A.A. 2003-2004, CDLS in Informatica

Introduction to Formal Methods for SW and HW Development

08: Automata-Theoretic LTL Model Checking

Roberto Sebastiani – rseba@dit.unitn.it

Some material (text, figures) displayed in these slides is courtesy of M. Benerecetti, A. Cimatti, F. Giunchiglia, P. Pandya, M. Pistore, M. Roveri.

© Roberto Sebastiani, 2003

Content

$\Rightarrow ullet$	THE PROBLEM	2
•	AUTOMATA ON FINITE WORDS	7
•	AUTOMATA ON INFINITE WORDS	25
•	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
•	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
•	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

The problem

Given a Kripke structure M and an LTL specification ψ, does M satisfy ψ?:

$M \models \Psi$

▷ Equivalent to the CTL* M.C. problem:

 $M \models \mathbf{A} \boldsymbol{\psi}$

 \triangleright Dual CTL* M.C. problem:

$$M \models \mathbf{E} \neg \mathbf{\psi}$$

Automata-Theoretic LTL Model Checking

- $\triangleright \quad M \models \mathbf{A} \psi (\mathsf{CTL}^*)$
- $\iff M \models \psi$ (LTL)
- $\iff \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
- $\iff \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)} = \{\}$
- $\iff \mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg \psi}) = \{\}$
- $\iff \mathcal{L}(A_M \times A_{\neg \psi}) = \{\}$
 - $ightarrow A_M$ is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
 - ▷ $A_{\neg\psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg\psi$ (do not satisfy ψ)
- $\implies A_M \times A_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ .

Automata-Theoretic LTL M.C. (dual version)

- $\triangleright \quad M \models \mathbf{E} \boldsymbol{\varphi}$
- $\iff M \not\models \mathbf{A} \neg \mathbf{\phi}$
- \iff ...
- $\iff \mathcal{L}(A_M \times A_{\varphi}) \neq \{\}$
 - $ightarrow A_M$ is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
 - $\triangleright A_{\phi}$ is a Büchi Automaton which represents all and only the paths that satisfy ϕ
- $\implies A_M \times A_{\varphi}$ represents all and only the paths appearing in both A_M and A_{φ} .

Automata-Theoretic LTL Model Checking

Four steps:

- 1. Compute A_M
- 2. Compute A_{ϕ}
- 3. Compute the product $A_M \times A_{\phi}$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\phi})$

© Roberto Sebastiani, 2003

Content

$\sqrt{\bullet}$	THE PROBLEM	2
$\Rightarrow ullet$	AUTOMATA ON FINITE WORDS	7
•	AUTOMATA ON INFINITE WORDS	25
•	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
•	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
•	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

Finite Word Languages

- ▷ An Alphabet Σ is a collection of symbols (letters). E.g. $\Sigma = \{a, b\}$.
- ▷ A finite word is a finite sequence of letters. (E.g. *aabb*.) The set of all finite words is denoted by Σ^* .
- \triangleright A language U is a set of words, i.e. $U \subseteq \Sigma^*$.

Example: Words over $\Sigma = \{a, b\}$ with equal number of *a*'s and *b*'s. (E.g. *aabb* or *abba*.)

Language recognition problem:

determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition problems.

Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

▷ Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.

- ▷ Synchronous Circuits.
- Regular Expression Pattern Matching

Grep, Lex, Emacs.

▷ Protocols

Network Protocols

Architecture: Bus, Cache Coherence, Telephony,...

Notation

- $a, b \in \Sigma$ finite alphabet.
- $u, v, w \in \Sigma^*$ finite words.
 - λ empty word.
 - *u.v* catenation.
 - $u^i = u.u.$.*u* repeated *i*-times.
- $U, V \subseteq \Sigma^*$ Finite word languages.

FSA Definition

Nondeterministic Finite State Automaton (NFA): NFA is $(Q, \Sigma, \delta, I, F)$

- Q Finite set of states.
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of final states.
- $\rightarrow \subseteq Q \times \Sigma \times Q \text{ transition relation (edges).}$ We use $q \xrightarrow{a} q'$ to denote $(q, a, q') \in \delta$.

