models of probabilistic databases are
arguably simpler and more restricted than the mod-
els studied by the Statistics and Machine Learning
communities. Yet common complex models can be
simulated by probabilistic databases if one can sup-
port expressive query languages [55]; hence, model
complexity can be exchanged for query complex-
ity. Therefore, it is of great importance to develop
techniques for approximate query answering, on ex-
pressive query languages, over large volumes of data,
with practical execution costs.

The theoretical challenges can be split into three
groups.

Modeling.
We need to provide a solid theoretic basis for the

practical modeling challenge above; this means un-
derstanding different types of uncertainty and their
representations. As with any type of information
stored in databases, there are lots of questions for
the PDM community to work on, related to data
structures, indexing techniques, and so on.

Reasoning.
There is much work on this subject; see Section

4 concerning the need to develop next-generation
reasoning tools for data management tasks. When
it comes to using such tools with incomplete and
uncertain data, the key challenges are: How do we
do inference with incomplete data? How do we
integrate different types of uncertainty? How do we
learn queries on uncertain data? What do query
answers actually tell us if we run queries on data that
is uncertain? That is, how results can be generalized
from a concrete incomplete data set.

Algorithms.
To overcome high complexity, we often need to

resort to approximate algorithms, but approxima-
tion techniques are different from the standard ones
used in databases, as they do not just speed up
evaluation but rather ensure correctness. The need
for such approximations leads to a host of theoreti-
cal challenges. How do we devise such algorithms?
How do we express correctness in relational data
and beyond? How do we measure the quality of
query answers? How do we take user preferences
into account?

4. KNOWLEDGE-ENRICHED DATA
MANAGEMENT

Over the past two decades we have witnessed a
gradual shift from a world where most data used
by companies and organizations was regularly struc-

tured, neatly organized in relational databases, and
treated as complete, to a world where data is het-
erogenous and distributed, and can no longer be
treated as complete. Moreover, not only do we have
massive amounts of data; we also have very large
amounts of rich knowledge about the application
domain of the data, in the form of taxonomies or
full-fledged ontologies, and rules about how the data
should be interpreted, among other things. Tech-
niques and tools for managing such complex infor-
mation have been studied extensively in Knowledge
Representation, a subarea of Artificial Intelligence.
In particular logic-based formalisms, such as descrip-
tion logics and different rule-based languages, have
been proposed and associated reasoning mechanisms
have been developed. However, work in this area
did not put a strong emphasis on the traditional
challenges of data management, namely huge vol-
umes of data, and the need to specify and perform
complex operations on the data efficiently, including
both queries and updates.
Both practical and theoretical challenges arise

when rich domain-specific knowledge is combined
with large amounts of data and the traditional data
management requirements, and the techniques and
approaches coming from the PDM community will
provide important tools to address them. We discuss
first the practical challenges.

Providing End Users with Flexible and Integrated
Access to Data.
A key requirement in dealing with complex, dis-

tributed, and heterogeneous data is to give end users
the ability to directly manage such data. This is a
challenge since end users might have deep expertise
about a specific domain of interest, but in general
are not data management experts. Ontology-based
data management has been proposed recently as a
general paradigm to address this challenge.

Ensuring Interoperability at the Level of Systems
Exchanging Data.
Enriching data with knowledge is not only rele-

vant for providing end-user access, but also enables
direct inter-operation between systems, based on
the exchange of data and knowledge at the system
level. A specific area where this is starting to play
an important role is e-commerce, where standard
ontologies are already available [50].

Personalized and Context-Aware Data Access and
Management.

Information is increasingly individualized and only
fragments of the available data and knowledge might
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be relevant in specific situations or for specific users.
Heterogeneity needs to be dealt with, both with re-
spect to the modeling formalism and with respect to
the modeling structures chosen to capture a specific
real-world phenomenon.

