

S @

Qutline

m What are formal verification and
model checking?

= Why Is formal verification for
software so hard?

m Some basic techniques for
software model checking

m The work here at IBM

S @

Verification

= TwWO main approaches to
automatically find bugs In
software and hardware

e Testing (simulation)
e Formal verification

S @

Testing

= Run on some inputs and examine the
results

= Can measure some kind of coverage

= Advantages:

e Relatively easy

e Checks many aspects of the tested run
(control as well as data)

= Disadvantages
e Cannot prove correctness (falsification only)

S @

Formal verification

m Checks all possible runs

= Advantages:

e Verification of the specification is
possible (not only falsification)

= Disadvantages

e Hard
e Not always feasible
e Good for control checking (not

data)

S @

Formal verification techniques

m Theorem proving

= Model Checking

e Explicit model checking
e Symbolic model checking

S @

Model checking

= Build a model

= A model can be represented as a graph

e Each vertex is a state of the system — value to
all the variables (registers)

e Each edge is a valid transition from state to
another state

Has initial states

<

S @

Model checking (2)
m We can check specifications

like:
e Always i<=j
e The program will always end
Q e After a REQ there will be an ACK
e

Ssps
. @Q

S @

Formal verification of Hardware

m Success story
= Widely used in the industry

= Highly qualified users are
needed

m Several successful techniques:

e manual: divide and conquer,
restrictions

e automatic: abstraction refinement,
and more

H“HH i “m“
[

i

A

~'

S @

Theoretical problems

m Software Is undecidable. (Does
the program end?)

m Software Is unbounded (stack,
dynamically allocated memory)

m Even If we restrict ourselves to
finite iImplementations (the
computer’s memory is bounded)
It Is hard

& @ @
v @ Even finite software i1s hard

= Programming languages have complicated
semantics (hard to model):
e Functions
e Recursion
e Pointers

= Hardware techniques do not transfer:
e Data manipulation (vs. control)

m The control path is integrated with the data path

m It is hard to express data relationship in symbolic
model checker (huge BDDs)

e Less modularity
m |t is difficult to use divide and conquer techniques

S @

Harder type of parallelism

= While hardware designs use
massive parallelism, a common
clock Is usually implemented
(synchronous systems)

= In software no common clock is
available (asynchronous systems)

= Asynchronous systems present more
behaviors. — generates much bigger
models

(an example will be given later)

S @

Economic problems

= Bugs in HW are:
e Not acceptable by the users
e Very expensive to repair

= Bugs in SW are:
e Tolerated by the user
e Relatively cheap to fix

= HW vendors are willing to invest
large resources (time, money and
expert personnel) in verifying HW

= SW companies are not

PPe s why use formal verification on
software?

m Parallel programs
Hard to test
Poor coverage
Programmers have less intuition
SW companies are willing to invest in skilled
personnel
= Micro-code, smart-cards etc
e Closer to hardware (in size and features)
e Bugs are expensive to fix

= Critical software (intensive care systems,
finance, security, anti-missiles systems
etc.)

S @

Simpler user interface is
needed

m Write a specification in a simple
way. (not all programmer
familiar with temporal logic)

= Presenting the bug (counter
example) in the program terms

|)

\ i
D

i

S @

Techniques

= Modeling a program

m Boolean programs (Microsoft’s
SLAM)

m Abstraction refinement

m Parallel oriented model checker.
(Lucent's VeriSoft, Bell Labs'
SPIN)

m Framework (Kansas University’s
Bandera)

$

Q
il

\\m
-\

) W ‘

. uummmw
“*uﬂ

S @

Modeling a program

m Model (like hardware) Is
synchronous — all variables
change at once

m Software Is sequential — one

C

nange at a time

OW can we translate a program

to a model?