Deterministic Finite State Automaton (DFA):

DFA has $\delta : Q \times \Sigma \to Q$, a total function. Single initial state $I = \{q_0\}$.

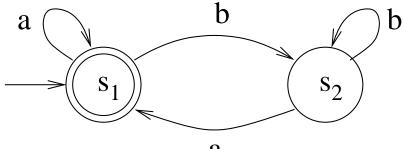
Regular Languages

- ▷ A run of NFA *A* on $u = a_0, a_1, ..., a_{n-1}$ is a finite sequence of states $q_0, q_1, ..., q_n$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i < n$.
- ▷ An accepting run is one where the last state $q_n \in F$.
- $\triangleright \text{ The language accepted by } A$ $\mathcal{L}(A) = \{ u \in \Sigma^* \mid A \text{ has an accepting run on } u \}$
- The languages accepted by a NFA are called regular languages.

Finite State Automata

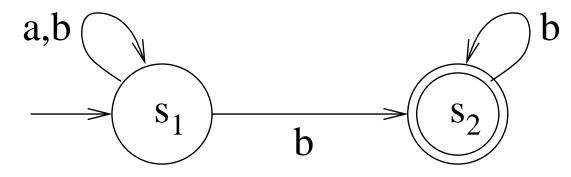
Example: DFA A_1 over $\Sigma = \{a, b\}$.

Recognizes words which do not end in b.



a

NFA A_2 . Recognizes words which end in b.

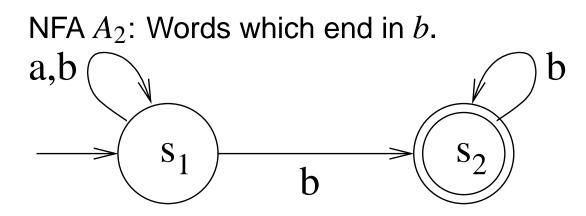


Determinisation

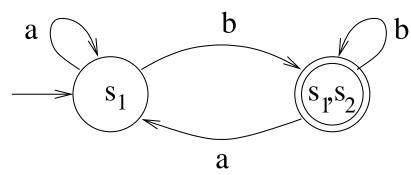
Theorem (determinisation) Given a NFA *A* we can construct a DFA *A*' s.t. $\mathcal{L}(A) = \mathcal{L}(A')$. Size $|A'| = 2^{O(|A|)}$.

© Roberto Sebastiani, 2003

Determinisation [cont.]



 A_2 can be determinised into the automaton DA_2 below. States = 2^Q .



Study Topic There are NFA's of size *n* for which the size of the minimum sized DFA must have size $O(2^n)$.

Closure Properties

Theorem (boolean closure) Given NFA A_1, A_2 over Σ we can construct NFA A over Σ s.t.

$$\triangleright \mathcal{L}(A) = \overline{\mathcal{L}(A_1)} \text{ (Complement). } |A| = 2^{O(|A_1|)}.$$

$$\triangleright \mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2) \text{ (union). } |A| = |A_1| + |A_2|.$$

$$\triangleright \mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2) \text{ (intersection). } |A| = |A_1| \cdot |A_2|.$$

Complementation of a NFA

A NFA $A = (Q, \Sigma, \delta, I, F)$ is complemented by:

- ▷ determinizing it into a DFA $A' = (Q', \Sigma', \delta', I', F')$
- ▷ complementing it: $\overline{A'} = (Q', \Sigma', \delta', I', \overline{F'})$
- $\triangleright |\overline{A'}| = |A'| = 2^{O(|A_1|)}$

Union of two NFA's

Two NFA's
$$A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1), A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2), A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$$
 is defined as follows

- $\triangleright \ Q := Q_1 \cup Q_2, I := I_1 \cup I_2, F := F_1 \cup F_2$ $\triangleright \ R(s, s') := \begin{cases} R_1(s, s') \ if \ s \in Q_1 \\ R_2(s, s') \ if \ s \in Q_2 \end{cases}$
- \implies A is an automaton which just runs nondeterministically either A_1 or A_2
 - $\triangleright \mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ $\triangleright |A| = |A_1| + |A_2|$

