Formal Methods Lecture VII

Symbolic Model Checking

Alessandro Artale

Faculty of Computer Science - Free University of Bozen-Bolzano artale@inf.unibz.it http://www.inf.unibz.it/~artale/ Room 2.03 Academic Year: 2010/11

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Alessandro Artale Formal Methods Lecture VII Symbolic Model Checking

(日) (同) (E) (E) (E)

Alessandro Artale Formal Methods Lecture VII Symbolic Model Checking

Main Ideas

- OBDD's allow systems with a large state space to be verified.
- The Labeling algorithm takes a CTL formula and returns a set of states manipulating intermediate set of states.
- The algorithm is changed by storing set of states as OBDD's and then manipulating them.
- Model checking using OBDD's is called **Symbolic Model Checking**.

Symbolic Representation of States

Example:

- Three state variables x₁, x₂, x₃: {000,001,010,011} represented as "first bit false": ¬x₁
- With five state variables x₁, x₂, x₃, x₄, x₅: {00000,00001,00010,00011,00100,00101,00110, 00111,...,01111} still represented as "first bit false": ¬x₁

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Symbolic Representation of States (Cont.)

- Let M = (S, I, R, L, AP) be a Kripke structure
- States s ∈ S are described by means of a vector
 V = (v₁, v₂,..., v_n) of boolean values: One for each x_i ∈ AP.
 - A state, s, is a truth assignment to each variable in AP such that v_i = 1 iff x_i ∈ L(s).
 - **Example**: **0100** represents the state *s* where only $x_2 \in L(s)$.

Symbolic Representation of States (Cont.)

- Boolean vectors can be represented by boolean formulas
 - **Example**: **0100** can be represented by the formula $\xi(s) = (\neg x_1 \land x_2 \land \neg x_3 \land \neg x_4)$
- We call ξ(s) the formula representing the state s ∈ S (Intuition: ξ(s) holds iff the system is in the state s)
- A set of states, Q ⊆ S, can be represented by the formula Characteristic Function of Q:

$$\xi(\mathbf{Q}) = \bigvee_{\mathbf{s}\in\mathbf{Q}}\xi(\mathbf{s})$$

• Thus, (set of) states can be encoded as OBDD's!

(ロ) (同) (E) (E) (E) (O)(O)

Remark

- Any propositional formula is a (typically very compact) representation of the set of assignments satisfying it
- ▷ Any formula equivalent to $\xi(Q)$ is a representation of Q⇒ Typically Q can be encoded by much smaller formulas than $\bigvee_{s \in Q} \xi(s)!$
- ▷ Example: Q = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,..., 01111} represented as "first bit false": ¬x₁

$$\bigvee_{s \in Q} \xi(s) = \left(\neg x_1 \land \neg x_2 \land \neg x_3 \land \neg x_4 \land \neg x_5 \right) \lor \\ \left(\neg x_1 \land \neg x_2 \land \neg x_3 \land \neg x_4 \land x_5 \right) \lor \\ \left(\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4 \land \neg x_5 \right) \lor \\ \vdots \\ \left(\neg x_1 \land x_2 \land x_3 \land x_4 \land x_5 \right) \end{cases}$$

(ロ) (同) (E) (E) (E)

Symbolic Representation of Transitions

- The transition relation R is a set of pairs of states: $R \subseteq S \times S$.
- Then, a single transition is a pair of states (s,s').
- A new vector of variables V' (the next state vector) represents the value of variables after the transition has occurred.
- $\xi(s,s')$ defined as $\xi(s) \wedge \xi(s')$.
- The transition relation R can be (naively) represented by

$$\bigvee_{(s,s')\in R} \xi(s,s') = \bigvee_{(s,s')\in R} \xi(s) \wedge \xi(s')$$