Bringing Knowledge to Data Analytics and Data
Extraction.
Increasing amounts of data are being collected

to perform complex analysis and predictions. Cur-
rently, such operations are mostly based on data
in “raw” form, but there is a huge potential for
increasing their effectiveness by enriching and com-
plementing such data with domain knowledge, and
leveraging this knowledge during the data analytics
and extraction process.

Making the Management User Friendly.
Systems combining large amounts of data with

complex knowledge are themselves very complex,
and thus difficult to design and maintain. Appro-
priate tools that support all phases of the life-cycle
of such systems need to be designed and developed,
based on novel user interfaces for the various com-
ponents.

To provide adequate solutions to the above prac-
tical challenges, several key theoretical challenges
need to be addressed, requiring a blend of formal
techniques and tools traditionally studied in data
management, with those typically adopted in knowl-
edge representation in AI.

Development of Reasoning-Tuned DB Systems.
Such systems will require new/improved database

engines optimized for reasoning over large amounts
of data and knowledge, able to compute both crisp
and approximate answers, and to perform distributed
reasoning and query evaluation.

Choosing/Designing the Right Languages.
The languages and formalisms adopted in the var-

ious components of knowledge-enriched data man-
agement systems have to support different types of
knowledge and data, e.g., mixing open and closed
world assumption, and allowing for representing tem-
poral, spatial, and other modalities of information
[27, 18, 25, 16, 69].

New Measures of Complexity.
To appropriately assess the performance of such

systems and be able to distinguish easy cases that
seem to work well in practice from difficult ones, al-
ternative complexity measures are required that go
beyond the traditional worst-case complexity. These

might include suitable forms of average case or pa-
rameterized complexity, complexity taking into ac-
count data distribution (on the Web), and forms of
smoothed analysis.

Next-Generation Reasoning Services.
The kinds of reasoning services that become neces-

sary in the context of knowledge-enriched data man-
agement applications go well beyond traditional rea-
soning studied in knowledge representation, which
typically consists of consistency checking, classifi-
cation, and retrieval of class instances. The forms
of reasoning that are required include processing of
complex forms of queries in the presence of knowl-
edge, explanation (which can be considered as a
generalization of provenance), abductive reasoning,
hypothetical reasoning, inconsistency-tolerant rea-
soning, and defeasible reasoning to deal with excep-
tions.

Incorporating Temporal and Dynamic Aspects.
A key challenge is represented by the fact that

data and knowledge is not static, and changes over
time, e.g., due to updates on the data while taking
into account knowledge, forms of streaming data,
and more in general data manipulated by processes.
Dealing with dynamicity and providing forms of
inference (e.g., formal verification) in the presence
of both data and knowledge is extremely challenging
and will require the development of novel techniques
and tools [28, 16].

In summary, incorporating domain-specific knowl-
edge to data management is both a great opportunity
and a major challenge. It opens up huge possibili-
ties for making data-centric systems more intelligent,
flexible, and reliable, but entails computational and
technical challenges that need to be overcome. We
believe that much can be achieved in the coming
years. Indeed, the increasing interaction of the PDM
and the Knowledge Representation communities has
been very fruitful, particularly by attempting to un-
derstand the similarities and differences between the
formalisms and techniques used in both areas, and
obtaining new results building on mutual insights.
Further bridging this gap by the close collaboration
of both areas appears as the most promising way of
fulfilling the promises of Knowledge-enriched Data
Management.

5. DATA MANAGEMENT AND MACHINE
LEARNING

We believe that Data Management (DM) and Ma-
chine Learning (ML) can mutually benefit from each
other. Nowadays, systems that emerge from the
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ML community are strong in their capabilities of
statistical reasoning, and systems that emerge from
the DM community are strong in their support for
semantics, maintenance and scale. This complemen-
tarity in assets is accompanied by a difference in the
core mechanisms: the PDM community has largely
adopted methodologies driven by logic, while the
ML community centralized around probability and
statistics. Yet, modern applications require systems
that are strong in both aspects, providing a thor-
ough and sophisticated management of data while
incorporating its inherent statistical nature.
We envision a plethora of research opportunities

in the intersection of PDM and ML. We outline
several directions, which we classify into two cate-
gories: DM for ML and ML for DM. The required
methodologies and formal foundations span a vari-
ety of related fields such as logic, formal languages,
computational complexity, statistical analysis, and
distributed computing.