Synchronous Product Construction

Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$. Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$ where

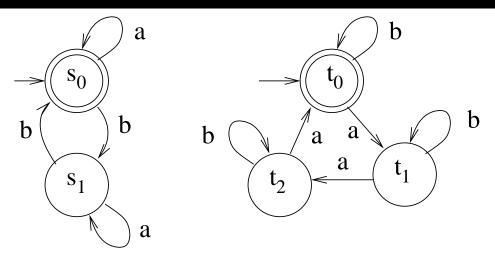
$$P = Q_1 \times Q_2. \qquad I = I_1 \times I_2.$$

$$F = F_1 \times F_2.$$

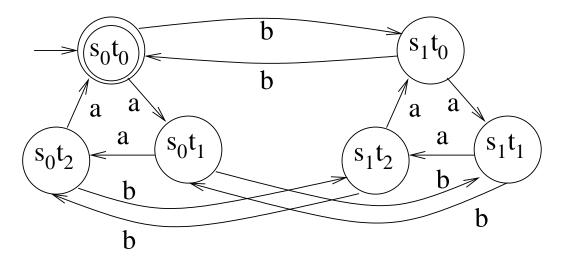
$$P < p, q > \xrightarrow{a} < p', q' > \text{ iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q'.$$

Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2).$

Example



- $\triangleright A_1$ recognizes words with an even number of *b*.
- $\triangleright A_2$ recognizes words with a number of $a \mod 3 = 0$.
- ▷ The Product Automaton $A_1 \times A_2$ with $F = \{s_0, t_0\}$.



Synchronized Product Construction

Let
$$A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$$
 and $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$.
Then,

$$A_1 || A_2 = (Q, \Sigma, \delta, I, F)$$
, where
 $\triangleright Q = Q_1 \times Q_2$. $\Sigma = \Sigma_1 \cup \Sigma_2$.
 $I = I_1 \times I_2$. $F = F_1 \times F_2$.

$$> < p,q > \xrightarrow{a} < p',q' > \text{ if } a \in \Sigma_1 \cap \Sigma_2 \text{ and } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q'.$$

$$> < p,q > \xrightarrow{a} < p',q > \text{ if } a \in \Sigma_1, a \notin \Sigma_2 \text{ and } p \xrightarrow{a} p'.$$

$$> < p,q > \xrightarrow{a} < p,q' > \text{ if } a \notin \Sigma_1, a \in \Sigma_2 \text{ and } q \xrightarrow{a} q'.$$

Asynchronous Product Construction

Let
$$A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$$
 and $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$.
Then,

$$A_1 \parallel_A A_2 = (Q, \Sigma, \delta, I, F)$$
, where
 $Q = Q_1 \times Q_2$. $\Sigma = \Sigma_1 \cup \Sigma_2$.
 $I = I_1 \times I_2$. $F = F_1 \times F_2$.

$$\triangleright < p, q > \xrightarrow{a} < p', q > \text{ if } a \in \Sigma_1 \text{ and } p \xrightarrow{a} p'.$$
$$\triangleright < p, q > \xrightarrow{a} < p, q' > \text{ if } a \in \Sigma_2 \text{ and } q \xrightarrow{a} q'.$$

Decision Problems

Theorem (Emptiness) Given a NFA *A* we can decide whether $\mathcal{L}(A) = \emptyset$.

Method Forward/Backward Reachability of acceptance states in Automaton graph. Complexity is $O(|Q| + |\delta|)$.

Theorem (Language Containment) Given NFA A_1 and A_2 we can decide whether $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$.

Method: $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$ iff $\mathcal{L}(A_1) \cap \overline{\mathcal{L}(A_2)} = \emptyset$. Complexity is $O(|A_1| \cdot 2^{|A_2|})$.

