
Praxis Critical Systems

SPARK

A successful contribution to the
Lockheed C130-J Hercules II

The C130J Hercules II
When the Lockheed Martin Aeronautical Systems Company decided to re-invent the Hercules—
one of the most long-lived and successful aircraft in the world—they set themselves a tough
challenge. Much of the advance they were seeking would come from new avionics which meant
new software, especially the Operational Flight Programs (OFPs); this software would have to
satisfy both civil and military certification requirements including any special needs of customer
countries. Furthermore, the development was internally funded so these exacting requirements had
to be reconciled with controlling cost.

The LMASC Process
Lockheed challenged the very concept of there being a trade-off between software integrity and
cost and sought ways where the necessary integrity could be achieved at low cost. The
‘correctness by construction’ approach they evolved is described in the attached paper “Breaking
through the V&V bottleneck”.

The Involvement of Praxis and SPARK
Part way through the OFP design phase the C130J was selected for purchase by the UK Ministry of
Defence (MoD) who expressed particular requirements for software verification which involved the
extensive use of static analysis. To meet this need, Lockheed contacted a number of UK software
verification companies including Program Validation Limited (now part of Praxis Critical Systems).
Here they learned of SPARK—a formally-specified, secure and verifiable subset of Ada—and its
support tool the Examiner. The use of SPARK offered a way for Lockheed to continue the win-
win, correctness-by-construction approach they had developed right down to code level, to close
the loop of their process by linking development formality with production formality and to meet
the MoD’s verification requirements at low cost.

The Lockheed process was extended to include coding in SPARK and static analysis with the
Examiner prior to compilation and test. Major benefits included greatly reduced testing effort since
static analysis had eliminated many errors earlier, and therefore more cheaply, in the development
process. The very demanding and costly testing required for FAA certification became more of a
confirmation of correctness than a search for problems and repetition was significantly reduced.

Because SPARK was introduced part way the through development process Lockheed were able
clearly to identify the benefits it brought. In one example, a coding error that had resisted diagnosis
during a week of testing was identified within minutes once the code had been converted to SPARK.

artale
Highlight

artale
Highlight

artale
Highlight

Aerosystems International IV&V Results
Following the successful certification of the aircraft, AeroSystems International of the UK were
contracted to conduct an extensive, retrospective static analysis and verification activity on all the
aircraft’s software systems.

The results make sobering reading:

• Significant, safety-critical errors were found by static analysis in code, following its
certification to DO-178B Level A.

• SPARK code which had been subject to only the simplest form of static analysis with the
Examiner exhibited only one tenth the residual error rate of code written in Ada

• The residual error rate of the Ada was a further one tenth that of the code written in C.

• The application of SPARK’s proof technology (a verification activity not originally performed
by Lockheed) was shown to be cheaper than the other forms of static analysis performed.

• No statistically significant difference in residual error rate could be found between
DO-178B Level A and Level B code.

The Lockheed C27J
After the success of the C130J project, Lockheed re-used their now mature SPARK-based process
on the smaller C27J aircraft. At SIGAda 2000 their experience was presented in a half-day
workshop “Cost-Effective Approaches to Satisfying Safety-Critical Regulator Requirements”.

The workshop started by re-iterating the benefits that SPARK and correctness by construction had
facilitated on the C130J. These were given as:

• Code quality improved by a factor of 10 over industry norms for DO 178B Level A
software.

• Productivity improved by a factor of 4 over previous comparable programs.

• Development costs half of that typical for non safety-critical code.

For the more recent C27J project where the process was well-established and where some code
re-use was achieved, Lockheed claimed a further productivity improvement of 4 compared to the
C130J program; this represents a 16 fold productivity improvement overall.

artale
Highlight

Lockheed on SPARK

SPARK … provides an exceptionally strong means of implementing the line of business
paradigm.

Almost every line of business goal is directly supported by the use of SPARK.

Some errors immediately uncovered by formal analysis, such as conditional initialization
errors, may only emerge after very extensive testing.

The technology for generating and discharging the proof obligations, based on the
SPARK components of Ada, was crucial, in binding the code to the initial requirements.

SPARK is more ambitious and rigorous [than C-SMART], with more centrality to the
line of business process.

SPARK provides an extremely robust and efficient basis for formal verification.

The process has proven effective with typical software developers and did not
necessitate and inordinate amount of additional training.

Experience has shown that SPARK coding occurs at near typical Ada rates.

Code written in SPARK is deterministic and inherently statically analyzable.

