FORMAL METHODS LECTURE VI BINARY DECISION DIAGRAMS (BDD'S)

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Summary of Lecture VI

Motivations.

- Ordered Binary Decision Diagrams (OBDD).
- OBDD's as Canonical Forms.
- Building OBDD's.

The bottleneck:

- Exhaustive analysis may require to store all the states of the Kripke structure, and to explore them one-by-one.
- The state space may be exponential in the number of components and variables (E.g., 300 boolean vars \Rightarrow up to $2^{300} \approx 10^{100}$ states!)
- State Space Explosion:
 - Too much memory required;
 - Too much CPU time required to explore each state.
- A solution: Symbolic Model Checking.

Symbolic Model Checking: Intuitions

- Symbolic representation of Set of states by formulae in propositional logic.
 - manipulation of sets of states, rather than single states;
 - manipulation of sets of transitions, rather than single transitions.

Summary

- Motivations.
- Ordered Binary Decision Diagrams (OBDD).
- OBDD's as Canonical Forms.
- Building OBDD's

Ordered Binary Decision Diagrams (OBDD)

- Ordered Binary Decision Diagrams (OBDD) are used to represent formulae in propositional logic.
- A simple version: **Binary Decision Trees**:
 - Non-Terminal nodes labeled with boolean variables/propositions;
 - Leaves (terminal nodes) are labeled with either 0 or 1;
 - Two kinds of lines: dashed and solid;
 - Paths leading to 1 represent models, while paths leading to 0 represent counter-models.

Binary Decision Trees: An Example

BDT representing the formula: $\varphi = \neg x \land \neg y$.

The assignment, x = 0, y = 0, makes true the formula.

Let T be a BDT, then T determines a unique boolean formula in the following way:

- Fixed an assignment for the variables in T we start at the root and:
 - If the value of the variable in the current node is 1 we follow the solid line;
 - Otherwise, we follow the dashed line;
 - The truth value of the formula is given by the value of the leaf we reach.

Binary Decision Trees (Cont.)

BDT's with multiple occurrences of a variable along a path are:

- 1. Rather inefficient (Redundant paths);
- Difficult to check whether they represent the same formula (equivalence test). Example of two equivalent BDT's

Ordered Decision Trees

- Ordered Decision Tree (OBDT): from root to leaves variables are encountered always in the same order without repetitions along paths.
- Example: Ordered Decision tree for $\varphi = (a \land b) \lor (c \land d)$

Summary

- Motivations.
- Ordered Binary Decision Diagrams (OBDD).
- OBDD's as Canonical Forms.
- Building OBDD's

Reducing the size of Ordered Decision Trees

- OBDT's are still exponential in the number of variables: Given *n* variables the OBDT's will have $2^{n+1} - 1$ nodes!
- We can reduce the size of OBDT's by a recursive applications of the following reductions:
 - Remove Redundancies: Nodes with same left and right children can be eliminated;
 - Share Subnodes: Roots of structurally identical sub-trees can be collapsed.

Reduction: Example

Alessandro Artale (FM - First Semester - 2009/2010) - p. 20/38

OBDD's as Canonical Forms

- ▷ **Definition.** Given two OBDD's, B_{φ} , B_{ψ} , they have a **compatible variable ordering** if there are no variables *x*, *y* such that *x* < *y* in B_{φ} while *y* < *x* in B_{ψ} .
- Theorem. A Reduced OBDD is a Canonical Form of a boolean formula: Once a variable ordering is established (i.e., OBDD's have compatible variable ordering), equivalent formulas are represented by the same OBDD:

 $\varphi_1 \Leftrightarrow \varphi_2 \quad \text{iff } OBDD(\varphi_1) \equiv OBDD(\varphi_2)$

Importance of OBDD's

Canonical forms for OBDD's allow us to perform in an efficient way the following tests:

- Equivalence check is simple: We test whether the reduced and order compatible OBDD's have identical structure. Validity check requires constant time! $\phi \Leftrightarrow \top$ iff the reduced OBDD $B_{\phi} \equiv B_{\top}$ (un)satisfiability check requires constant time! $\phi \Leftrightarrow \bot$ iff the reduced OBDD $B_{\phi} \equiv B_{\bot}$
- The set of the paths from the root to 1 represent all the models of the formula;
- The set of the paths from the root to 0 represent all the counter-models of the formula.

Importance of Variable Ordering

Changing the ordering of variables may increase the size of OBDD's. Example, two OBDD's for the formula:

 $\mathbf{\phi} = (a1 \Leftrightarrow b1) \land (a2 \Leftrightarrow b2) \land (a3 \Leftrightarrow b3)$

Summary

- Motivations.
- Ordered Binary Decision Diagrams (OBDD).
- OBDD's as Canonical Forms.
- Building OBDD's.

The REDUCE Algorithm

Notation. Given a non-terminal node, n, then lo(n) denotes the node pointed via the dashed line, while hi(n) denotes the node pointed by the solid line.

Given an OBDD, REDUCE proceeds bottom-up assigning an integer label, id(n), to each node:

- Assign label 0 to all 0-terminals and label 1 to all 1-terminals. Given now a non-terminal node for x_i, say n, then:
- 2. If id(lo(n)) = id(hi(n)), then id(n) = id(lo(n));
- 3. If there is another node for x_i , say m, such that id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then, id(n) = id(m);
- 4. Otherwise we set ${\tt id}(n)$ to the next unused integer.

The Reduce Algorithm (Cont)

- REDUCE **Final Step:** Collapsing nodes with the same label and redirecting edges accordingly with the node collapsing.
- Example: See Figure 6.14 from the book.