N.B. Model Checking:

Typically, $\mathcal{L}(A_1 \times A_2 \times \ldots \times A_n) \subseteq \mathcal{L}(A_{prop}).$

Regular Expressions

Syntax:
$$\emptyset \mid \varepsilon \mid a \mid reg_1.reg_2 \mid reg_1 + reg_2 \mid reg^*$$
.

Every regular expression *reg* denotes a language $\mathcal{L}(reg)$.

Example: $(a^*.(b+bb).a^*$. The words with either 1 *b* or 2 consecutive *b*'s.

Theorem: For every regular expression reg we can construct a language equivalent NFA of size O(|reg|).

Theorem: For every DFA A we can construct a language equivalent regular expression reg(A).

© Roberto Sebastiani, 2003

Content

$\sqrt{\bullet}$	THE PROBLEM	2
$\sqrt{\bullet}$	AUTOMATA ON FINITE WORDS	7
$\Rightarrow ullet$	AUTOMATA ON INFINITE WORDS	25
•	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
•	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
•	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

Infinite Word Languages

Modeling infinite computations of reactive systems.

 \triangleright An ω -word α over Σ is infinite sequence

 $a_0, a_1, a_2...$

Formally, $\alpha : \mathbb{N} \to \Sigma$.

The set of all infinite words is denoted by Σ^{0} .

 \triangleright A ω -language *L* is collection of ω -words, i.e. $L \subseteq \Sigma^{\omega}$.

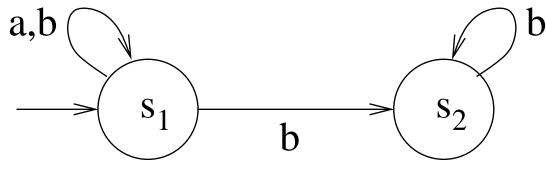
Example All words over $\{a, b\}$ with infinitely many *a*'s.

Notation

omega words $\alpha, \beta, \gamma \in \Sigma^{\omega}$. omega-languages $L, L_1 \subseteq \Sigma^{\omega}$ For $u \in \Sigma^+$, let $u^{\omega} = u.u.u...$

Omega-Automata

We consider automaton runs over infinite words.



Let $\alpha = aabbbb \dots$ There are several possible runs. Run $\rho_1 = s_1, s_1, s_1, s_2, s_2 \dots$ Run $\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1 \dots$

Acceptance Conditions Büchi, (Muller, Rabin, Street).

Acceptance is based on states occurring infinitely often

Notation Let $\rho \in Q^{\omega}$. Then, $Inf(\rho) = \{s \in Q \mid \exists^{\infty}i \in \mathbb{N}. \ \rho(i) = s\}.$

Büchi Automata

Nondeterministic Büchi Automaton

- $A = (Q, \Sigma, \delta, I, F)$, where $F \subseteq Q$ is the set of accepting states.
- \triangleright A run ρ of *A* on omega word α is an infinite sequence

$$\rho = q_o, q_1, q_2, \dots$$
 s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.

 \triangleright The run ρ is accepting if

 $Inf(\rho) \cap F \neq \emptyset.$

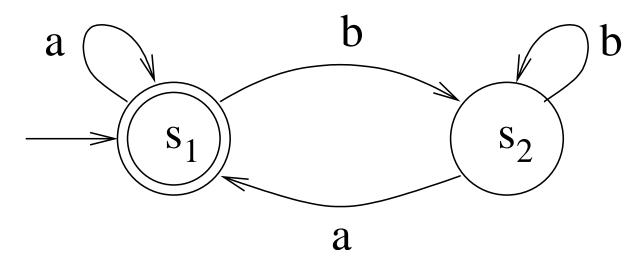
 \triangleright The language accepted by A

 $\mathcal{L}(A) = \{ \alpha \in \Sigma^{\omega} \mid A \text{ has an accepting run on } \alpha \}$

Büchi Automaton: Example

Let $\Sigma = \{a, b\}$.

