
Directions in Formal 
Verification of Software

Ishai Ishai RabinovitzRabinovitz
Verification TechnologiesVerification Technologies

IBM Haifa LabsIBM Haifa Labs



OutlineOutline

!! What are formal verification and What are formal verification and 
model checking?model checking?

!! Why is formal verification for Why is formal verification for 
software so hard?software so hard?

!! Some basic techniques for Some basic techniques for 
software model checkingsoftware model checking

!! The work here at IBMThe work here at IBM



VerificationVerification

!! Two main approaches to Two main approaches to 
automatically find bugs in automatically find bugs in 
software and hardwaresoftware and hardware
"" Testing (simulation)Testing (simulation)
"" Formal verificationFormal verification



Testing Testing 
!! Run on some inputs and examine the Run on some inputs and examine the 

resultsresults
!! Can measure some kind of coverageCan measure some kind of coverage
!! Advantages:Advantages:

"" Relatively easyRelatively easy
"" Checks many aspects of the tested run Checks many aspects of the tested run 

(control as well as data)(control as well as data)
!! DisadvantagesDisadvantages

"" Cannot prove correctness  (falsification only)Cannot prove correctness  (falsification only)



Formal verificationFormal verification

!! Checks all possible runsChecks all possible runs
!! Advantages:Advantages:

"" Verification of the specification is Verification of the specification is 
possible (not only falsification)possible (not only falsification)

!! DisadvantagesDisadvantages
"" HardHard
"" Not always feasibleNot always feasible
"" Good for control checking (not Good for control checking (not 

data)data)



Formal verification techniquesFormal verification techniques

!! Theorem provingTheorem proving
!! Model CheckingModel Checking

"" Explicit model checkingExplicit model checking
"" Symbolic model checkingSymbolic model checking



Model checkingModel checking
!! Build a modelBuild a model
!! A model can be represented as a graphA model can be represented as a graph

"" Each vertex is a state of the system Each vertex is a state of the system –– value to value to 
all the variables (registers)all the variables (registers)

"" Each edge is a valid transition from state to Each edge is a valid transition from state to 
another stateanother state

"" Has initial statesHas initial states



Model checking (2)Model checking (2)
!! We can check specifications We can check specifications 

like:like:
"" Always i<=jAlways i<=j
"" The program will always endThe program will always end
"" After a REQ there will be an ACKAfter a REQ there will be an ACK



Formal verification of HardwareFormal verification of Hardware

!! Success storySuccess story
!! Widely used in the industryWidely used in the industry
!! Highly qualified users are Highly qualified users are 

neededneeded
!! Several successful techniques:Several successful techniques:

"" manual: divide and conquer, manual: divide and conquer, 
restrictionsrestrictions

"" automatic: abstraction refinement, automatic: abstraction refinement, 
and moreand more



Verifying software is Verifying software is 
harderharder  !!

Why?Why?



Theoretical problemsTheoretical problems

!! Software is Software is undecidableundecidable. (Does . (Does 
the program end?)the program end?)

!! Software is unbounded (stack, Software is unbounded (stack, 
dynamically allocated memory)dynamically allocated memory)

!! Even if we restrict ourselves to Even if we restrict ourselves to 
finite implementations (the finite implementations (the 
computercomputer’’s memory is bounded) s memory is bounded) 
it is hardit is hard



Even finite software is hardEven finite software is hard

!! Programming languages have complicated Programming languages have complicated 
semantics (hard to model):semantics (hard to model):
"" FunctionsFunctions
"" RecursionRecursion
"" PointersPointers

!! Hardware techniques do not transfer:Hardware techniques do not transfer:
"" Data manipulation (vs. control)Data manipulation (vs. control)

!! The control path is integrated with the data path The control path is integrated with the data path 
!! It is hard to express data relationship in symbolic It is hard to express data relationship in symbolic 

model checker (huge model checker (huge BDDsBDDs))
"" Less modularityLess modularity

!! It is difficult to use divide and conquer techniquesIt is difficult to use divide and conquer techniques



Harder type of parallelismHarder type of parallelism

!! While hardware designs use While hardware designs use 
massive parallelism, a common massive parallelism, a common 
clock is usually implemented clock is usually implemented 
(synchronous systems)(synchronous systems)

!! In software no common clock is In software no common clock is 
available (asynchronous systems)available (asynchronous systems)

!! Asynchronous systems present more Asynchronous systems present more 
behaviors. behaviors. –– generates much bigger generates much bigger 
modelsmodels

(an example will be given later)(an example will be given later)



Economic problemsEconomic problems

!! Bugs in HW are:Bugs in HW are:
"" Not acceptable by the usersNot acceptable by the users
"" Very expensive to repairVery expensive to repair

!! Bugs in SW are:Bugs in SW are:
"" Tolerated by the userTolerated by the user
"" Relatively cheap to fixRelatively cheap to fix