Recursive structure of OBDD's

- Given a formula φ and a variable ordering $X = \{x_1, x_2, \dots, x_n\}$, the algorithm to build OBDD's from formulas, $OBDD(\varphi, X)$, operates recursively:
 - 1. If $\phi = \top$, then, $OBDD(\top, X) = B_{\top} = 1$;
 - 2. If $\phi = \bot$, then, $OBDD(\bot, X) = B_{\bot} = 0$;
 - 3. If $\phi = x_i$, then, $OBDD(x_i, X) =$

- 4. If $\phi = \neg \phi_1$, then, $OBDD(\neg \phi_1, X)$ is obtained by negating the terminal nodes of $OBDD(\phi_1, X)$;
- 5. If $\phi = \phi_1 \text{ op } \phi_2$ (op a binary boolean operator), then, $OBDD(\phi_1 \text{ op } \phi_2, X) = apply(op, OBDD(\phi_1, X), OBDD(\phi_2, X)).$

- Given two OBDD's, B_{φ}, B_{ψ} , the call apply(op, B_{φ}, B_{ψ}) computes the reduced OBDD of the formula φ op ψ .
- The algorithms operates recursively on the structure of the two OBDD's:
 - 1. Let *x* be the variable highest in the ordering which occurs in B_{φ} or B_{ψ} , then
 - 2. Split the problem in two sub-problems: one for *x* being true and the other for *x* being false and solve recursively;
 - 3. At the leaves, apply the boolean operation directly.

Definition. Let φ be a formula and *x* a variable. We denote by $\varphi[0/x]$ ($\varphi[1/x]$) the formula obtained by replacing all occurrences of *x* in φ by 0 (1).

This allow us to split boolean formulas in simpler ones.

Lemma [Shannon Expansion]. Let φ be a formula and x a variable, then:

$$\boldsymbol{\varphi} \equiv (x \wedge \boldsymbol{\varphi}[1/x]) \vee (\neg x \wedge \boldsymbol{\varphi}[0/x])$$

The function APPLY is based on the Shannon Expansion:

 $\varphi \circ p \Psi \equiv (x \land (\varphi[1/x] \circ p \Psi[1/x])) \lor (\neg x \land (\varphi[0/x] \circ p \Psi[0/x]))$

The algorithm APPLY (Cont.)

Apply(op, B_{φ}, B_{ψ}) proceeds from the roots downward. Let r_{φ}, r_{ψ} the roots of B_{φ}, B_{ψ} respectively:

- 1. If both r_{φ}, r_{ψ} are terminal nodes, then, Apply(op, B_{φ}, B_{ψ}) = $B_{(\mathbf{r}_{\varphi} \text{ op } \mathbf{r}_{\psi})}$;
- 2. If both roots are x_i -nodes, then create an x_i -node with a dashed line to Apply(op, B_{lo(r_{\phi})}, B_{lo(r_{\psi})}) and a solid line to Apply(op, B_{hi(r_{\phi})}, B_{hi(r_{\psi})});
- 3. If r_{φ} is an x_i -node, but r_{ψ} is a terminal node or an x_j -node with j > i (i.e., $\psi[0/x_i] \equiv \psi[1/x_i] \equiv \psi$), then create an x_i -node with dashed line to Apply(op, B_{lo(r_{\varphi})}, B_{\u03c0}) and solid line to Apply(op, B_{hi(r_{\varphi})}, B_{\u03c0});
- 4. If r_{ψ} is an x_i -node, but r_{ϕ} is a terminal node or an x_j -node with j > i, is handled as above.

OBBD Incremental Building: An Example

- Quantifying over boolean variables is a crucial operation to compute Preimages (i.e., the next-time operator).
- If x is a boolean variable, then

$$\exists x. \varphi \equiv \varphi[0/x] \lor \varphi[1/x]$$

$$\forall x. \varphi \equiv \varphi[0/x] \land \varphi[1/x]$$

• Let $W = \{w_1, \ldots, w_n\}$. Multi-variable quantification:

$$\exists W. \mathbf{\varphi} \equiv \exists (w_1, \dots, w_n). \mathbf{\varphi} \equiv \exists w_1 \dots \exists w_n. \mathbf{\varphi}$$

The **RESTRICT** Algorithm

- To compute the OBDD for $\exists x. \varphi$ we need to compute the OBDD for both $\varphi[0/x]$ and $\varphi[1/x]$.
- $B_{\varphi[0/x]} = \operatorname{RESTRICT}(0, x, B_{\varphi}).$

For each node *n* labeled with *x*, then:

- 1. Incoming edges are redirected to lo(n);
- 2. *n* is removed.
- $B_{\varphi[1/x]} = \operatorname{RESTRICT}(1, x, B_{\varphi}).$

As above, only redirect incoming edges to hi(n).

Boolean Quantification (Cont.)

Boolean Quantification (Cont.)

 $B_{\exists x.\varphi} = \text{APPLY}(\lor, \text{RESTRICT}(0, x, B_{\varphi}), \text{RESTRICT}(1, x, B_{\varphi}))$

Algorithm	Time-Complexity
REDUCE(<i>B</i>)	O(B imes log B)
$APPLY(op, B_{\phi}, B_{\psi})$	$O(B_{m{\phi}} imes B_{m{\psi}})$

N.B. The above complexity results depend from the size of the input OBDD's:

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case.
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier.

- Require setting a variable ordering a priori (critical!)
- Normal representation of a boolean formula.
- Once built, logical operations (satisfiability, validity, equivalence) immediate.
- Represents all models and counter-models of the formula.
- Require exponential space in worst-case.

Summary of Lecture VI

- Motivations.
- Ordered Binary Decision Diagrams (OBDD).
- OBDD's as Canonical Forms.
- Building OBDD's.