FORMAL METHODS
LECTURE IV: COMPUTATION TREE LOGIC (CTL)

Alessandro Artale

Faculty of Computer Science — Free University of Bolzano
Room 2.03

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




o LTL implicitly quantifies universally over paths.

(KM ,s) = ¢ iff for every path T starting at s (XM ,T) =&

» Properties that assert the existence of a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

s The Computation Tree Logic—CTL solves these
problems!
* CTL explicitly introduces path quantifiers!

» CTL is the natural temporal logic interpreted over
Branching Time Structures.




o CTL is evaluated over branching-time structures
(Trees).
o CTL explicitly introduces path quantifiers:
All Paths: [
Exists a Path: <.

» Every temporal operator ( 0,0, u ) preceded by a
path quantifier (E or ).
s Universal modalities: @ >, @ [ ], ® O, ® «

The temporal formula is true in all the paths starting in
the current state.

s Existential modalities: <> <>, <> [ ], O, u

The temporal formula is true in some path starting in
the current state.




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




Countable set X of atomic propositions: p,q, ... the set FORM
of formulas is:

oy — p|T|L|-0|loAy|oVV|

B O¢| B Lo | BOe| B (9uy)

OO0 | Lo | 000 (ou )




Alternative notations are used for temporal operators.

%
7]
%
O

E there Exists a path

A in All paths

F sometime in the Future
G Globally in the future
X neXtime

¢t




» We interpret our CTL temporal formulas over Kripke
Models linearized as trees.

o p 33.3

s Universal modalities (8<>,@ [],®@ O, ® « ): the
temporal formula is true in all the paths starting in the

current state.

s Existential modalities (¢><>,® [, O, u ): the

temporal formula is true in some path starting in the
current state.




Let £ be a set of atomic propositions. We interpret our CTL
temporal formulas over Kripke Models:

KM = (S,I,R,X,L)

The semantics of a temporal formula is provided by the
satisfaction relation:

—: (XM xS x FORM) — {true,false}




We start by defining when an atomic proposition is true at a

state/time “s;

KM ,si=p iff pelL(s) (for peX)

The semantics for the classical operators is as expected:
KMasi:_'(P ift KMasi#(P
KM, ,s; =0oANYy Mt KM,s;,=¢@and KM ,s; =Y

?(M,Si:(l)\/w iff ?(M,Si:(POI'KM,Si:\V

KM, ,s;=0=vy it 1if xM,s;=¢@then KM ,s;, =Y

KMysi:

M., s; = |




Temporal operators have the following semantics where
T=(s;,8+1,...) IS @ generic path outgoing from state s;inx .

Iff
Iff
Iff
Iff
Iff
Iff

KM ,si =B O@
KM ,si =<P>O(P
KM ,s; = [l [
KM ,s; :® ()
KM ,s;i = @<>(p
KM ,5; = QP
KM ,s; = Rl (ou ) iff

VIt = (8;,8it1,---)
At = (s;,8i+1,---)
VT = (Si,Sit1,---)

)
VIt = (8;,8it1,---)
AT = (87, Si+1,--.)
)

VIt = (5i,811,...

an = (Sl',Si_H, e

(
(
At = (84, Si+1, - -
(
(
(

KM ,si1 =@
KM ,Si+1 = @
Vji>i.KM,s; =
Vji>i.KM,s; =
dj > L. KM ,s; =@
dj > 0. KM ,s; =@

dj>i. XM ,s; =y and
Vi<k<j:M,sp =0

3j>i. KM ,s; =y and
Vi<k<j:KXM,si =0




CTL is given by the standard boolean logic enhanced with
temporal operators.

> “Necessarily Next”. @ (e is true in s, iff @ is true in every
successor state s,

> “Possibly Next”. &> O is true in s iff ¢ is true in one
successor state s,

> “Necessarily in the future” (or “Inevitably”). ®<>¢ is true in s,
iff @ is inevitably true in some s, with ¢’ > ¢

> “Possibly in the future” (or “Possibly”). ©><>¢ is true in s, iff ¢
may be true in some s, with ¢’ > ¢




> “Globally” (or “always”). B |_|o is true in s, iff @ is true in all
sy With ¢/ > ¢

> “Possibly henceforth”. ¢ [ Jo is true in s, iff ¢ is possibly true
henceforth

> “Necessarily Until”. @ (¢ u y) is true in s; iff necessarily ¢
holds until v holds.

> “Possibly Until”. &> (¢ @ ) is true in s, iff possibly @ holds
until v holds.




finally p globally p




All CTL operators can be expressed via: & O, <> [ ], @

s B Op=- OO0
s BOo=- [
s ©Oo=®(Tug)
s B[ o=- 0= (Tu—o)

s B (puy)=- [J-wA-& (—~yu (—eA-y))




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




Safety:
“something bad will not happen”

Typical examples:

®] | |—~(reactor_temp > 1000)

® [ |- (one_wayA B Oother_way)

B -(x=0)0"B OB OB Oy =1z/x))

and so on.....

Usually: & | |—....




Liveness:
“something good will happen”

Typical examples:
(] <>rich
B (x> 5)

B [ (start = B $rerminate)

and so on.....

Usually: B<>...



Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:
“something is successful/allocated infinitely often”

Typical example:
B [ (@< enabled)

Usually: @ [ @<>. ..




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




The CTL Model Checking Problem is formulated as:

KM =

Check if 91 ,s0 = ¢, for every initial state, sy, of the Kripke
structure KM .




N = noncritical, T =trying, C = critical\* N1, N2 User1 User2

R
() =




N = noncritical, T =trying, C = critical\* N1, N2 User1 User2

» -t
L -¢

turn=0 ﬂ

YES: There is no reachable state in which (C; AC,) holds!
(Same as the |_|=(C; AG,) in LTL.)