Category DM for ML
Key challenges in this area are as follows.

Feature Generation and Engineering.
Feature engineering refers to the challenge of de-

signing and extracting signals to provide to the
general-purpose ML algorithm at hand, in order
to properly perform the desired operation. This is a
critical and time-consuming task [57], and a central
theme of modern ML methodologies. Unlike usual
ML algorithms that view features as numerical val-
ues, the database has access to, and understanding
of, the queries that transform raw data into these
features. Thus, PDM can contribute to feature en-
gineering in various ways, especially on a semantic
level, and provide solutions to problems such as the
following: How to develop effective languages for
query-based feature creation? How to use such lan-
guages for designing a set of complementary features
optimally suited for the ML task at hand? Is a given
language suitable for a certain ML task? Important
criteria for the goodness of a feature language in-
clude the risks of under/overfitting the training data,
as well as the computational complexity of evalu-
ation. The PDM community has already studied
problems of a similar nature [47].
The promise of deep (neural network) learning

brings substantial hope for reducing the effort in
manual feature engineering. Is there a general way
of solving ML tasks by applying deep learning di-
rectly to the database (as has already been done, for
example, with semantic hashing [74])? Can database
queries (of different languages) complement neural

networks by means of expressiveness and/or effi-
ciency?

Large-Scale Machine Learning.
Machine learning is nowadays applied to massive

data sets of considerable size, including potentially
unbounded streams of data. Under such conditions,
an effective data management and the use of ap-
propriate data structures that offer the learning
algorithm fast access to the data are major prereq-
uisites for realizing model induction and inference
in an efficient manner [72]. Research along this di-
rection has amplified in recent years and includes,
for example, the use of hashing [88], Bloom filters
[31], tree-based data structures [38] in learning al-
gorithms. Related to this is work on distributed
machine learning, where data storage and compu-
tation is accomplished in a network of distributed
units [7], and the support of machine learning by
data stream management systems [67].

Complexity Analysis.
The PDM community has established a strong

machinery for fine-grained analysis of querying com-
plexity; see, e.g., [10]. Complexity analysis of such
granularity is highly desirable for the ML commu-
nity, especially for analyzing learning algorithms
that involve various parameters like I/O dimension,
and number of training examples [54]. Results along
this direction, connecting DM querying complex-
ity and ML training complexity, have been recently
shown [75].

Category ML for DM
Data management systems support a core set of
querying operators (e.g., relational algebra, group-
ing and aggregate functions, recursion) that are con-
sidered as the common requirement of applications.
We believe that this core set should be revisited, and
specifically that it should be extended with common
ML operators.
Incorporating ML features is a natural evolution

for PDM. Database systems with such features have
already been developed [77, 12]. Query languages
have traditionally been designed with emphasis on
being declarative: a query states how the answer
should logically relate to the database, not how it is
to be computed algorithmically. Incorporating ML
introduces a higher level of declarativity, where one
states how the end result should behave (via exam-
ples), but not necessarily which query is deployed
for the task. In that spirit, we propose the following
directions for PDM research.
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Unified Models.
An important role of the PDM community is in es-

tablishing common formalisms and semantics for the
database community. It is therefore an important op-
portunity to establish the “relational algebra” of data
management systems with built-in ML/statistics op-
erators.

Lossy Optimization.
From the early days, the focus of the PDM commu-

nity has been on lossless optimization, i.e., optimiza-
tion that does not modify the final result [76, 89]. As
mentioned in Section 1, in some scenarios it makes
sense to apply lossy optimization that guarantees
only an approximation of the answer. Incorporating
ML into the query model gives further opportunities
for lossy optimization, as training paradigms are
typically associated with built-in quality (or “risk”)
functions. Hence, we may consider reducing the
execution cost if it entails a bounded impact on the
quality of the end result [9].