Very few errors have been found in the software during even the most rigorous levels
of FAA testing, which is being successfully conducted for less than a fifth of the normal
cost in industry.

Correctness by construction is no longer a theoretical abstraction; it is now a practical
way to develop software that exceeds its technical goals while delivering sterling
business performance.

SPARK Resources and Contacts

The Praxis Critical Systems corporate homepage: www.praxis-cs.co.uk

The SPARK language and tools homepage: www.sparkada.com

Enquiries: sparkinfo@praxis-cs.co.uk

Praxis Critical Systems, 20 Manvers Street, Bath BA1 1PX, England
Tel: +44 (0)1225 466991 Fax: +44 (0)1225 469006

Breaking Through the V and V Bottleneck

 Martin Croxford † and James Sutton ‡

† Praxis Critical Systems, Bath, England
‡ Lockheed Aeronautical Systems Company, Marietta, Ga, USA

Abstract. With conventional methods of performing verification and validation - heavily reliant on testing
performed late in the software production process - the late detection of errors adds substantially to project
costs and delays in delivery, and introduces significant risks. This paper presents a method of software
development aimed at "correctness by construction", which greatly attenuates these problems. The process
described here has been applied successfully to the development of avionic software for the new C-130J
("Hercules") aircraft.

1 Introduction

In industrial software development generally, but especially for the larger and more complex systems,
verification and validation (V & V) costs form an unacceptably large part of total software development cost -
a figure of 50% is commonly quoted. Furthermore, this is the area where significant risks arise, or are
uncovered. We would like to "design out" a large proportion of the V & V costs and risks.

Practical V & V approaches are currently all of a retrospective or "after the fact" nature. This aspect of V & V
has several disadvantages:

• In an increasingly competitive aeronautical industry, the demands for greater functionality and rapid

delivery of software make it imperative to "get it right first time". Retrospective verification comes too late
to support this goal.

• Not only is it necessary nowadays to design and deliver advanced avionic software products to the market-

place very rapidly, but the scale of aeronautical enterprises requires the elimination of risk (of delay for
instance) associated with such developments. We cannot wait until system test "to see if it works".

• The achievement of test coverage, such as the Modified Condition/Modified Decision (MC/DC) test

coverage required to comply with RTCA DO-178B [7] to Level A (for safety-critical systems) involves a
great deal of work. The need to repeat such testing several times, after finding and rectifying errors
discovered in the testing process, contributes largely to project costs. We need much earlier detection of
defects.

• Retrospective V & V is very sensitive to requirements changes - which occur in every software
development project. Each change demands software modifications, and if the software has already
undergone V & V then, at the very least, V & V must be repeated on the changed program units. However,
sound defensive practise and requirements of regulatory agencies can impose repetition of V & V on all
the software in the configuration item containing the modifications. Consequently, small changes to
requirements usually lead to massive repetitions of V & V.

• In an era of great safety-consciousness, not only must avionic products be safe, but they must be

demonstrably safe. It is much easier to achieve the required level of software integrity, with convincing
supporting evidence of compliance with a standard such as RTCA DO-178B to Level A through a
rigorous construction process than through after-the-fact justification.

The key to breaking through the V & V bottleneck, then, is to strive for correctness through construction, by
revision of the software development process. Lockheed Aeronautical Systems Company (LASC) and Praxis
Critical Systems evolved independently to this approach based on similar philosophical foundations. LASC
had focused its attention primarily on the software specification and design (and their corresponding
verification) portions of the lifecycle, while Praxis had developed technology for the design and coding (and
corresponding verification) portions of the lifecycle. The marriage of the two has provided comprehensive

application of the correctness by construction principle throughout the software lifecycle. The first usage of
this combination is on the successful development of a new avionics system for the C-130J Hercules II aircraft.

This approach, described below, has not involved replacing the conventional approach to programming by a
strictly formal refinement process, but rather it builds on existing strengths, extending the constructive role of
the programming language and process; its implementation is both practical and economic, using methods,
techniques and tools that are available today. It will be seen, furthermore, that the measures to achieve
correctness through construction naturally emphasise modularity and portability, safety and robustness, ease of
extension and verifiability. These are essential characteristics of software "building-blocks", to be applicable
to evolution over the life of a single product, including requirements changes during its initial development, or
over a range of related products.

2 The Engineering Context

The successful use of the technology to be described here has depended not on a single choice of an
appropriate method or tool, but on a number of decisions - relating to engineering context, hardware and
software architecture, the form of expression of requirements, design rules, use of Ada, and formal methods -
which in combination eliminate the "paradigm shifts" and changes in notation between successive development
stages that usually militate against traceability and make testing so expensive. It will therefore be helpful first
to set the scene, with a very brief description of the engineering context.

