M odel Checking Overview

Edmund M. Clarke, Jr.

School of Computer Science
Carnegie Méelon Univer sity
Pittsburgh, PA 15213

What is M odel Checking?

Unfortunately, not that kind of model!!

What is M odel Checking?

“*The Rare Glitch Project”

Bad pun for cult movie“ The Blair Witch Project”!!

Temporal Logic Model Checking

Model checking isan automatic verification technique for
finite state concurrent systems.

Developed independently by Clarke and Emerson and by
Queille and Sifakisin early 1980’s.

Specifications are written in propositional temporal logic.

Verification procedure is an exhaustive search of the state
space of the design.

Some Advantages of M odel Checking

No proofs!!!

Fast

Counterexamples

No problem with partial specifications

L ogics can easily express many concurrency
properties

Main Disadvantage

State Explosion Problem:
e T0O many processes
o DataPaths

Much progress has been made on this problem recently!

Basic Temporal Operators

Thesymbol “p” Isan atomic proposition, e.g. DeviceEnabled.

* Fp - pholdssometimeinthefuture.

* Gp-pholdsglobally in the future.
e Xp - p holds next time.
e pUg - p holds until g holds.

M odel of computation

Microwave Oven Example

Temporal Logic

® Theoven doesn’t heat up until the door is closed.

® Not heat up holds until door closed

o (~ heat_up) U door closed

M odel Checking Problem

Let M beastate-transition graph.

Let f bethe specification in temporal logic.

Find all statessof M suchthat M, s|= .

Efficient Algorithms: CE81, CES83

The EMC System

Preprocessor

Model Checker
(EMC)

Specification

State Transition Graph
104 to 10° states

True or Counterexamples

Breakthrough!

Ken McMillan implemented our model checking
algorithm using Binary Decision Diagramsin 1987.

Now able to handle much larger examples!!

An Alternative Approach to Model Checking

e Both the system and its specification are modeled as
automata.

» These automata are compar ed to determine if the system
behavior confor ms to the specification.

» Different notions of conformance have been explored:
— Language Inclusion
— Refinement orderings
— Observational equivalence

| mplementation and Specification

*M i, corresponds to the implementation:

corresponds to the specification:
“event C must happen at least once’:

C
55“3 \@a,b,c

The Behavior Confor mance Problem

Given two automata M., and M o, check If

L(Mimp) II L(Mspec)'

(If asequence is accepted by M. . then it is also accepted by

imp

M ge;- This can be determined algorithmically.)

Combating the State Explosion Problem

Binary Decision Diagrams can be used to represent state
transition systems more efficiently.

The partial order reduction can be used to reduce the
number of states that must be enumerated.

Other techniques for alleviating state explosion include:
— Abstraction.

— Compositional reasoning.

— Symmetry.

— Cone of influence reduction.

— Semantic minimization.

M odel Checker Performance

 Model checkerstoday can routinely handle systems with
between 100 and 300 state variables.

o Systemswith 10*°reachable states have been checked.

» By using appropriate abstraction techniques, systems with
an essentially unlimited number of states can be checked.

Notable Examples- | EEE Futurebus*

In 1992 Clarke and his students at CMU used SMV to
verify the | EEE Futuret+ cache coherence protocol.

They found a number of previously undetected errorsin
the design of the protocol.

Thiswas the first time that forma methods have been used
tofind errorsin an | EEE standard.

Although the development of the protocol began in 1988,
all previous attempts to validate it were based entirely on
Informal techniques.

Notable Examples-| EEE SCI

e 1n 1992 Dill and his students at Stanford used M ur phi to
verify the cache coherence protocol of the IEEE Scalable
Coherent Interface.

They found severa errors, ranging from uninitialized
variables to subtlelogical errors.

The errors aso existed in the complete protocol, although
It had been extensively discussed, ssimulated, and even
Implemented.

Notable Examples-Power Scale

In 1995 researchers from Bull and Verimag used LOTOS
to describe the processors, memory controller, and bus
arbiter of the PowerScale multiprocessor architecture.

They identified four correctness requirementsfor proper
functioning of the arbiter.

The properties were for malized using bisimulation
relations between finite labeled transition systems.

Correctness was established automatically in afew
minutes using the CAESAR/ ALDEBARAN tool box.

Notable Examples-HDLC

A High-level Data Link Controller was being designed
a AT&T in Madrid in 1996.

Researchers at Bell Labs offered to check some properties
of the design using the For malCheck verifier.