N = noncritical, T = trying, C = critical




N = noncritical, T = trying, C critical N1 N2 User1 User2

W w
N1, C2
turn=2

M — B[ (1= 800) T

YES: every path starting from each state where T} holds
passes through a state where C; holds.




N = noncritical, T =trying, C = t| N1N2 User1 User2

/U\ﬂ
@

xo =@ [ B0) 9




N = noncritical, T =trying, C = cr|t|caI N1 N2 User1 User2

W w
N1, C2
turn=2

xu =0 [ B ?
NO: e.g., in the initial state, there is the blue cyclic path in

which C; never holds! (Same as [_]<>C; in LTL)




N = noncritical, T =trying, C = t| N1N2 User1 User2

/U\\




N = noncritical, T =trying, C = critical\* N1, N2 User1 User2

=
X &
&

/

M = (N1:><P><>T1)

YES: from each state where N, holds there is a path leading
to a state where T; holds. (No corresponding LTL formulas)




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




> Many CTL formulas cannot be expressed in LTL
(e.g., those containing paths quantified existentially)

E.g., &

> Many LTL formu

(N, = ©Th)

E.g.,

(<>p = <>q Vs. [

as cannot be expressed in CTL

OT = [JC (Strong Fairness in LTL)
l.e, formulas that select a range of paths with a property

(p= B<q))

> Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)

E.g.,

~(Cy NGy, OCy,

(T1 — <>C1),

OO




CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL”




o CTL*is alogic that combines the expressive power of
LTL and CTL.

» Temporal operators can be applied without any
constraints.

e B (OevOOe).

Along all paths, ¢ is true in the next state or the next two
steps.

- & (0.

There is a path along which ¢ is infinitely often true.




Countable set X of atomic propositions: p,q,... we
distinguish between States Formulas (evaluated on states):

oy — p|T|L|-0|loAy|oVV|

oo

and Path Formulas (evaluated on paths):

op — ¢
-0 | AR |V

Oo | Ha | Qa| (e p)

The set of CTL* formulas FOrM is the set of state formulas.




We start by defining when an atomic proposition is true at a

state “sg

KM , 8o

P

iff  p € L(so)

(for p € X)

The semantics for State Formulas 1S the following where
T = (s0,51,...) IS @ generic path outgoing from state s:

KM , S0
KM , S0
KM , o
KM , S0
KM , S0

:—|(P
— 0Ny

iff
iff
iff
iff
iff

KM , 8o
KM , 8o
KM , 8o

7= 0
— @ and XM , s
— ( or XM , s

—

v

It = (s9,51,...)such that x ¢ ,n = o

Vit = (s9,51,...)then K¢ ,n =«




The semantics for Path Formulas is the following where
T = (so,51,...) iS @ generic path outgoing from state s, and =’
denotes the suffix path (s;,s;.1,...):

KM, T
KM, T
KM, T
KM, T

KM, T =

KM, T
KM, T
KM, T

— @
— Q[
— AR

iff
iff
iff
iff
iff
iff
iff
iff

KM , So
KM, T
KM | T

KM, T
Ji > 0such that kv .7 =«
Vi > 0then xa . = «

KM 7!

Ji > 0such that xar , 7' =B and
Vj.(0 <

— ¢
£ O
— o and XM, Tt =

— o or KM, =P

— O

j<i)then xa ,1/ =«




CTL* subsumes both CTL and LTL

. @inCTL= ¢in CTL* (e.g., @ (N, = ©{T))
. @inLTL = B¢in CTL* (e.g., B ([T = [IO0)
. LTLUCTL ¢ CTL* (e.g., © ([ p = (1))

CTL*




The following Table shows the Computational Complexity of
checking Satisbiability

Logic Complexity
LTL PSpace-Complete

CTL ExpTime-Complete
CTL*® 2ExpTime-Complete




The following Table shows the Computational Complexity of
Model Checking (M.C.)

» Since M.C. has 2 inputs — the model, #r , and the
formula, ¢ — we give two complexity measures.

Logic Complexity w.r.t. |¢| Complexity w.r.t. | o/ |

LTL PSpace-Complete P (linear)
CTL P-Complete P (linear)
CTL*® PSpace-Complete P (linear)




o Computation Tree Logic: Intuitions.

s CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
s CTL Vs. LTL.

s CTL"




	Summary of Lecture IV
	Computation Tree logic Vs. LTL 
	CTL at a glance
	Summary
	CTL : Syntax
	CTL Alternative Notation
	CTL : Semantics
	CTL : Semantics (Cont.)
	CTL Semantics: The Propositional Aspect
	CTL Semantics: The Temporal Aspect
	CTL Semantics: Intuitions
	CTL Semantics: Intuitions (Cont.)
	CTL Semantics: Intuitions (Cont.)
	A Complete Set of CTL Operators
	Summary
	Safety Properties
	Liveness Properties
	Fairness Properties
	Summary
	The CTL Model Checking Problem
	Example 1: Mutual Exclusion (Safety)
	Example 1: Mutual Exclusion (Safety)

	Example 2: Liveness
	Example 2: Liveness

	Example 3: Fairness
	Example 3: Fairness

	Example 4: Non-Blocking
	Example 4: Non-Blocking

	Summary
	LTL Vs. CTL : Expressiveness
	LTL Vs. CTL : Expressiveness (Cont.)
	Summary
	The Computation Tree Logic CTLs 
	CTLs : Syntax
	CTLs Semantics: State Formulas
	CTLs Semantics: Path Formulas
	\CTLs Vs LTL Vs CTL : Expressiveness
	CTLs Vs LTL Vs CTL : Complexity
	CTLs Vs LTL Vs CTL : Complexity (Cont.)
	Summary of Lecture IV