Remark

- \triangleright Any formula equivalent to $\xi(R)$ is a representation of R
 - \Rightarrow Typically *R* can be encoded by a much smaller formula than $\bigvee_{(s,s')\in R} \xi(s) \land \xi(s')!$
- Example: a synchronous sequential circuit

v_1	v_0	v_1'	v_0'
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$$\begin{array}{lll} \xi(R) & = & (v'_0 \Leftrightarrow \neg v_0) \land (v'_1 \Leftrightarrow v_0 \bigoplus v_1) \\ \bigvee_{(s,s') \in R} \xi(s) \land \xi(s') & = & (\neg v_0 \land \neg v_1 \land v'_0 \land \neg v'_1) \lor \\ & & (v_0 \land \neg v_1 \land \neg v'_0 \land v'_1) \lor \\ & & (\neg v_0 \land v_1 \land v'_0 \land v'_1) \lor \\ & & (v_0 \land v_1 \land \neg v'_0 \land \neg v'_1) \end{array}$$

Summary

- Representing Set of States as OBDD's.
- Symbolic Model-Checking Algorithm.

(日) (同) (E) (E) (E)

Intro

Problem: $M \models \varphi$?

- Let M = (S, I, R, L, AP) be a Kripke structure and φ be a CTL formula.
- The Symbolic Model-Checking algorithm is a Labeling algorithm that makes use of OBDD.
- It is implemented by a recursive procedure CHECK with:
 - Input: ϕ , the formula to be checked;
 - **Output:** B_{ϕ} , the OBDD representing the states satisfying ϕ .

Intro (Cont.)

• To check whether $I \subseteq \llbracket \phi \rrbracket$:

 $(\mathbf{B}_{\mathbf{I}} \Rightarrow \mathbf{B}_{\phi}) \equiv \mathbf{B}_{\top}$

i.e.,

 $\operatorname{APPLY}(\Rightarrow, B_{I}, B_{\phi}) \equiv B_{\top}$

 To compute OBDD's for CTL formulas we need to understand how to compute them in case of the temporal operators:
 ♦ ○, ♦ 𝔄, ♦ □.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Prelmage

▷ Backward (pre) image of a set:

Evaluate all transitions ending in the states of the set.Set theoretic view:

 $PreImage(P, R) := \{s \in S \mid \exists s'. (s, s') \in R \text{ and } s' \in P\}$

▷ Logical Characterization:

 $\xi(\text{PreImage}(\mathsf{P},\mathsf{R})) \ := \ \exists \mathsf{V}'.(\xi(\mathsf{P})[\mathsf{V}'] \wedge \xi(\mathsf{R})[\mathsf{V},\mathsf{V}'])$

 \triangleright N.B.: quantification over propositional variables

Prelmage: An Example

Example: A synchronous sequential circuit

 $\begin{aligned} \xi(R) &= (v'_0 \Leftrightarrow \neg v_0) \land (v'_1 \Leftrightarrow v_0 \bigoplus v_1) \\ \xi(P) &:= (v_0 \Leftrightarrow v_1) \text{ (i.e., } P = \{00, 11\}) \end{aligned}$

▷ Pre Image:

$$\begin{aligned} \xi(\operatorname{PreImage}(P,R)) &= \exists V'.(\xi(P)[V'] \land \xi(R)[V,V']) \\ &= \exists V'.((\mathbf{v}'_0 \Leftrightarrow \mathbf{v}'_1) \land (\mathbf{v}'_0 \Leftrightarrow \neg \mathbf{v}_0) \land (\mathbf{v}'_1 \Leftrightarrow \mathbf{v}_0 \bigoplus \mathbf{v}_1)) \end{aligned}$$

(ロ) (同) (E) (E) (E)

OBDD for PreImages

- B_{\$\$\phi\$\$, ○φ}, the OBDD for \$\$\phi\$\$, ○φ, is computed starting from the OBDD's for both φ, B_φ, and the transition relation, B_R.
- $\xi(\text{PreImage}(\phi,\textbf{R})) \ := \ \exists \textbf{V}'.(\xi(\phi)[\textbf{V}'] \wedge \xi(\textbf{R})[\textbf{V},\textbf{V}']),$ then:
 - $oldsymbol{0}$ Rename the variables in $B_{oldsymbol{\phi}}$ to their primed version, $B_{oldsymbol{\phi}'}$
 - 2 Compute $B_{(\phi' \wedge R)} = APPLY(\wedge, B_{\phi'}, B_R);$

$$\ \mathbf{B}_{\bigotimes \bigcirc \varphi}$$
 is a sequence of:

 $\operatorname{APPLY}(\lor, \operatorname{RESTRICT}(0, x'_i, B_{(\phi' \land R)}), \operatorname{RESTRICT}(1, x'_i, B_{(\phi' \land R)}))$

where $x'_i \in V'$

• We call $PRE(B_{\varphi})$ the procedure that computes $B_{\varphi} \cap_{\Theta}$.