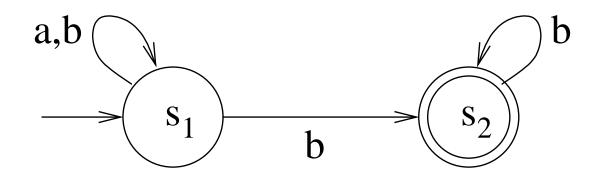
Let a Deterministic Büchi Automaton (DBA) A_1 be



- ▷ With $F = \{s_1\}$ the automaton recognizes words with infinitely many *a*'s.
- ▷ With $F = \{s_2\}$ the automaton recognizes words with infinitely many *b*'s.

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A_2 be



With $F = \{s_2\}$, automaton A_2 recognizes words with finitely many *a*. Thus, $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$.

© Roberto Sebastiani, 2003

Deterministic vs. Nondeterministic Büchi Automata

Theorem *DBA*'s are strictly less powerful than *NBA*'s.

Closure Properties

Theorem (union, intersection)

For the NBA's A_1, A_2 we can construct

- the NBA *A* s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$. $|A| = |A_1| + |A_2|$
- the NBA *A* s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$. $|A| = |A_1| \cdot |A_2| \cdot 2$.

Union of two NBA's

Two NBA's
$$A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1), A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2), A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$$
 is defined as follows

- $\triangleright \ Q := Q_1 \cup Q_2, I := I_1 \cup I_2, F := F_1 \cup F_2$ $\triangleright \ R(s, s') := \begin{cases} R_1(s, s') \ if \ s \in Q_1 \\ R_2(s, s') \ if \ s \in Q_2 \end{cases}$
- \implies A is an automaton which just runs nondeterministically either A_1 or A_2
 - $\triangleright \ \mathcal{L}(A) = \ \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$
 - $\triangleright |A| = |A_1| + |A_2|$
 - ▷ (same construction as with ordinary automata)

Synchronous Product of NBA's

Let
$$A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$$
 and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$.

Then,
$$A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$$
, where
 $Q = Q_1 \times Q_2 \times \{1, 2\}$.
 $I = I_1 \times I_2 \times \{1\}$.
 $F = F_1 \times Q_2 \times \{1\}$.

$$\langle p,q,1 \rangle \xrightarrow{a} \langle p',q',1 \rangle$$
 iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \notin F_1$.
 $\langle p,q,1 \rangle \xrightarrow{a} \langle p',q',2 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $p \in F_1$.
 $\langle p,q,2 \rangle \xrightarrow{a} \langle p',q',2 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \notin F_2$.
 $\langle p,q,2 \rangle \xrightarrow{a} \langle p',q',1 \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$ and $q \in F_2$.

Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2).$

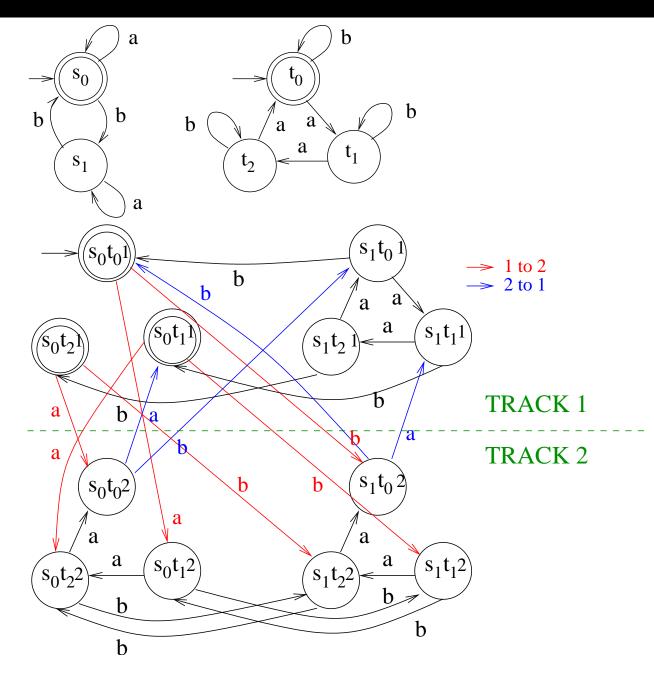
Product of NBA's: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track
- \implies to visit infinitely often a state in *F* (i.e., *F*₁), it must visit infinitely often some state also in *F*₂
 - ▷ Important subcase: If $F_2 = Q_2$, then