S @

Example

bar () {
Int i=0, J=0;
while (1<2) {
I++:
1=1%2;

2,0

e

A

S @ .
Example (Using pc)
e |09 (o

1 while (i1<2) {
T e

3 1=1%2;
}

4 1=1;

% &

S @

next (i) =case
pc=2 :i+1
pc=4:1
else :i
next (j) =case
pc=3 : 1%2
else |
next (pc) =case
pc=1 :ifi<2then 2
else 4
pc=2 :3
pc=3
pc=4 :5

=

bar () {

Int i=0,)=0;
1 while (i<2) {
2 I++;

3 J=1%2;

}

4 1=1;

}5

Example (Using pc)

o
h

0

_

Hu
m

|

-
ft's

Micros

S @

Boolean programs

= If we wanted to manually verify
a program, we wouldn’t try to
explore all of its states or run on
all the inputs

= We would set some invariants
and prove that they are kept
throughout the program run

m Microsoft's SLAM tries to do the
same

S @

Example — Lock mechanism

Lock {
I f (LOCK==1) error;
el se LOCK = 1;

}

Unl ock {
i f (LOCK==0) error; Unlock
el se LOCK = 0O;

}

S @

Example - Program

do {
Lock();

nPacket s d = nPacket s;

| f (request) {

Does this code
obey the
locking rule?

ﬂ7

request = request->Next;

Unl ock() ;
nPacket s++;

}

} while (nPackets !'= nPacketsd d);

Unl ock() ;

PP Example — Boolean program

Model checking
0 do L{ K() - boolean program
A ock(); (bebop)
7
(L) (%)
(LD
Unl ock() ;
(U
}
> U} while (%)
W Unl ock() ;

(W €

é & « Example — Reconstruction

Is error path feasible
in C program?

do { (newton)
Lock():
ock(); >
nPacket s d = nPacket s;
nPackets = C

nPacketsOld = C

| f (request) {

request = request->Next;
Unl ock() ;
nPacket s++;

nPackets = C+1

}
} while (nPackets !'= nPacketsd d);

Assume: C+1 ==

Unl ock() ;

@9 ¢ Example — Refinement
Add new predicate

b : (nPacketsOld == nPackﬂ to boolean program

(c2bp)
@ do{
Lock(); 7
(LD
nPacket s d = nPackets; b := true;
(L) i f (request){
o request = request->Next;
Unl ock() ;
0 nPackets++; b := b? false : *;
}
(LD } whil e (nPackets != nPacketsdAd);// !Db
(L U Unlock() ;

(W €

Example

do {
Lock();

(")

b := true;

Unlock() ;
b := b? fal se :

'b);

b : (nPacketsOld == nPackﬂ

* =

Model checking
refined
boolean program
(bebop)

ﬂ7

DD+ Example

do {

b

}

} while (

b : (nPacketsOld == nPackﬂ

Lock();
.= true;

(")

Unlock() ;
b := b? false : *:

'b);

Unlock() ;

Model checking
refined
boolean program
(bebop)

ﬂ7

@D % Apstraction refinement

model / \;

W

[

S @

Parallel oriented (VeriSoft)

m Parallel programs force us to
encounter all possible
Interleavings — generates large
models

m One of the common heuristics to
reduce the model Is partial-order
reductions

= Mainly useful for explicit model
checking

PP interleaving
e

Global vars : G,Z

al: x=G
a2: x=0

N
e
b1 p=G \ \ \ \ \
e | R S B R
o oo
s
9 a

e
b5:
Z=2

<a
Z=3

&+ Visible

al:
az2:
a3:
a4.
asb:

bl:
b2:
b3:
b4:
b5:

O @ @ Partial Order

Reduction \

al: x=G
a2: x=0
a3d: y=1
ad: 7=2
as:

b1l: p:G ’
b2: p=0
b3: g=1
b4: Z=3
b5:

SHd e Framework

%pecificatio/ Program

Reductions /‘ debugger

|IC after Intermediate

reductions Code (IC) | \ H
_ Intermediate
Abstraction model nggfelr

Model %

S @

Here at IBM

m Using the power of RuleBase
m Translate C to EDL
= Support

e Function + recursion
e Pointers (no pointer arithmetic)

= Automatic specifications:
e No infinite loops
e No assert violations
e No memory leaks
e No access to dangling pointers
e No out of bound access to arrays