Confidence Estimation.
Once statistical and ML components are incor-

porated in a data management system, it becomes
crucial to properly estimate the confidence in query
answers [77]. It is then an important direction to
establish probabilistic models that capture the com-
bined process and allow to estimate probabilities of
end results. For example, by applying the notion
of the VC-dimension, an important theoretical con-
cept in generalization theory, to database queries,
Riondato et al. [73] provide accurate bounds for their
selectivity estimates that hold with high probability.
This direction can leverage the past decade of re-
search on probabilistic databases [82], which can be
combined with theoretical frameworks of machine
learning, such as PAC learning [86].

6. PROCESS AND DATA
Many forms of data evolve over time, and most

processes access and modify data sets. Industry
works with massive volumes of evolving data, primar-
ily in the form of transactional systems and Business
Process Management (BPM) systems. Over the past
half century, computer science research has studied
foundational issues of process and of data mainly
as separated phenomena, but research into basic
questions about systems that combine process and
data has been growing over the past decade. Two
key areas where data and process have been stud-
ied together are scientific workflows and data-aware
BPM [52].

In the 1990’s and 00’s, foundational research in sci-

entific workflow helped to establish the basic frame-
works for supporting these workflows, to enable the
systematic recording and use of provenance informa-
tion, and to support systems for exploration that
involve multiple runs of a workflow with varying
configurations [36].
Foundational work on data-aware BPM began

in the mid-00’s [24, 41], enabled in part by IBM’s
“Business Artifacts” model for business process [71],
that combines data and process in a holistic manner.
Deutch and Milo [39] provide a survey and compari-
son of several of the most important early models
and results on process and data. One variant of the
business artifact model has provided the conceptual
basis for the recent OMG Case Management Model
and Notation (CMMN) standard [65]. Rich work
on verification for data-aware processes has emerged
[28, 40], and the artifact-based perspective is en-
abling an approach to managing the interaction of
business processes and legacy data systems [83].

Foundational work in the area of process and data
has the potential for continued and expanded impact
in the following six practical challenge areas.

Automating Manual Processes.
While many business processes have been auto-

mated using techniques from the BPM field, there
are many other processes that are still manual – of-
ten because high levels of variation make it cost
prohibitive to automate using current techniques.

Evolution and Migration of Business Processes.
Managing change of business processes remains

largely manual, highly expensive, time consuming,
and risk-prone.

Business Process Compliance and Correctness.
Compliance with government regulations and cor-

porate policies is a rapidly growing challenge, e.g.,
as governments attempt to enforce policies around
financial stability and data privacy. Ensuring com-
pliance is largely manual today, and involves un-
derstanding how regulations can impact or define
portions of business processes, and then verifying
that process executions will comply.

Business Process Interaction and Interoperation.
Managing business processes that flow across en-

terprise boundaries has become increasingly impor-
tant with globalization of business and the splinter-
ing of business activities across numerous companies.
The recent industrial interest in shared ledger tech-
nologies, e.g., Blockchain, highlights the importance
of this area.
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Business Process Discovery and Understanding.
The field of Business Intelligence, which provides

techniques for mining and analyzing information
about business operations, is essential to business
success, but is today based on a broad variety of
largely ad hoc and manual techniques [37].

Workflow and Business Process Usability.
Enabling people to understand and work effec-

tively to manage large numbers of process definitions
and process instances remains elusive, especially
when considering the interactions between process,
data (both newly created and legacy), resources, the
workforce, and business partners.

The above practical BPM challenges raise key re-
search challenges that need to be addressed using
approaches that include mathematical and algorith-
mic frameworks and tools.

Verification and Static Analysis.
Because of the infinite state space inherent in

data-aware processes [28, 40], verification currently
relies on faithful abstractions reducing the prob-
lem to classical finite-state model checking. Further
work is needed to develop more powerful abstrac-
tions, address new application areas, enable incre-
mental verification techniques, and enable modular
styles of verification that support “plug and play”
approaches.