!! HW vendors are willing to invest HW vendors are willing to invest 
large resources (time, money and large resources (time, money and 
expert personnel)  in verifying HWexpert personnel)  in verifying HW

!! SW companies are notSW companies are not



So why use formal verification on So why use formal verification on 
software?software?
!! Parallel programsParallel programs

"" Hard to testHard to test
"" Poor coveragePoor coverage
"" Programmers have less intuitionProgrammers have less intuition
"" SW companies are willing to invest in  skilled SW companies are willing to invest in  skilled 

personnelpersonnel
!! MicroMicro--code, smartcode, smart--cards etccards etc

"" Closer to hardware (in size and features)Closer to hardware (in size and features)
"" Bugs are expensive to fixBugs are expensive to fix

!! Critical software (intensive care systems, Critical software (intensive care systems, 
finance, security, antifinance, security, anti--missiles systems missiles systems 
etc.)etc.)



Simpler user interface is Simpler user interface is 
neededneeded
!! Write a specification in a simple Write a specification in a simple 

way. (not all programmer way. (not all programmer 
familiar with temporal logic)familiar with temporal logic)

!! Presenting the bug (counter Presenting the bug (counter 
example) in the program termsexample) in the program terms



TechniquesTechniques



TechniquesTechniques

!! Modeling a programModeling a program
!! Boolean programs (MicrosoftBoolean programs (Microsoft’’s s 

SLAM)SLAM)
!! Abstraction refinementAbstraction refinement
!! Parallel oriented model checker. Parallel oriented model checker. 

(Lucent's VeriSoft, Bell Labs' (Lucent's VeriSoft, Bell Labs' 
SPIN)SPIN)

!! Framework (Kansas UniversityFramework (Kansas University’’s s 
Bandera)Bandera)



Modeling a ProgramModeling a Program



Modeling a programModeling a program

!! Model (like hardware) is Model (like hardware) is 
synchronous synchronous –– all variables all variables 
change at oncechange at once

!! Software is sequential Software is sequential –– one one 
change at a timechange at a time

!! How can we translate a program How can we translate a program 
to a model?to a model?



ExampleExample

bar () {bar () {
intint i=0, j=0;i=0, j=0;
while (i<2) {while (i<2) {

i++;i++;
j=i%2;j=i%2;

}}
i=1;i=1;

}}

0,0

1,1

0,1

2,0

2,1

1,0

i, j



Example (Using pc)Example (Using pc)

bar () {bar () {
intint i=0, j=0;i=0, j=0;
while (i<2) {while (i<2) {

i++;i++;
j=i%2;j=i%2;

}}
i=1;i=1;

}}

11

22

33

44

55

1,1,1

5,2,1

1,2,0

3,2,1

3,1,0

1,0,0

pc, i, j

4,2,0

2,1,1

2,0,0



Example (Using pc)Example (Using pc)

bar () {bar () {
intint i=0, j=0;i=0, j=0;
while (i<2) {while (i<2) {

i++;i++;
j=i%2;j=i%2;

}}
i=1;i=1;

}}

11

22

33

44

55

1,1,1

5,2,1

1,2,0

3,2,1

3,1,0

1,0,0

pc, i, j

4,2,0

2,1,1

2,0,0

next (i) =next (i) =casecase
pc=2 : i+1pc=2 : i+1
pc=4 : 1pc=4 : 1
else  : ielse  : i

next (j) =next (j) =casecase
pc=3 : i%2pc=3 : i%2
else  jelse  j

next (pc) =next (pc) = casecase
pc=1  : if i<2 then 2 pc=1  : if i<2 then 2 

else 4else 4
pc=2   : 3pc=2   : 3
pc=3   : 1pc=3   : 1
pc=4   : 5pc=4   : 5



Boolean programsBoolean programs

MicrosoftMicrosoft’’s SLAMs SLAM



Boolean programsBoolean programs

!! If we wanted to manually verify If we wanted to manually verify 
a program, we wouldna program, we wouldn’’t try to t try to 
explore all of its states or run on explore all of its states or run on 
all the inputsall the inputs

!! We would set some invariants We would set some invariants 
and prove that they are kept and prove that they are kept 
throughout the program runthroughout the program run

!! MicrosoftMicrosoft’’s SLAM tries to do the s SLAM tries to do the 
samesame



Lock==0 Lock==0

Error

Unlock Lock

Lock

Unlock

LockLock {{

if (LOCK==1)if (LOCK==1) errorerror;;

else LOCK = 1;else LOCK = 1;

}}

UnlockUnlock {{

if (LOCK==0)if (LOCK==0) errorerror;;

else LOCK = 0;else LOCK = 0;

}}

Example Example –– Lock mechanism Lock mechanism 



do {
Lock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
Unlock();

nPackets++;
}

} while (nPackets != nPacketsOld);

Unlock();

Example Example -- ProgramProgram
Does this code 

obey the 
locking rule?