}

The CHECK Symbolic M.C. Algorithm

CHECK(ϕ) { case ϕ of return B_{\top} : true: false: return B_{\perp} : return B_{x_i} ; an atom x_i : return INVERT(CHECK(ϕ_1)); $\neg \phi_1$: return APPLY(\land , CHECK(ϕ_1), CHECK(ϕ_2)); $\phi_1 \wedge \phi_2$: return $PRE(CHECK(\phi_1));$ $\langle \phi \bigcirc \phi_1 \rangle$ $(\phi_1 \mathcal{U}\phi_2)$: return CHECK_EU(CHECK(ϕ_1), CHECK(ϕ_2)); return CHECK_EG(CHECK(ϕ_1)); $\langle \phi | \Box \phi_1 \rangle$

CHECK_EG

 $\llbracket \diamondsuit \Box \phi \rrbracket = \llbracket \phi \rrbracket \cap \operatorname{Pre}(\llbracket \diamondsuit \Box \phi \rrbracket)$

```
CHECK_EG(B_{\omega}){
    var X, OLD-X;
   X := B_{\omega};
    OLD-X := B_{\perp};
   while X \neq OLD-X
    begin
        OLD-X := X:
       X := \operatorname{Apply}(\wedge, X, \operatorname{Pre}(X))
    end
    return X
}
```

(日) (同) (E) (E) (E)

 $Check_EU$

 $[\![\diamondsuit (\phi \, \mathcal{U} \psi)]\!] = [\![\psi]\!] \cup ([\![\phi]\!] \cap \operatorname{Pre}([\![\And (\phi \, \mathcal{U} \psi)]\!]))$

```
CHECK_EU(B_{\varphi}, B_{\psi}){
    var X, OLD-X;
    X := B_{\mathrm{w}};
    OLD-X := B_{\top};
    while X \neq OLD-X
    begin
         OLD-X := X:
        X := \operatorname{Apply}(\lor, X, \operatorname{Apply}(\land, B_{\varphi}, \operatorname{Pre}(X)))
    end
    return X
}
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○◆

CTL Symbolic Model Checking–Summary

- ▷ Based on fixed point CTL M.C. algorithms
- ▷ Kripke structure encoded as boolean formulas (OBDDs)
- ▷ All operations handled as (quantified) boolean operations
- > Avoids building the state graph explicitly
- ▷ Reduces dramatically the state explosion problem
 - \Rightarrow problems of up to 10¹²⁰ states handled!!

Partitioned Transition Relations

- ▷ There may be significant efficiency problems:
 - The transition relation may be too large to construct
 - Intermediate OBDDs may be too large to handle.
- ▷ IDEA: Partition conjunctively the transition relation:

 $\mathsf{R}(\mathsf{V},\mathsf{V}') \leftrightarrow \bigwedge_{i} \mathsf{R}_{i}(\mathsf{V}_{i},\mathsf{V}'_{i})$

- Frade one "big" quantification for a sequence of "smaller" quantifications
 - $\exists V'_1 \dots V'_n (R_1(V_1, V'_1) \land \dots \land R_n(V_n, V'_n) \land Q(V'))$ by pushing quantifications inward can be reduced to
 - $\exists V'_1 (R_1(V_1, V'_1) \land ... \land \exists V'_n(R_n(V_n, V'_n) \land Q(V')))$ which is typically much smaller

Symbolic Model Checkers

 Most hardware design companies have their own Symbolic Model Checker(s)

- Intel, IBM, Motorola, Siemens, ST, Cadence, ...
- very advanced tools
- proprietary technolgy!
- ▷ On the academic side
 - CMU SMV [McMillan]
 - VIS [Berkeley, Colorado]
 - Bwolen Yang's SMV [CMU]
 - NuSMV [CMU, IRST, UNITN, UNIGE]

• ...

Summary of Lecture VII

- Representing Set of States as OBDD's.
- Symbolic Model-Checking Algorithm.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの