
Model Checking OverviewModel Checking Overview

Edmund M. Clarke, Jr.Edmund M. Clarke, Jr.

School of Computer ScienceSchool of Computer Science
Carnegie Mellon UniversityCarnegie Mellon University

Pittsburgh, PA 15213Pittsburgh, PA 15213

What is Model Checking?

Cindy Crawford

Unfortunately, not that kind of model!!

What is Model Checking?

“The Rare Glitch Project”

Bad pun for cult movie “The Blair Witch Project”!!

Temporal Logic Model CheckingTemporal Logic Model Checking

• Model checking is an automatic verification technique for
finite state concurrent systems.

• Developed independently by Clarke and Emerson and by
Queille and Sifakis in early 1980’s.

• Specifications are written in propositional temporal logic.

• Verification procedure is an exhaustive search of the state
space of the design.

Some Advantages of Model CheckingSome Advantages of Model Checking

• No proofs!!!
• Fast
• Counterexamples
• No problem with partial specifications
• Logics can easily express many concurrency

properties

Main DisadvantageMain Disadvantage

State Explosion Problem:
• Too many processes
• Data Paths

Much progress has been made on this problem recently!

Basic Temporal OperatorsBasic Temporal Operators

• Fp - p holds sometime in the future.
• Gp - p holds globally in the future.
• Xp - p holds next time.
• pUq - p holds until q holds.

The symbol “p” is an atomic proposition, e.g. DeviceEnabled.

Model of computation

st ~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

Temporal LogicTemporal Logic

lThe oven doesn’t heat up until the door is closed.

lNot heat_up holds until door_closed

l (~ heat_up) U door_closed

Model Checking ProblemModel Checking Problem

Let M be a state-transition graph.

Let ƒ be the specification in temporal logic.

Find all states s of M such that M, s |= ƒ.

Efficient Algorithms: CE81, CES83

The EMC SystemThe EMC System

PreprocessorPreprocessor Model Checker
(EMC)

Model Checker
(EMC)

State Transition Graph
104 to 105 states
State Transition Graph

104 to 105 states

SpecificationSpecification

True or CounterexamplesTrue or Counterexamples

Breakthrough!Breakthrough!

Ken McMillan implemented our model checking
algorithm using Binary Decision Diagrams in 1987.

Now able to handle much larger examples!!

An Alternative Approach to Model Checking

• Both the system and its specification are modeled as
automata.

• These automata are compared to determine if the system
behavior conforms to the specification.

• Different notions of conformance have been explored:
– Language Inclusion
– Refinement orderings
– Observational equivalence

Implementation and SpecificationImplementation and Specification

•Mimp corresponds to the implementation:

•Mspec corresponds to the specification:
“event C must happen at least once”:

a
a

c

b

a, b

c

a, b, c

b

The Behavior Conformance ProblemThe Behavior Conformance Problem

Given two automata Mimp and Mspec , check if

L(Mimp) ÍL(Mspec).

(If a sequence is accepted by Mimp then it is also accepted by
Mspec.This can be determined algorithmically.)L

• Binary Decision Diagrams can be used to represent state
transition systems more efficiently.

• The partial order reduction can be used to reduce the
number of states that must be enumerated.

• Other techniques for alleviating state explosion include:
– Abstraction.
– Compositional reasoning.
– Symmetry.
– Cone of influence reduction.
– Semantic minimization.

Combating the State Explosion ProblemCombating the State Explosion Problem

Model Checker PerformanceModel Checker Performance

• Model checkers today can routinely handle systems with
between 100 and 300 state variables.

• Systems with 10120 reachable states have been checked.

• By using appropriate abstraction techniques, systems with
an essentially unlimited number of states can be checked.

Notable ExamplesNotable Examples-- IEEE FuturebusIEEE Futurebus++

• In 1992 Clarke and his students at CMU used SMV to
verify the IEEE Future+ cache coherence protocol.

• They found a number of previously undetected errors in
the design of the protocol.

• This was the first time that formal methods have been used
to find errors in an IEEE standard.

• Although the development of the protocol began in 1988,
all previous attempts to validate it were based entirely on
informal techniques.

Notable ExamplesNotable Examples--IEEE SCIIEEE SCI

• In 1992 Dill and his students at Stanford used Murphi to
verify the cache coherence protocol of the IEEE Scalable
Coherent Interface.

• They found several errors, ranging from uninitialized
variables to subtle logical errors.

• The errors also existed in the complete protocol, although
it had been extensively discussed, simulated, and even
implemented.

Notable ExamplesNotable Examples--PowerScalePowerScale

• In 1995 researchers from Bull and Verimag used LOTOS
to describe the processors, memory controller, and bus
arbiter of the PowerScale multiprocessor architecture.

• They identified four correctness requirements for proper
functioning of the arbiter.

• The properties were formalized using bisimulation
relations between finite labeled transition systems.