 $Q = Q_1 \times Q_2.$ $I = I_1 \times I_2.$ $F = F_1 \times Q_2.$

© Roberto Sebastiani, 2003

Product of NBA's: Example



Closure Properties (2)

Theorem (complementation)

For the NBA A_1 we can construct an NBA A_2 such that $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}.$ $|A_2| = O(2^{|A_1| \cdot \log(|A_1|)}).$

Method: (hint)

(1) convert a Büchi automaton into a Non-Deterministic Rabin automaton.

(2) Determinize and Complement the Rabin automaton

(3) convert the Rabin automaton into a Büchi automaton

Generalized Büchi Automaton

A Generalized Büchi Automaton is $A := (Q, \Sigma, \delta, I, FT)$ where $FT = \langle F_1, F_2, \dots, F_k \rangle$ with $F_i \subseteq Q$.

A run ρ of *A* is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem For every Generalized Büchi Automaton (A, FT) we can construct a language equivalent Büchi Automaton (A', G').

Construction (Hint) Let $Q' = Q \times \{1, \dots, k\}$.

Automaton remains in *i* phase till it visits a state in F_i . Then, it moves to i + 1 mode. After phase *k* it moves to phase 1.

Size: $|A'| \leq |A| \cdot k$.

Omega Regular Expressions

A language is called ω -regular if it has the form $\bigcup_{i=1}^{n} U_i . (V_i)^{\omega}$ where U_i, V_i are regular languages.

Theorem A language L is ω -regular iff it is NBA-recognizable.

Decision Problem

Emptiness For a NBA *A*, it is decidable whether $\mathcal{L}(A) = \emptyset$.

Method

- Find the maximal strongly connected components (MSCC) in the graph of A (disregarding the edge labels).
- ▷ A MSCC *C* is called non-trivial if $C \cap F \neq \emptyset$ and *C* has at least one edge.
- ▷ Find all nodes from which there is a path to a non-trivial SCC. Call the set of these nodes as N.
- $\triangleright \mathcal{L}(A) = \emptyset \text{ iff } N \cap I = \emptyset.$

Time Complexity: $O(|Q| + |\delta|)$.

© Roberto Sebastiani, 2003

Content

$\sqrt{\bullet}$	THE PROBLEM	2
$\sqrt{\bullet}$	AUTOMATA ON FINITE WORDS	7
$\sqrt{\bullet}$	AUTOMATA ON INFINITE WORDS	25
$\Rightarrow \bullet$	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
•	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
•	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

Computing a NBA A_M from a Kripke Structure M

- ▷ Transforming a K.S. $M = \langle S, S_0, R, L, AP \rangle$ into an NBA $A_M = \langle Q, \Sigma, \delta, I, F \rangle$ s.t.:
 - States: $Q := S \cup \{init\}, init$ being a new initial state
 - Alphabet: $\Sigma := 2^{AP}$
 - Initial State: $I := \{init\}$
 - Accepting States: $F := Q = S \cup \{init\}$
 - Transitions:

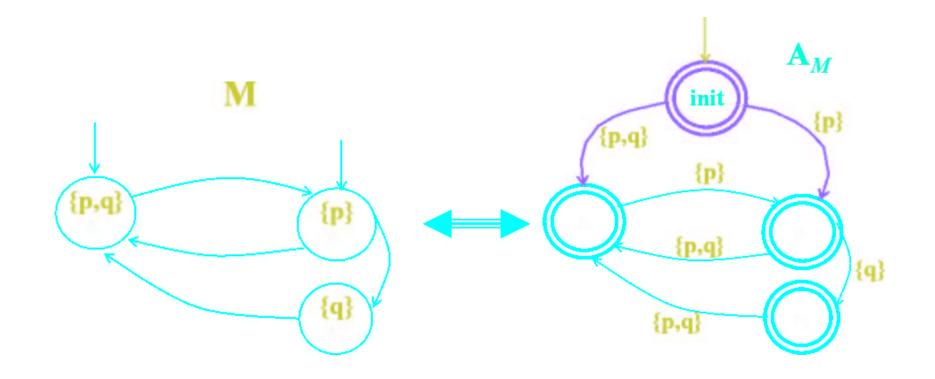
$$\delta: \quad q \xrightarrow{a} q' \text{ iff } (q,q') \in R \text{ and } L(q') = a$$