Within five hours, six properties wer e specified and five
wer e verified.

The sixth property failled, uncovering a bug that would
have reduced throughput or caused lost transmissions!

Notable Examples
Power PC 620 M icr opr ocessor

e Richard Rami used Motorola's Verdict mode
checker to debug a hardware |aboratory failure.

 Initial silicon of the PowerPC 620 microprocessor
crashed during boot of an operating system.

e |n amatter of seconds, Verdict found aBIU
deadlock causing the failure.

Notable Examples-Analog Cir cuits

* In 1994 Bosscher, Polak, and Vaandrager won a best-paper
award for proving manually the correctness of a control
protocol used in Philips ster eo components.

e In 1995 Ho and Wong-Toi verified an abstraction of this
protocol automatically using HyTech.

e Laterin 1995 Daws and Y ovine used Kronos to check all
the properties stated and hand proved by Bosscher, et al.

Notable Examples-1 SDN/I SUP

The NewCoRe Project (89-92) was the first application of
formal verification in asoftware project within AT&T.

A specia purpose model checker wasused in the
development of the CCITT ISDN User Part Protocol.

Five “verification engineers’ analyzed 145 requirements.
A total of 7,500 lines of SDL source code was verified.

112 errors were found; about 55% of the original design
requirements were logically inconsistent.

Notable Examples-Building

e In 1995 the Concurrency Workbench was used to analyze
an active structural control system to make buildings
moreresistant to earthquakes.

The control system sampled the forces being applied to
the structure and used hydraulic actuators to exert
countervailing forces.

A timing error was discover ed that could have caused the
controller to wor sen, rather than dampen, the vibration
experienced during earthquakes.

M odel Checking Systems

e Thereare many other successful examples of the use of
model checking in hardware and protocol verification.

o Thefact that industry (INTEL, IBM, MOTOROLA) is
starting to use model checking is encouraging.

e Below are some well-known model checkers, categorized
by whether the specification isaformula or an automaton.

Temporal Logic Model Checkers

The first two model checkers were EM C and Caesar .
SMV isthefirst model checker to use BDDs.

Spin usesthe partial order reduction to reduce the state
explosion problem.

Verus and Kronos check properties of real-time systems.

HyTech is designed for reasoning about hybrid systems.

Behavior Conformance Checkers

The Cospan/FormatCheck system is based on showing
Inclusion between w-automata.

FDR checks refinement between CSP programs; recently,
used to debug security protocols.

The Concurrency Wor kbench can be used to determine if
two systems are observationally equivalent.

Combination Checkers

Berkeley’s HSI S combines model checking with language
Inclusion.

Stanford’s ST eP system combines model checking with
deductive methods.

VIS integrates model checking with logic synthesis and
simulation.

The PV S theorem prover has amodel checker for model
mu-cal culus.

Directions for Future Research

Investigate the use of abstraction, compositional reasoning,
and symmetry to reduce the state explosion problem.

Develop methods for verifying parameterized designs.
Develop practical tools for real-time and hybrid systems.
Combine with deductive verification.

Develop tool interfaces suitable for system designers.

The Grand Challenge:
Model Check Softwar el

Use afinite state programming language.

e Statecharts
e Esterdl

e System C ?

Statechart for Brake Control

| BRAKE_CONTROL |

ACTUATOR

[VEHICLE_SPEED>=5 and
PARKING_BRAKE_BUTTON]

ACTUATOR_ ACTUATOR
HOME

REGULATION
J [VEHICLE_RUN_MODE and

not PARKING_BRAKE_BUTTON]

[VEHICLE_SPEED<5]

[VEHICLE_RUN_MODE and
not PARKING_BRAKE_BUTTON]

BRAKE_
LATCHED

[VEHICLE_SPEED<5 and PARKING_BRAKE_BUTTON] l

DYNAMIC

DYNAMIC_
PARK_BRAKE_
ABS_OFF

[WHEELSLIP>THRESHOLD an¢
in(RR_ACTUATOR_REGULATION)
[VEHICLE_SPEED<5 and VEHICLE_SPEED>=5]

or

WHEEL SLIP<=THRESHOLD
or
(VEHICLE_RUN_MODE and

not PARKING_BRAKE_BUTTON and
in(ACTUATOR_REGULATION))]

DYNAMIC_
PARK_BRAKE_
ABS_ON

The Grand Challenge:
Model Check Softwar el

Unroll the state machine obtained from the executabl e of the
program.