• Correctness was established automatically in a few
minutes using the CÆSAR/ ALDÉBARAN toolbox.

Notable Examples Notable Examples --HDLCHDLC

• A High-level Data Link Controller was being designed
at AT&T in Madrid in 1996.

• Researchers at Bell Labs offered to check some properties
of the design using the FormalCheck verifier.

• Within five hours, six properties were specified and five
were verified.

• The sixth property failed, uncovering a bug that would

have reduced throughput or caused lost transmissions!

Notable Examples
PowerPC 620 Microprocessor

• Richard Raimi used Motorola’s Verdict model
checker to debug a hardware laboratory failure.

• Initial silicon of the PowerPC 620 microprocessor
crashed during boot of an operating system.

• In a matter of seconds, Verdict found a BIU
deadlock causing the failure.

Notable ExamplesNotable Examples--Analog CircuitsAnalog Circuits

• In 1994 Bosscher, Polak, and Vaandrager won a best-paper
award for proving manually the correctness of a control
protocol used in Philips stereo components.

• In 1995 Ho and Wong-Toi verified an abstraction of this
protocol automatically using HyTech.

• Later in 1995 Daws and Yovine used Kronos to check all
the properties stated and hand proved by Bosscher, et al.

Notable ExamplesNotable Examples--ISDN/ISUPISDN/ISUP

• The NewCoRe Project (89-92) was the first application of
formal verification in a software project within AT&T.

• A special purpose model checker was used in the
development of the CCITT ISDN User Part Protocol.

• Five “verification engineers” analyzed 145 requirements.

• A total of 7,500 lines of SDL source code was verified.

• 112 errors were found; about 55% of the original design
requirements were logically inconsistent.

Notable ExamplesNotable Examples--BuildingBuilding

• In 1995 the Concurrency Workbench was used to analyze
an active structural control system to make buildings
more resistant to earthquakes.

• The control system sampled the forces being applied to
the structure and used hydraulic actuators to exert
countervailing forces.

• A timing error was discovered that could have caused the
controller to worsen, rather than dampen, the vibration
experienced during earthquakes.

Model Checking SystemsModel Checking Systems

• There are many other successful examples of the use of
model checking in hardware and protocol verification.

• The fact that industry (INTEL, IBM, MOTOROLA) is
starting to use model checking is encouraging.

• Below are some well-known model checkers, categorized
by whether the specification is a formula or an automaton.

Temporal Logic Model CheckersTemporal Logic Model Checkers

• The first two model checkers were EMC and Caesar.

• SMV is the first model checker to use BDDs.

• Spin uses the partial order reduction to reduce the state
explosion problem.

• Verus and Kronos check properties of real-time systems.

• HyTech is designed for reasoning about hybrid systems.

Behavior Conformance CheckersBehavior Conformance Checkers

• The Cospan/FormatCheck system is based on showing
inclusion between w-automata.

• FDR checks refinement between CSP programs; recently,
used to debug security protocols.

• The Concurrency Workbench can be used to determine if
two systems are observationally equivalent.

Combination CheckersCombination Checkers

• Berkeley’s HSIS combines model checking with language
inclusion.

• Stanford’s STeP system combines model checking with
deductive methods.

• VIS integrates model checking with logic synthesis and
simulation.

• The PVS theorem prover has a model checker for model
mu-calculus.

Directions for Future ResearchDirections for Future Research

• Investigate the use of abstraction, compositional reasoning,
and symmetry to reduce the state explosion problem.

• Develop methods for verifying parameterized designs.

• Develop practical tools for real-time and hybrid systems.

• Combine with deductive verification.

• Develop tool interfaces suitable for system designers.

The Grand Challenge:
Model Check Software!

 Use a finite state programming language.

•Statecharts

•Esterel

•System C ?

Statechart for Brake Control

BRAKE_CONTROL

DYNAMIC

DYNAMIC_
PARK_BRAKE_
ABS_ON

DYNAMIC_
PARK_BRAKE_
ABS_OFF

[VEHICLE_SPEED<5

or

WHEELSLIP<=THRESHOLD

or

(VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON and
in(ACTUATOR_REGULATION))]

[WHEELSLIP>THRESHOLD and
in(RR_ACTUATOR_REGULATION)
and VEHICLE_SPEED>=5]

ACTUATOR

ACTUATOR_
REGULATION

ACTUATOR_
HOME

BRAKE_
LATCHED

[VEHICLE_SPEED>=5 and
PARKING_BRAKE_BUTTON]

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

DYNAMIC

PARK_BRAKE_
ABS_ON

PARK_BRAKE_
ABS_OFF

ACTUATOR

ACTUATOR_
REGULATION

ACTUATOR_
HOME

BRAKE_
LATCHED

or

or

(VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON and

in(RR_ACTUATOR_REGULATION)

[VEHICLE_SPEED<5 and PARKING_BRAKE_BUTTON]

PARKING_BRAKE_BUTTON]

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

[VEHICLE_SPEED<5]

The Grand Challenge:
Model Check Software!