Tools for Design and Synthesis.
Although compilers and relational database de-

sign have both benefited from solid mathematical
foundations (context free grammars and dependency
theory, respectively), there is still no robust frame-
work that supports principled design of business
processes in the larger context of data, resources,
and workforce.

Models and Semantics for Views, Interaction, and
Interoperation.

A robust theory of views for data-aware business
processes has the potential to enable substantial
advances in the simplification of process comparison,
process composition, process interoperation, process
out-sourcing, and process privacy (e.g., see [3]).

Analytics for Business Processes.
The new, more holistic perspective of data-aware

processes can help to provide a new foundation for
the field of business intelligence, including new ap-
proaches for instrumenting processes to simplify data
discovery [64], and new styles of modularity and hi-
erarchy in both the processes and the analytics on

them.
Research in process and data will require on-going

extensions of the traditional approaches, on both the
database and process-centric sides, and also exten-
sions along the lines just mentioned. A new foun-
dational model for modern BPM may emerge, which
builds on the artifact and shared-ledger approaches
but facilitates a multi-perspective understanding,
analogous to the way relational algebra and calculus
provide two perspectives on data querying.
One cautionary note is that research in the area

of process and data today is hampered by a lack of
large sets of examples, e.g., sets of process schemas
that include explicit specifications concerning data,
and process histories that include how data sets
were used and affected. More broadly, increased col-
laboration between PDM researchers, applied BPM
researchers, and businesses would enable more rapid
progress towards resolving the concrete problems in
BPM faced by industry today.

7. HUMAN-RELATED DATA & ETHICS
More and more “human-related” data is massively

generated, in particular on the Web and in phone
apps. Massive data analysis, using data parallelism
and machine learning techniques, is applied to this
data to generate more data. We, individually and
collectively, are losing control over this data. We
do not know the answers to questions as important
as: Is my medical data really available so that I get
proper treatment? Is it properly protected? Can a
private company like Google or Facebook influence
the outcome of national elections? Should I trust
the statistics I find on the Web about the crime rate
in my neighborhood?

Although we keep eagerly consuming and enjoying
more new Web services and phone apps, we have
growing concerns about criminal behavior on the
Web, including racist, terrorist, and pedophile sites;
identity theft; cyber-bullying; and cyber crime. We
are also feeling growing resentment against intrusive
government practices such as massive e-surveillance
even in democratic countries, and against aggres-
sive company behaviors such as invasive marketing,
unexpected personalization, and cryptic or discrimi-
natory business decisions.

Societal impact of big data technologies is receiv-
ing significant attention in the popular press [11],
and is under active investigation by policy mak-
ers [68] and legal scholars [19]. It is broadly rec-
ognized that this technology has the potential to
improve people’s lives, accelerate scientific discovery
and innovation, and bring about positive societal
change. It is also clear that the same technology
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can in effect limit business faithfulness to legal and
ethical norms.And while many of the issues are polit-
ical and economical, technology solutions must play
an important role in enabling our society to reap
ever-greater benefits from big data, while keeping it
safe from the risks.

We believe that the main inspiration for the data
management field in the 21st century comes from
the management of human-related data, with an em-
phasis on solutions that satisfy ethical requirements.

In the remainder of this section, we will present
several facets of ethical data management.