The C-130 Hercules, a tactical transport aircraft with both military and civilian uses, has been in production
since 1955. LASC is transforming the Hercules' avionics, propulsion, flight station and certain airframe
systems to create the Hercules II airlifter or the C-130J. The Operational Flight Program (OFP) software
coordinates and controls the many individual systems, and operates and diagnoses the integrated aircraft as a
whole. There is a primary OFP in each of two Mission Computers (MCs), and a backup OFP in each of two
Bus Interface Units (BIUs). The MC and BIU OFPs also synchronise and transfer data between the various
avionics hardware devices. Examples include data about electronic circuit boards, full authority digital engine
control, radar and the fuel system. This data transfer is organised by the two MCs and by several hardware
buses, most conforming to MIL-STD-1553.

The MC and BIU OFPs also process and transfer information needed for the flight station hardware to interface
with the pilot, copilot, navigator and auxiliary crew members. This information is interdependent with the
avionics, propulsion and airframe systems data that are also conveyed by the communications buses and
handled by the MCs. Examples of flight station devices include head-up displays, radio control panels, and
caution/warning/alert annunciators. The MC and BIU software amounts to some 200K lines of source code.

Without entering into details of system architecture, it will be clear that the MC and BIU software performs a
great multiplicity of functions (to transfer information to and from a bus, originating and terminating at many
different kinds of devices), but that these functions are mutually independent, and simple to describe in a
precise manner. (Of course the implementations of these functions may use common architectural components,
as is explained below.) Exploitation of the "separability" of the many functions of the OFPs contributed
greatly to the simplicity of the expression of requirements, their implementation and V and V [4].

3 Correctness by Construction

The essence of a constructive approach is the "factorisation" or decomposition of a large system development
into a number of small steps, each constructing a "product" according to its own rules of "well-formation"
which can be enforced by a tool (in the way, for instance, that a compiler imposes the syntactic and static-
semantic rules of a programming language). The well-formation rules must in themselves guarantee a certain
consistency between the input and output of each step (e.g. of data flow or information flow), and facilitate
complete verification of functionality. Decomposition of this kind is the key to containment of system
complexity, allowing us to reason about fragments of implementation in terms of fragments of specification.
Of course, to reason about a program in terms of its constituent parts, we must be able to think of these in
abstract terms, i.e. in terms of specifications of the functions they are intended to perform rather than their
implementation details. And if these specifications are to be manipulated mechanically, they must be
formulated rigorously, in a well-defined notation, as formal specifications. However, if formal specifications
are produced for program constituents, we can perform formal verification of their code, mechanically, as this

code is produced. (By formal verification we mean here mathematical and semi-automated verification of
internal consistency of the software in terms of absence of data and information flow errors, as well as
verification of the correct implementation of requirements.) We note the following advantages of this
constructive approach:

• Formal verification of the code of a program component can be performed as soon as this is written, and in

particular, before compilation and testing. We achieve early warning of many kinds of programming
errors, and the expensive testing processes are usually performed once only, as confirmation of
correctness.

• Both coding and formal verification of a program unit can be performed in isolation, using only

specifications of the software components used by the unit under construction. Thus we can verify some
parts of a system, while others are incomplete.

• Effects on specifications and code of program components, of changes in requirements specification, is

contained to the minimum possible.

4 Requirements Engineering

The software requirements for the MC and BIU are specified using an extension of the Software Productivity
Consortium's (SPC) "CoRE" (Consortium Requirements Engineering), a formal requirements modelling
method based on the work of David Parnas [8, 2]. Here, the software requirements are described in a tabular
form, specifying input-output relationships mathematically. This method of description is, like most, better
with some kinds of system than others. CoRE is particularly well-suited for systems which have many inputs,
many outputs, and relatively simple transfer functions between them. This category includes the OFPs being
developed for the C-130J. An extension of CoRE by LASC represents the CoRE data by Yourdon Data-Flow
Diagramming, includes the notion of "domain generics", and uses a CASE tool to maintain the CoRE data
dictionary and to perform automatic well-formation checking of the CoRE model [4].