init $\xrightarrow{a} q$ iff $q \in S_0$ and $L(q') = a$

 $\triangleright \mathcal{L}(A_M) = \mathcal{L}(M)$ $\triangleright |A_M| = |M| + 1$

© Roberto Sebastiani, 2003

Computing a NBA A_M from a Kripke Structure M: Example



 \implies Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states

Computing a NBA A_M from a Fair Kripke Structure M

- ▷ Transforming a fair K.S. $M = \langle S, S_0, R, L, AP, FT \rangle$, $FT = \{F_1, ..., F_n\}$, into an NBA $A_M = \langle Q, \Sigma, \delta, I, F \rangle$ s.t.:
 - States: $Q := S \cup \{init\}, init$ being a new initial state
 - Alphabet: $\Sigma := 2^{AP}$
 - Initial State: $I := \{init\}$
 - Accepting States: F := FT
 - Transitions:

$$\delta: \quad q \xrightarrow{a} q' \text{ iff } (a,a') \in R \text{ and } L(q') = a$$

init $\xrightarrow{a} q$ iff $q \in S_0$ and $L(q') = a$

 $\triangleright \mathcal{L}(A_M) = \mathcal{L}(M)$ $\triangleright |A_M| = |M| + 1$

©Roberto Sebastiani, 2003

Content

$\sqrt{\bullet}$	THE PROBLEM	2
$\sqrt{\bullet}$	AUTOMATA ON FINITE WORDS	7
$\sqrt{\bullet}$	AUTOMATA ON INFINITE WORDS	25
$\sqrt{\bullet}$	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
$\Rightarrow ullet$	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
•	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

Paths as ω -words

Let $\boldsymbol{\phi}$ be an LTL formula.

Var(φ) denotes the set of free variables of φ.
E.g. Var(p∧(¬q U q)) = {p,q}.
Let Σ := 2^{Var(φ)}.

 \implies a model for φ is an ω -word $\alpha = a_0, a_1, \dots$ in Σ^{ω} .

 \triangleright We can define $\alpha, i \models \phi$. Also, $\alpha \models \phi$ iff $\alpha, 0 \models \phi$.

Example A model of $p \land (\neg q \mathbf{U} q)$ is the ω -word $\{p\}, \{\}, \{q\}, \{p,q\}^{\omega}$.

N.B.: correspondence between ω-words and paths in Kripke structures:

$$\alpha, i \models \varphi \iff \pi, s_i \models \varphi, \quad \alpha, 0 \models \varphi \iff \pi, s_0 \models \varphi$$

Automata for LTL model checking

Let $Mod(\phi)$ denote the set of models of ϕ .

Theorem For any LTL formula ϕ , the set $Mod(\phi)$ is omega-regular.

 \implies Technique: Construct a (Generalized) NBA A_{ϕ} such that $Mod(\phi) = \mathcal{L}(A_{\phi}).$

Closures

Closure Given $\phi \in LTL$, let $CL'(\phi)$ be the smallest set s.t.

- $\triangleright \ \phi \in CL'(\phi).$
- $\triangleright \text{ If } \neg \phi_1 \in CL'(\phi) \text{ then } \phi_1 \in CL'(\phi).$
- $\triangleright \text{ If } \phi_1 \lor \phi_2 \in CL'(\phi) \text{ then } \phi_1, \phi_2 \in CL'(\phi).$
- $\triangleright \text{ If } X\phi_1 \in CL'(\phi) \text{ then } \phi_1 \in CL'(\phi).$
- ▷ If $(\phi_1 \mathbf{U}\phi_2) \in CL'(\phi)$ then $\phi_1, \phi_2 \in CL'(\phi)$ and $X(\phi_1 \mathbf{U}\phi_2) \in CL'(\phi)$

 $CL(\phi) := \{\phi_1, \neg \phi_1 \mid \phi_1 \in CL'(\phi)\}$ (we identify $\neg \neg \phi_1$ with ϕ_1 .)