do {
Lock();

if(*){

Unlock();

}
} while (*);

Unlock();

Example Example –– Boolean programBoolean program

Model checking 
boolean program

(bebop)

U

L

L

L

L

U

L

U

U

U

E



do {
Lock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
Unlock();

nPackets++;

}
} while (nPackets != nPacketsOld);

Unlock();

Example Example –– Reconstruction Reconstruction 
Is error path feasible

in C program?
(newton)U

L

L

L

U

U

U

E

nPackets = C
nPacketsOld = C

nPackets = C+1

Assume: C+1 == C



do {
Lock();

nPacketsOld = nPackets; b := true;

if(request){
request = request->Next;
Unlock();

nPackets++; b := b? false : *;

}
} while (nPackets != nPacketsOld);// !b

Unlock();

Example Example –– RefinementRefinement
Add new predicate
to boolean program

(c2bp)
U

L

L

L

L

U

L

U

U

U

E

b : (nPacketsOld == nPackets)



do {
Lock();

b := true;

if(*){

Unlock();
b := b? false : *;

}
} while ( !b );

Unlock();

b

b

b

b

ExampleExample Model checking 
refined

boolean program
(bebop)

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b



ExampleExample

do {
Lock();

b := true;

if(*){

Unlock();
b := b? false : *;

}
} while ( !b );

Unlock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking 
refined

boolean program
(bebop)



Model 
checking

Abstraction refinementAbstraction refinement

model

passed failed

abstract
model

abstraction

reconstruct

refine



Parallel orientedParallel oriented

Bell Labs' SPIN, Lucent's VeriSoft Bell Labs' SPIN, Lucent's VeriSoft 



Parallel oriented (VeriSoft) Parallel oriented (VeriSoft) 

!! Parallel programs force us to Parallel programs force us to 
encounter all possible encounter all possible 
interleavingsinterleavings –– generates large generates large 
modelsmodels

!! One of the common heuristics to One of the common heuristics to 
reduce the model is partialreduce the model is partial--order order 
reductionsreductions

!! Mainly useful for explicit model Mainly useful for explicit model 
checkingchecking



a1,b1

a2,b1 a1,b2

a3,b1 a2,b2 a1,b3

a4,b1 a3,b2 a2,b3 a1,b4

a5,b1 a4,b2 a3,b3 a2,b4 a1,b5

a5,b2 a4,b3 a3,b4 a2,b5

a5,b3 a4,b4 a3,b3

a5,b4 a4,b5

a5,b5
Z=3

a5,b5
Z=2

a1: x=G

a2:  x=0

a3:  y=1

a4:  Z=2

a5:

b1: p=G

b2:  p=0

b3:  q=1

b4:  Z=3

b5:

interleavinginterleaving
Global vars : G,Z



a1,b1

a2,b1 a1,b2

a3,b1 a2,b2 a1,b3

a4,b1 a3,b2 a2,b3 a1,b4

a5,b1 a4,b2 a3,b3 a2,b4 a1,b5

a5,b2 a4,b3 a3,b4 a2,b5

a5,b3 a4,b4 a3,b3

a5,b4 a4,b5

a5,b5
Z=3

a5,b5
Z=2

a1:  x=G

a2:  x=0

a3:  y=1

a4:  Z=2

a5:

b1:  p=G

b2:  p=0

b3:  q=1

b4:  Z=3

b5:

Visible Visible 
instructionsinstructions



a1,b1

a2,b1 a1,b2

a3,b1 a2,b2 a1,b3

a4,b1 a3,b2 a2,b3 a1,b4

a5,b1 a4,b2 a3,b3 a2,b4 a1,b5

a5,b2 a4,b3 a3,b4 a2,b5

a5,b3 a4,b4 a3,b3

a5,b4 a4,b5

a5,b5
Z=3

a5,b5
Z=2

a1:  x=G

a2:  x=0

a3:  y=1

a4:  Z=2

a5:

b1:  p=G

b2:  p=0

b3:  q=1

b4:  Z=3

b5:

Partial Order Partial Order 
ReductionReduction



FrameworkFramework

Kansas University BanderaKansas University Bandera--likelike



FrameworkFramework

Front
end

Programspecification

Intermediate
Code (IC)

Reductions

Abstraction

IC after
reductions

Intermediate
model Model

checker

Abstraction
refinement

debugger

Model

Translator



Here at IBMHere at IBM

!! Using the power of RuleBaseUsing the power of RuleBase
!! Translate C to EDLTranslate C to EDL
!! SupportSupport

"" Function + recursionFunction + recursion
"" Pointers (no pointer arithmetic)Pointers (no pointer arithmetic)

!! Automatic specifications:Automatic specifications:
"" No infinite loopsNo infinite loops
"" No assert violationsNo assert violations
"" No memory leaksNo memory leaks
"" No access to dangling pointersNo access to dangling pointers
"" No out of bound access to arraysNo out of bound access to arrays