An example of a CoRE requirement is given in Figure 1. The table defines a relation. The heading of the
rightmost column would normally be the name of a specific abstracted output (the relation's "dependent
variable"); the names of all other columns would be the names of specific abstracted inputs (the "independent
variables"). The cells below the headings in all but the rightmost column define subranges of the independent
variables. The cells in the rightmost column define the function used to derive the output given the
combination of subranges in the cells to its left in its row. This kind of tabulation makes it possible to
positively verify coverage of the entire ranges of the inputs used to derive the output (and all the combinations
of subranges). It also highlights the importance of boundary values at the "lines" between the rows.

In practice, this specification would be implemented by an Ada procedure or function subprogram. On
completion of execution of this subprogram, the conditions to be satisfied, as specified by the CoRE table, can
be expressed as a post-condition in first-order logic, as shown in Figure 2. (The notational conventions used
here are those of SPARK, which we discuss below.)

abstracted
input #1

("i1")

abstracted
input #2

("i2")

abstracted
input #3

("i3")

abstracted
output

"x" "x" subrange 3.1 f1(i1, i2, i3)

"x" subrange 2.1 subrange 3.2 f2(i1, i2)

subrange 1.1 subrange 2.2 subrange 3.2 f3(i3)

subrange 1.2 subrange 2.2 subrange 3.2 f4(i1, i3)

Figure 1. Example of a CoRE Requirement

--# post
--# (IsInSubrange_3_1(i3) -> Output = f1(i1, i2, i3)) and

--# ((IsInSubrange_2_1(i2) and IsInSubrange_3_2(i3))
--# -> Output = f2(i1, i2)) and
--# ((IsInSubrange_1_1(i1) and IsInSubrange_2_2(i2)
--# and IsInSubrange_3_2(i3)) -> Output = f3(i3)) and
--# ((IsInSubrange_1_2(i1) and IsInSubrange_2_2(i2)
--# and IsInSubrange_3_2(i3)) -> Output = f4(i1, i3));

Figure 2. Post-condition for Example of a CoRE Requirement

5 Design

Architectural design is carried out using a Domain-Specific Design Language (DSDL), strongly influenced by
the Software Productivity Consortium's ADARTS (Ada-based Design Analysis for Real-Time Systems)
method [9], in particular its notions of "Class Structuring" which LASC have extended and at the same time
"specialised" with rules of coherence tailored to their application domain. These rules are enforced or
otherwise checked by use of Teamwork templates, ultimately represented by Ada packages. More detailed
design and coding are both performed through instantiation and population of templates, with extensive use of
EMACS scripts to automate the process. The "refinement" of design to the final executable code proceeds
through as many as six "levels", at each of which the working material is compilable Ada text, which can be
checked mechanically.

In Figure 3 is shown a greatly simplified and abstracted version of the portion of the DSDL for the devices that
are attached to the data buses on the C-130J. It is recorded in something similar to Buhr notation, as the CASE
tool that was used implemented a variation of Buhr; however, other notations would have been just as suitable.
Underlying textual definitions were also developed for the classes (outer boxes) and their methods (inner
boxes). The dashed boxes in the illustration are syntactic elements that must be "instantiated" by the detailed
designers with the relevant details of each specific device in the device category covered by the DSDL. Thus,
the detailed design is simply the set of instantiations of the DSDL.

This example is indicative of the highly-factored nature of the system and software architecture, which is a key
element of our approach.

<device_id>device_interface

process_input_message

<device_id>device_current_state

get_abstracted_input

<device_id>device_control

compute_abstracted_ouput

prepare_output_message

abstracted input

abstracted input

abstracted output

Figure 3. Simplified DSDL for Bus Devices

6 Implementation

The Ada text for all components containing significant system semantics is written using SPARK, a system of
annotations (or "formal comments") and restrictions [1] that is applied to Ada to simplify demonstrating
program correctness [3, 5]. SPARK was developed by Program Validation Ltd (PVL), now incorporated in
Praxis Critical Systems. SPARK is formally defined (in the formal specification language "Z", plus inference
rules [6]) and its use is supported by a software tool, the SPARK Examiner, which checks conformance of Ada
texts with the rules of SPARK, and performs different kinds of analyses, described below. SPARK is used in
numerous military and civil safety-critical applications, e.g. avionics, railways, and nuclear power.

The method of developing the code, using templates, helps to preserve the correspondence between each "code
refinement" and its predecessor, but strong additional checks are performed in the development process, as
follows.

Firstly, as soon as executable code of subprogram bodies is produced, the SPARK Examiner performs their
data- and information-flow analyses, and compares the results with flow relations given as SPARK
annotations, these being derived from the CoRE and design documents. (At present these relations are
produced manually, but in future they could be generated directly, within templates.)

