FORMAL METHODS
LECTURE VI

BINARY DECISION DIAGRAMS (BDD’S)

Alessandro Artale

Faculty of Computer Science — Free University of Bolzano

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

s Motivations.

» Ordered Binary Decision Diagrams (OBDD).
o OBDD'’s as Canonical Forms.

s Building OBDD’s.

The bottleneck:

s Exhaustive analysis may require to store all the states
of the Kripke structure, and to explore them one-by-one.

» The state space may be exponential in the number of
components and variables
(E.g., 300 boolean vars = up to 2’ ~ 10'" states!)

» State Space Explosion:
* Too much memory required;
* Too much CPU time required to explore each state.

» A solution: Symbolic Model Checking.

o Symbolic representation of Set of states by formulae in
propositional logic.
* manipulation of sets of states, rather than single
states;

* manipulation of sets of transitions, rather than single
transitions.

s Motivations.

» Ordered Binary Decision Diagrams (OBDD).
o OBDD’s as Canonical Forms.

s Building OBDD’s

s Ordered Binary Decision Diagrams (OBDD) are used to
represent formulae in propositional logic.

s A simple version: Binary Decision Trees:

Non-Terminal nodes labeled with boolean
variables/propositions;

Leaves (terminal nodes) are labeled with
either O or 1;

Two Kkinds of lines: dashed and solid:

Paths leading to 1 represent models, while paths
leading to O represent counter-models.

BDT representing the formula: ¢ = —x A —y.

2 2
/ /
// //
1 0 0 0

The assignment, x =0,y =0, makes true the formula.

Let T be a BDT, then T determines a unique boolean
formula in the following way:

» Fixed an assignment for the variables in T we start at
the root and:

* If the value of the variable in the current node is 1
we follow the solid line;

* Otherwise, we follow the dashed line;

* The truth value of the formula is given by the value
of the leaf we reach.

BDT’s with multiple occurrences of a variable along a path
are:

1. Rather inefficient (Redundant paths);

2. Difficult to check whether they represent the same
formula (equivalence test). Example of two equivalent
BDT’s

Cog wd og o

OO @00 D ® O

» QOrdered Decision Tree (OBDT): from root to leaves
variables are encountered always in the same order
without repetitions along paths.

s Example: Ordered DeC|S|on tree for ¢ = (aAb)V (c Nd)

@

s Motivations.

» Ordered Binary Decision Diagrams (OBDD).
o OBDD’s as Canonical Forms.

s Building OBDD’s

o OBDT’s are still exponential in the number of variables:
Given n variables the OBDT’s will have 2! — 1 nodes!

» We can reduce the size of OBDT’s by a recursive
applications of the following reductions:

* Remove Redundancies: Nodes with same left and
right children can be eliminated;

» Share Subnodes: Roots of structurally identical
sub-trees can be collapsed.

Detect redundacies:

Remove redundacies: e

Remove redundacies: e

N
O
a1
RIOIRIOES(O

Share identical nodes
o
/ \ /
PN

; Final OBDD!

> Definition. Given two OBDD's, B, By, they have a

compatible variable ordering if there are no variables x,y
such that x <y in B, while y < x In By,.

> Theorem. A Reduced OBDD is a Canonical Form of a
boolean formula: Once a variable ordering is established
(i.e., OBDD’s have compatible variable ordering), equivalent
formulas are represented by the same OBDD:

¢1 < @, iff OBDD(¢;) = OBDD(>)

Canonical forms for OBDD'’s allow us to perform in an
efficient way the following tests:

» Equivalence check is simple:
We test whether the reduced and order compatible
OBDD’s have identical structure.
Validity check requires constant time!
¢ < T iff the reduced OBDD B, = B~
(un)satisfiability check requires constant time!
¢ < L iff the reduced OBDD B, =B

» The set of the paths from the root to 1 represent all the
models of the formula;

» The set of the paths from the root to O represent all the
counter-models of the formula.

Changing the ordering of variables may increase the size of
OBDD’s. Example, two OBDD'’s for the formula:

¢ = (al & bl)N(a2 < b2) A (a3 < b3)

Linear size Exponential size

s Motivations.

» Ordered Binary Decision Diagrams (OBDD).
o OBDD'’s as Canonical Forms.

s Building OBDD’s.

Notation. Given a non-terminal node, n, then 1o(n) denotes
the node pointed via the dashed line, while hi(n) denotes
the node pointed by the solid line.

Given an OBDD, REDUCE proceeds bottom-up assigning an
integer label, id(n), to each node:

1. Assign label 0 to all O-terminals and label 1 to all

1-terminals. Given now a non-terminal node for x;, say
n, then:

2. If id(1o(n)) = id(hi(n)), then id(n) = id(1lo(n));

3. If there is another node for x;, say m, such that
id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then,
id(n) = id(m);

4. Otherwise we set id(n) to the next unused integer.

* REDUCE Final Step: Collapsing nodes with the same
label and redirecting edges accordingly with the node
collapsing.

* Example: See Figure 6.14 from the book.

s Given a formula ¢ and a variable ordering
X ={x1,x,...,x, }, the algorithm to build OBDD’s from
formulas, 0BDD(@, X), operates recursively:

1. f =T, then, 0BDD(T,X) = Bt = 1;
2. If o= 1, then, 0BDD(L,X) =B, =0;
3. If ¢ =x;, then, OBDD(x;,X) =

B

yoX
oERG

4. If ¢ =@y, then, 0BDD(—¢4,X) is obtained by negating
the terminal nodes of 0BDD(@4, X);

5. It @ = @; op ¢, (op a binary boolean operator), then,
OBDD((; op ¢2,X) = apply(op,0BDD((4,X),0BDD((2,X)).

s Given two OBDD’s, By, By, the call apply(op,Bg,By)
computes the reduced OBDD of the formula ¢ op .