Responsible Data Analysis.
Human-related data analysis needs to be “respon-

sible” — to be guided by humanistic considerations
and not simply by performance or by the quest for
profit. The notion of responsible data analysis is
considered generally in [79] and was the subject of a
recent Dagstuhl seminar [5]. We now outline several
important aspects of the problem, especially those
where we see opportunities for involvement by PDM.
Fairness. Responsible data analysis requires that
both the raw data and the computation be “fair”,
i.e. not biased [43]. There is currently no consensus
as to which classes of fairness measures, and which
specific formulations, are appropriate for various
data analysis tasks. Work is needed to formalize the
measures and understand the relationships between
them.
Transparency and accountability. Responsible data
analysis practices must be transparent [35, 84], al-
lowing a variety of stakeholders, such as end-users,
commercial competitors, policy makers, and the
public, to scrutinize the data collection and analysis
processes, and to interpret the outcomes. Interest-
ing research challenges that can be tackled by PDM
include using provenance to shed light on data col-
lection and analysis practices, supporting semantic
interrogation of data analysis methods and pipelines,
and providing explanations in various contexts, in-
cluding knowledge-based systems and deep learning.
Diversity. Big data technology poses significant risks
to those it overlooks [60]. Diversity [8, 42] requires
that not all attention be devoted to a limited set
of objects, actors or needs. The PDM community
can contribute, for instance, to understanding the
connections between diversity and fairness, and to
develop methods to manage trade-offs between di-
versity and conventional measures of accuracy.

Verifying Data Responsibility.
A grand challenge for the community is to de-

velop verification technology to enable a new era of

responsible data. One can envision research towards
developing tools to help users understand data anal-
ysis results (e.g., on the Web), and to verify them.
One can also envision tools that help analysts, who
are typically not computer scientists nor experts in
statistics, to realize responsible data analysis “by
design”.

Data Quality and Access Control on the Web.
The evaluation of data quality on the Web is an

issue of paramount importance when our lives are
increasingly guided and determined by data found
on the Web. We would like to know whether we can
trust particular data we found. Research is needed
towards supporting access control on the Web. It
may build for instance on cryptography, blockchain
technology, or distributed access control [66].

Personal Information Management Systems.
A Personal Information Management System is a

(cloud) system that manages all the information of a
person. By returning part of the data control to the
person, these systems tend to better protect privacy,
re-balance the relationship between a person and
the major internet companies in favor of the person,
and in general facilitate the protection of ethical
values [2].

Ethical data management raises new issues for
computer science in general and for data manage-
ment in particular. Because the data of interest is
typically human-related, the research also includes
aspects from other sciences, notably, cognitive sci-
ence, psychology, neuroscience, linguistics, sociology,
and political sciences. The ethics component also
leads to philosophical considerations. In this setting,
researchers have a chance for major societal impact,
and so they need to interact with policy makers
and regulators, as well as with the media and user
organizations.

8. LOOKING FORWARD
As illustrated in the preceding sections, the princi-

pled, mathematically-based approach to the study of
data management problems is providing conceptual
foundations, deep insights, and much-needed clarity.
This report describes a representative, but by no
means exhaustive, family of areas where research
on the Principles of Data Management (PDM) can
help to shape our overall approach to working with
data as it arises across an increasingly broad array
of application areas.

The Dagstuhl workshop highlighted two important
trends that have been accelerating in the PDM com-
munity over the past several years. The first is the
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increasing embrace of neighboring disciplines, includ-
ing especially Machine Learning, Statistics, Prob-
ability, and Verification, both to help resolve new
challenges, and to bring new perspectives to them.
The second is the increased focus on obtaining posi-
tive results, that enable the use of mathematically-
based insights in practical settings. We expect and
encourage these trends to continue in the coming
years.

The need for precise and robust approaches for
increasingly varied forms of data management con-
tinues to intensify, given the fundamental and trans-
formational role of data in our modern society, and
given the continued expansion of technical, concep-
tual, and ethical data management challenges. There
is an associated and on-going expansion in the family
of approaches and techniques that will be relevant to
PDM research. The centrality of data management
across numerous application areas is an opportunity
both for PDM researchers to embrace techniques
and perspectives from adjoining research areas, and
for researchers from other areas to incorporate tech-
niques and perspectives from PDM. Indeed, we hope
that this report can substantially strengthen cross-
disciplinary research between the PDM and neigh-
boring theoretical communities and, moreover, the
applied and systems research communities across
the many application areas that rely on data in one
form or another.
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