Next, the formal specification descriptions (in Parnas tables) in the formal requirements specifications are
embedded in SPARK program texts as post-conditions, of the kind shown in Figure 2. These annotations are
expressed in a language which is essentially the language of Ada expressions, with a few extensions for
instance to represent logical inference, and to describe the effects of updating operations on composite objects.

From this information, and the code, the SPARK Examiner produces the "proof obligations" which must be
discharged to show that the code meets its specification. Many of these proof obligations can be proved
automatically by the SPADE Automatic Simplifier, and the rest can be proved interactively using the SPADE
Proof Checker. (Alternatively, they can be justified manually, by "rigorous argument"). In the C-130J project,
the generation and automatic simplification of proof obligations for SPARK text has so far been straight-
forward - probably because of the simplicity of the required input-output functions. Thus, by using extensions
to Ada involving no more than "formal comments", and tools to check the relationship between these and the
Ada code, we have been able to bind together the requirement specification, high-level and detailed design and
the executable code, with strong rules of well-formation of construction, and verification procedures, all
applicable prior to compilation and conventional unit test.

As an illustration of the code verification process, Figure 4 presents a SPARK subprogram which implements
the CoRE table of Figure 1. Using the post-condition given in Figure 2, the SPARK Examiner generates 11
proof obligations ("verification conditions") for this code, one of which is shown in Figure 5. This is
discharged automatically by the SPADE Automatic Simplifier.

 procedure Example(i1,i2,i3 : in integer;
 Output : out integer)
 is
 begin
 if IsInSubrange_3_1(i3) then Output := f1(i1, i2, i3);
 elsif IsInSubrange_2_1(i2) then Output := f2(i1, i2);
 elsif IsInSubrange_1_1(i1) then Output := f3(i3);
 else Output := f4(i1, i3);
 end if;
 end Example;

Figure 4. Subprogram Implementing Example CoRE Requirement

procedure_example_11.
H1: isinsubrange_1_1(i1) or isinsubrange_1_2(i1) .
H2: not (isinsubrange_1_1(i1) and isinsubrange_1_2(i1)) .
H3: isinsubrange_2_1(i2) or isinsubrange_2_2(i2) .
H4: not (isinsubrange_2_1(i2) and isinsubrange_2_2(i2)) .
H5: isinsubrange_3_1(i3) or isinsubrange_3_2(i3) .
H6: not (isinsubrange_3_1(i3) and isinsubrange_3_2(i3)) .
H7: not (isinsubrange_3_1(i3)) .
H8: not (isinsubrange_2_1(i2)) .
H9: not (isinsubrange_1_1(i1)) .
 ->
C1: isinsubrange_3_1(i3) -> (f4(i1, i3) = f1(i1, i2, i3)) .
C2: (isinsubrange_2_1(i2) and
 isinsubrange_3_2(i3)) -> (f4(i1, i3) = f2(i1, i2)) .
C3: (isinsubrange_1_1(i1) and (isinsubrange_2_2(i2) and
 isinsubrange_3_2(i3))) -> (f4(i1, i3) = f3(i3)) .
C4: (isinsubrange_1_2(i1) and (isinsubrange_2_2(i2) and
 isinsubrange_3_2(i3))) -> (f4(i1, i3) = f4(i1, i3)) .

Figure 5. Example Proof Obligation

In this illustrative example the correspondence between the specification and the code is almost obvious. In
general the functions to be implemented are more complex, for example the abstract variables may be realised
not simply by integers but by structured variables, which may themselves be subject to transformations, for
instance to perform scaling, range-limiting and data-packing.

7 Compilation and Testing

Only after formal verification should the code be compiled and tested. Although the burden of proof is
increased if verification is attempted for code that does not yet meet its specification, the cost savings obtained
by catching errors early, and especially before system integration and costly MC/DC testing, are very great in
comparison.

Compilation is performed using an Alsys C-SMART compiler. SMART is a small Ada run-time system, for
safety-critical applications, and C-SMART is a certifiable version of this, with documentation designed to
satisfy RTCA DO-178B Level A requirements. Since all SPARK features are supported by C-SMART, no
problems of compatibility arise.

To test the end product, a set of tests has been developed rigorously from the CoRE formal specification.
These tests are implemented as "scripts", to be run in a tool that simulates the environment of the computer
executing the product software. The simulation tool directly employs a database created during system
requirements engineering. The scripts and the database constitute a "product validation suite" that can easily
be re-executed at any stage in the development and subsequent life of a product, to confirm that the product
requirements are being properly met.

