Mutual Exclusion

The following SMV program models a (buggy) two-users mutual exclusion algorithm.

MODULE User (auth)
-- Parameter "auth" is the authorization to enter the critical section
-- that the user receives from the arbiter.
VAR status: { NonCritical, Trying, Critical };
-- Variable "status" codifies the current status of the user
-—- — NonCritical: outside the critical section;
-- - Trying: trying to enter the critical section;
-- — Critical: inside the critical section.
ASSIGN init(status) := NonCritical;
-- Initially, the user is outside the critical section.
next (status) := case status = NonCritical : { NonCritical, Trying };
-- The user is currently outside the critical section;
-- it can non-deterministically switch to status "Trying" and
-- require to enter the critical section.
status = Trying :
case
next(auth) = 0 : Trying;
next (auth) 1 : Critical;
esac;

-- The user is trying to enter the critical section;
-- in the next state it will be inside the critical section
-- only if it receives the authorization by the arbiter.
status = Critical : { Critical, NonCriticall;
-- The user is currently inside the critical section;
-- it can non-deterministically leave the critical section.
esac;
VAR req: boolean;
-- Variable "req" is true when the user requires access to the
-- critical section, namely it is in status "Trying" or "Critical".
ASSIGN
req := status in { Trying, Critical };

-—--- The Arbiter ---—-———"——"—-—"—-"—"—--"—-""-""—-""-"-——

MODULE Arbiter(req0, reql)
-- Parameters "req#" are the requests of the different users to



-- access to the critical section.
VAR authO: boolean;
-— Authorization to access the critical section for user 0.
ASSIGN
init (auth0) := 0;
-- Initially the user in not authorized.
next (auth0) := req0 & !authi;
-- In the next step, the user is authorized to access to the critical
-- section only if:
-- - the user requires access to the critical section; and
—-- - the other user is not already authorized to enter.
VAR authl: boolean;
-- Authorization to access the critical section for user 1.
ASSIGN
init(authl) := 0; next(authl) := reql & !authO;

MODULE main

VAR
U0: User(Ar.authO); -- User O
Ul: User(Ar.authl); -- User 1
Ar: Arbiter(U0.req, Ul.req); -- The arbiter

In the program we have two users U0 and U1, and an arbiter Ar. Each user can be either NonCritical,
Trying or Critical:

e from NonCritical, it can nondeterministically go to Trying;
e from Trying, it can go to Critical when authorized by the arbiter;
e from Critical, it can nondeterministically go back to NonCritical.
The aim of the arbiter is to guarantee that the two users are not in status Critical at the same time.

1. Formalize the property: the two users cannot be at the same time in their critical section and show
that it is false.

2. Fix the arbiter so that the property becomes true.

3. Formalize the property: if a user tries to enter its critical section, it will eventually succeed and show
that it is false.

4. Add a fairness constraint that guarantees that the user does not stay forever in critical session.
5. Check if both properties are now true in extended model and, if not, fix the model.

6. Extend the model to the case of three (or four) users.