Unroll the state machine obtained from the executable of the
program.

Use the partial order reduction to avoid generating too
many states.

•Patrice Godefroid – Verisoft

•Scott Stoller -- Java

The Grand Challenge:
Model Check Software!

Use static analysis to extract a finite state synchronization
skeleton from the program. Model check the result.

•Bandera -- Kansas State

•Java PathFinder -- NASA Ames

•Slam Project (Bebop) -- Microsoft

Statecharts

• Finite-state machines are used for modeling, but
… .
– Flat structure
– Sequential, etc.
– In summary, not expressive enough for modeling

concurrent and reactive systems
• Statecharts are extended FSMs with hierarchy,

parallel composition, broadcast communication.

Applications

• Highly expressive language
• Natural description for concurrent/reactive

systems like:
– Automobile and aero-space control systems
– Nuclear control systems
– Network management systems

• Over 1,000 organizations use them

Example: Break Control System
BRAKE_CONTROL

DYNAMIC_
PARK_BRAKE_

DYNAMIC_
PARK_BRAKE_
ABS_OFF

[VEHICLE_SPEED<5
or

WHEELSLIP<=THRESHOLD
or
(VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON and

in(ACTUATOR_REGULATION))]

[WHEELSLIP>THRESHOLD and
in(RR_ACTUATOR_REGULATION)
and VEHICLE_SPEED>=5]

BRAKE_

[VEHICLE_SPEED>=5 and

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

[VEHICLE_RUN_MODE and

DYNAMIC

ABS_ON

ACTUATOR

ACTUATOR_
REGULATION

ACTUATOR_
HOME

[VEHICLE_SPEED<5 and PARKING_BRAKE_BUTTON]

PARKING_BRAKE_BUTTON]

not PARKING_BRAKE_BUTTON]

[VEHICLE_SPEED<5]

LATCHED

Goals of formal verification

• Contemporary CASE tools
– Simulator
– Analyzer
– Code generator

• However, neither complete nor efficient
• Model checking statecharts

– Complete
– Great debugging aid with counter examples

Proposed Research

• Exploit hierarchy in statechart designs to reduce
state explosion problem

• Investigate use of model checking for verifying
hardware/software co-designs

• Apply methodology to real automotive examples

Hardware Verification ExampleHardware Verification Example

• What: formal verification of IEEE Futurebus+ cache
consistency protocol

• How: construct abstract model, use BDD-based
automatic verifier

• Results:
– Identification of bugs and potential bugs in the

protocol
– Production of precise and readable model of the

protocol
1040 states

Model CheckingModel Checking

• extracts a finite model from a system and checks some
property on that model

• check is performed by an exhaustive state space search
• need algorithms and data structures that can handle very

large models
• used mainly in hardware and protocol verification so far
• challenge is to verify software systems
• two general approaches:

– Temporal logic model checking
– Behavior conformance checking

Notable ExamplesNotable Examples-- IEEE FuturebusIEEE Futurebus++

• In 1992 Clarke and his students at CMU used SMV to
verify the cache coherence protocol in the IEEE
Futurebus+ Standards.

• They constructed a precise model of the protocol and
showed that it satisfied a formal specification of cache
coherence.

• They found a number of previously undetected errors in
the design of the protocol

Temporal Logic Model CheckingTemporal Logic Model Checking

• Developed independently by Clarke and Emerson and by
Queille and Sifakis in early 1980’s

• Specifications are expressed in temporal logic
• Systems are modeled as finite-state transition graphs
• A search procedure used to check if state graph is a model

for specification

 The term ”model checking” was coined by Clarke and
Emerson

Computation Tree LogicComputation Tree Logic (CTL)

• can succinctly express many properties of finite-state
concurrent systems

• each operator of the logic has two parts:
• Path quantifier

• A-”for every path”
• E-”there exists a path”

• State Quantifier:
• Fp-p holds sometime in the future
• Gp-p holds globally in the future
• Xp-p holds next time
• pUq-p holds until q holds

Typical CTL FormulasTypical CTL Formulas

• EF (started ^ ¬ready): it is possible to get to a state where
started holds by ready does not hold.

• AG (reg ==> AF ack): if a request occurs, then it will be
eventually acknowledged.

• AG (AF device_enabled): device_enabled holds infinitely
often on every computation path.

• AG (EF restart): from any state it is possible to get to the
restart state.

Advantages of Model CheckingAdvantages of Model Checking

• In contrast to theorem proving, model checking is
completely automatic and fast, frequently producing an
answer in a matter of minutes.

• It can be used to check partial specifications and can
provide useful information about correctness even if the
system has not been completely specified.

• Above all, model checking’s tour de force is that it
produces counterexamples, which usually uncover subtle
errors in design that would be difficult to find otherwise.