8 Lessons Learned

The constructive approach adopted for the C-130J MC and BIU OFP software has had the effect of keeping the
development effort in pace with systems-engineering additions and modifications, and with the program
schedule. This is in contrast to the "software crisis" experience of many if not most aerospace (and other
application-domain) projects, where software becomes the main cause of overall project delays. The approach
works well in an environment where there are difficulties in stabilising system requirements.

The constructive approach involves the entire software development team more deeply with systems
engineering: it requires software developers to verify code as it is developed, possibly chasing errors and
inconsistencies in the requirements, rather than relying on unit and integration testing to find problems. Of
course, this is a consequence of the formal methods and the constructive approach: they simply won't allow
systems-level inadequacies to propagate into the software product. While this costs some extra time in the
short term, it always more than regains it later.

While most of the errors uncovered in requirements specifications and code by formal analysis would have
been discovered during integration testing of the software, it has been found that tracing such bugs from
traditional test results is more expensive than formal analysis of the same code. Some errors immediately
uncovered by formal analysis, such as conditional initialization errors, may only emerge after very extensive
testing.

The next lesson relates to software changes. When the need for domain-level requirements changes is
identified, the amount of affected software can be large. Yet, because of the functional decomposition in the
design, and the DSDL/template-driven implementation, C-130J experience has shown that the places where
code must be changed are clear from examination of the design template(s) relevant to the affected structures.
Comprehensive changes can rapidly be effected by changing the appropriate section of code in each of the
implementation instances of the affected template(s). Unlike non-domain-oriented architectures, where
functionality is distributed in software in an irregular way, there is objective confidence that the software
changes will correctly implement the requirements changes.

Finally, we draw attention to the significance of this software project, as one of the first in which the use of
formal methods has proved to be advantageous from an economic standpoint, rather than simply being
desirable or even essential to achieve a particularly high level of integrity. In what way has the application, or
the technology deployed, really been exceptional, to allow us to achieve this result?

The essential factors are firstly the architectural design features, which factorise this sizeable system into a
large number of functionally distinct components, so that the scaling-up difficulties often associated with
formal methods do not apply; secondly, the use of formal specification of the requirements of these
components; thirdly, the rigidly-enforced design rules which preserved the functional separation of the
components, and "kept the requirements specifications alive". Translation of the CoRE into formal
specifications of program units also supported the functional separation; and finally, the technology for
generating and discharging the proof obligations, based on the formal definition of the SPARK component of
Ada, was crucial, in binding the code to the initial requirements.

References

1. Ada 95 Reference Manual, ISO/IEC 8652:1995(E)-RM95; version 6.0, December 1994. (See especially

Annex H "Safety and Security".)
2. Alspaugh, S. Faulk, K. Heninger Britton, R. Parker, D. Parnas, J. Shore: Software Requirements for the

A7-E Aircraft. Report NRL/FR/5530-92-9194. Naval Research Laboratory, Washington, D.C., 1992.
3. B.A. Carré, J.R. Garnsworthy: SPARK - An annotated Ada subset for safety-critical programming. In:

Proceedings of Tri-Ada Conference, Baltimore, December 1990.
4. S. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, J. Sutton: Experience applying the CoRE method to the

Lockheed C-130J software requirements. In: Proceedings of Ninth Annual Conference on Computer
Assurance, Gaithersburg, MD, 1994, pp.3-8.

5. J.R. Garnsworthy, I.M. O'Neill, B.A. Carré: Automatic proof of absence of run-time errors. In: Proceedings
of Ada UK Conference, London Docklands, October 1993.

6. Program Validation Ltd.: The Formal Semantics of SPARK (Volume 1: Static Semantics; Volume 2:
Dynamic Semantics). Praxis PVL, 20 Manvers Street, Bath BA1 1PX, U.K., 1994.

7. RTCA: Software Considerations in Airborne Systems and Equipment Certification. RTCA/DO-178B,
1994

8. Software Productivity Consortium: Consortium Requirements Engineering Guidebook, SPC-92060-CMC
version 01.00.09. Software Productivity Consortium, Herndon, VA, U.S., 1993

9. Software Productivity Consortium: ADARTS Guidebook, SPC-94107-N, version 02.01.00 Software
Productivity Consortium, Herndon, VA, U.S., 1991.

	Praxis Critical Systems
	SPARK

	The C130J Hercules II
	The LMASC Process
	The Involvement of Praxis and SPARK
	Aerosystems International IV&V Results
	The Lockheed C27J