» The algorithms operates recursively on the structure of
the two OBDD’s:

1. Let x be the variable highest in the ordering which
occurs in By, or By, then

2. Split the problem in two sub-problems: one for x
being true and the other for x being false and solve
recursively;

3. At the leaves, apply the boolean operation directly.

Definition. Let ¢ be a formula and x a variable. We denote
by ¢[0/x] (¢[1/x]) the formula obtained by replacing all
occurrences of x in @ by 0 (1).

This allow us to split boolean formulas in simpler ones.

Lemma [Shannon Expansion]. Let ¢ be a formula and x a
variable, then:

¢ = (xAQ[1/x])V (=xA9[0/x])

The function APpPLY is based on the Shannon Expansion:

Qopy = (x A (@[1/x]opW[1/x])) V (—x A (9[0/x]opy|0/x]))

Apply(op,By,By) proceeds from the roots downward. Let
re, Iy the roots of By, By, respectively:
1. If both ry,r are terminal nodes, then,
ApplY(OpaB(PaBW) — B(r(p op rq,);

2. If both roots are x;-nodes, then create an x;-node with a
dashed line to Apply(op,Blo(rq,),Blo(rw)) and a solid line to

ApplY(Op7 Bhi(r(p)) Bhi(r\',)) ;

3. If ry Is an x;-node, but r, is a terminal node or an
x;-node with j > i (i.e., y|0/x;| = y[1/x;] = v), then
create an x;-node with dashed line to
Apply(op,Blo(r(p),Bw) and solid line to Apply(op,Bhi(r(P>,Bw);

4. If ry Is an x;-node, but r,, is a terminal node or an
x;-node with j > i, is handled as above.

¢ = (A1 \/Az) A\ (A1 \V4 _'Az) A\ (_lAl \/Az) A\ (_IAl V _lAz)

(Alv A2) (Al v -A2) (Al v A2) (-A2 v —A2)

N N

T F T F

\v4
(A1v A2) A (Al v —-A2) (~A1v A2) A (=Al v -A2)

/o F O\

T F T F

\v4
(A1vA2) M (A1v=A2) A (~AlvA2)A (Al v -A2)

F

» Quantifying over boolean variables is a crucial operation
to compute Preimages (i.e., the next-time operator).

s If xIs a boolean variable, then

¢0/x]V @[1/x]
®0/x] Ao[1/x

s LetW ={wy,...,w,). Multi-variable quantification:

3x.Q
Vx.Q

AW.0=3d(wy,...,w,).0 =3Iw;...3w,.Q

s To compute the OBDD for dx.¢ we need to compute the
OBDD for both ¢|0/x] and ¢|[1 /x].
® Bgjo/x) = RESTRICT(0,x,By).
For each node n labeled with x, then:
1. Incoming edges are redirected to lo(n);
2. n IS removed.

® B[/ = RESTRICT(1,x,By).
As above, only redirect incoming edges to hi(n).

B3¢ = APPLY(V,RESTRICT(0,x, By),RESTRICT(1,x,By))

By RESTRICT(0,x3,By) RESTRICT(1,x3,By)

B3¢ = APPLY(V,RESTRICT(0,x, By),RESTRICT(1,x,By))

RESTRICT(0,x3,By) RESTRICT(1,x3,By) dx3.B¢

Algorithm Time-Complexity
REDUCE(B) O(|B| xlog | B|)
APPLY(Opo(PaB\II) O(IB(P‘ X ’B\If‘)

N.B. The above complexity results depend from the size of
the input OBDD'’s:

» The size of OBDD’s may grow exponentially wrt. the
number of variables in worst-case.

s Example: there exist no polynomial-size OBDD
representing the electronic circuit of a bitwise multiplier.

» Require setting a variable ordering a priori (critical!)
» Normal representation of a boolean formula.

» Once built, logical operations (satisfiability, validity,
equivalence) immediate.

» Represents all models and counter-models of the
formula.

» Require exponential space in worst-case.

s Motivations.

» Ordered Binary Decision Diagrams (OBDD).
o OBDD'’s as Canonical Forms.

s Building OBDD’s.

	Summary of Lecture VI
	State Space Explosion
	Symbolic Model Checking: Intuitions
	Summary
	Ordered Binary Decision Diagrams (OBDD)
	Binary Decision Trees: An Example
	Binary Decision Trees (BDT)
	Binary Decision Trees (Cont.)
	Ordered Decision Trees
	Summary
	Reducing the size of Ordered Decision Trees
	Reduction: Example
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	Reduction: Example (Cont.)
	OBDD's as Canonical Forms
	Importance of OBDD's
	Importance of Variable Ordering
	Summary
	The {sc Reduce} Algorithm
	The Reduce Algorithm (Cont)
	Recursive structure of OBDD's
	The algorithm {sc Apply}
	The algorithm {sc Apply} (Cont.)
	The algorithm {sc Apply} (Cont.)
	OBBD Incremental Building: An Example
	Boolean Quantification
	The {sc Restrict} Algorithm
	Boolean Quantification (Cont.)
	Boolean Quantification (Cont.)
	Time Complexity
	OBDD -- Summary
	Summary of Lecture VI