Use the partial order reduction to avoid generating too
many states.

e Patrice Godefroid — V erisoft

e Scott Stoller -- Java

The Grand Challenge:
Model Check Softwar el

Use static analysisto extract afinite state synchronization
skeleton from the program. Model check the result.

e Bandera -- Kansas State
e Java PathFinder -- NASA Ames

« Slam Project (Bebop) -- Microsoft

Statecharts

o Finite-state machines are used for modeling, but

— Flat structure

— Sequential, etc.

— In summary, not expressive enough for modeling
concurrent and reactive systems

o Statecharts are extended FSMs with hierarchy,
parallel composition, broadcast communication.

Applications

e Highly expressive language

e Natural description for concurrent/reactive
systems like:
— Automobile and aero-space control systems

— Nuclear control systems
— Network management systems

e Over 1,000 organizations use them

Example: Break Control System

BRAKE_CONTROL

o—-\\ ACTUATOR o~ DYNAMIC
DYNAMIC_

\v4 [VEHICLE_SPEED>=5 and
PARKING_BRAKE_BUTTON] D[PARK_BRAKE

ACTUATOR_ ABS_OFF

REGULATION
1 [YIERVCLLE [REIN [SOIDE Erile [WHEEL SLIP>THRESHOLD and

el PARIINE. JERANE BUrvei) in(RR_ACTUATOR_REGULATIO
and VEHICLE_SPEED>=5]

ACTUATOR_
HOME

[VEHICLE_SPEED<5]
[VEHICLE_SPEED<5

or

WHEEL SLIP<=THRESHOLD
or

[VERICLE_RUN_MODE and (VEHICLE_RUN_MODE and

el PARIINE. JERANE BUrvei) not PARKING_BRAKE_BUTTON and

in(ACTUATOR_REGULATION))]

A"4

BRAKE_ DYNAMIC_
LATCHED PARK_BRAKE._
[VEHICLE_SPEED<5 and PARKING_BRAKE_BUTTON] AB S_ON

Goals of formal verification

o Contemporary CASE tools
— Simulator
— Analyzer
— Code generator

* However, neither complete nor efficient

 Model checking statecharts
— Complete
— Great debugging aid with counter examples

Proposed Research

o Exploit hierarchy in statechart designs to reduce
state explosion problem

 |nvestigate use of model checking for verifying
hardware/software co-designs

« Apply methodology to real automotive examples

Hardware Verification Example

What: formal verification of | EEE Futurebus+ cache
consistency protocol

How: construct abstract model, use BDD-based
automatic verifier

Results;

— ldentification of bugs and potential bugsin the
orotocol

Production of precise and readable model of the
orotocol

10" states

Model Checking

extracts a from a system and checks some
on that model

check is performed by an

need and that can handle very
large models

used mainly in so far
ISto verify
two general approaches:

Notable Examples- | EEE Futurebus*

e In 1992 Clarke and his students at CMU used SMV to
verify the cache coherence protocol in the IEEE
Futurebus+ Standards.

They constructed a precise model of the protocol and
showed that it satisfied aformal specification of cache
coherence.

They found a number of previously undetected errorsin
the design of the protocol

Temporal Logic Model Checking

Devel oped independently by Clarke and Emerson and by
Queille and Sifakisin early 1980’s

Specifications are expressed in temporal logic
Systems are modeled asfinite-state transition graphs

A search procedure used to check if state graph isa model
for specification

Theterm ” model checking” was coined by Clarke and
Emerson

Computation Tree Logic (CTL)

» can succinctly express many properties of finite-state
concurrent systems

» each operator of the logic has two parts:

Path quantifier
A-"for every path”
E-"there exists a path”

State Quantifier:
Fp-p holds sometime in the future
Gp-p holds globally in the future
Xp-p holds next time
pUQg-p holds until g holds

Typical CTL Formulas

EF (started ™ —ready): it is possible to get to a state where
started holds by ready does not hold.

AG (reg ==> AF ack): if arequest occurs, then it will be
eventually acknowl edged.

AG (AF device enabled): device enabled holds infinitely
often on every computation path.

AG (EF restart): from any state it is possible to get to the
restart state.

Advantages of M odel Checking

 |n contrast to theorem proving, model checking is
completely automatic and fast, frequently producing an
answer in a matter of minutes.

It can be used to check partial specifications and can
provide useful information about correctness even if the
system has not been completely specified.

Above al, model checking’ stour deforceisthat it
produces counterexamples, which usually uncover subtle
errors in design that would be difficult to find otherwise.