N.B.: $|CL(\varphi)| = O(|\varphi|).$

Atoms

An Atom is a maximal consistent subset of $CL(\phi)$.

- ▷ Definition A set $A \subseteq CL(\phi)$ is called an atom if
 - For all $\varphi_1 \in CL(\varphi)$, we have $\varphi_1 \in A$ iff $\neg \varphi_1 \notin A$.
 - For all $\varphi_1 \lor \varphi_2 \in CL(\varphi)$, we have $\varphi_1 \lor \varphi_2 \in A$ iff $\varphi_1 \in A$ or $\varphi_2 \in A$ (or both).
 - For all $(\varphi_1 \mathbf{U} \varphi_2) \in CL(\varphi)$, we have $(\varphi_1 \mathbf{U} \varphi_2) \in A$ iff $\varphi_2 \in A$ or $(\varphi_1 \in A \text{ and } X(\varphi_1 \mathbf{U} \varphi_2) \in A)$.
- ▷ In practice, an atom is a consistent truth assignment to the elementary subformulas of ϕ' , ϕ' being the result of applying the tableau expansion rules to ϕ
- ▷ We call $Atoms(\phi)$ the set of all atoms of ϕ .

Definition of A_{ϕ}

For an LTL formula $\phi,$ we construct a Generalized NBA

 $A_{\varphi} = (Q, \Sigma, \delta, Q_0, FT)$ as follows:

 $\triangleright \Sigma = 2^{vars(\phi)}$

- $\triangleright Q = Atoms(\phi)$, the set of atoms.
- ▷ δ is s.t., for $q, q' \in Atoms(\phi)$ and $a \in \Sigma, q \xrightarrow{a} q'$ holds in δ iff
 - $q' \cap Var(\varphi) = a$,
 - for all $X\phi_1 \in CL(\phi)$, we have $X\phi_1 \in q$ iff $\phi_1 \in q'$.
- $\triangleright \ Q_0 = \{q \in Atoms(\varphi) \mid \varphi \in q\}.$
- \triangleright *FT* = (*F*₁, *F*₂,..., *F_k*) where, for all ($\psi_i U \phi_i$) occurring positively in ϕ ,

 $F_i = \{q \in Atoms(\mathbf{\varphi}) \mid (\psi_i \mathbf{U} \mathbf{\varphi}_i) \notin q \text{ or } \mathbf{\varphi}_i \in q\}.$

Definition of A_{ϕ} [cont.]

Theorem Let $\alpha = a_0, a_1, \dots \in \Sigma^{\omega}$. Then, $\alpha \models \varphi \text{ iff } \alpha \in \mathcal{L}(A_{\varphi}).$

Size: $|A_{\phi}| = O(2^{|\phi|}).$

LTL Negative Normal Form (NNF)

- ▷ Every LTL formula φ can be written as equivalent formula φ' using only the operators \neg , $\lor X$ and **U**.
- ▷ We can further push negations down to literal level:
 - $\neg (\varphi_1 \lor \varphi_2) \implies (\neg \varphi_1 \land \neg \varphi_2)$ $\neg (\varphi_1 \land \varphi_2) \implies (\neg \varphi_1 \lor \neg \varphi_2)$ $\neg \mathbf{X} \varphi_1 \implies \mathbf{X} \neg \varphi_1$ $\neg (\varphi_1 \mathbf{U} \varphi_2) \implies (\neg \varphi_1 \mathbf{R} \neg \varphi_2)$

 \implies the resulting formula is expressed in terms of \lor , \land , X, U, \mathbf{R} and literals (Negative Normal Form, NNF).

 \triangleright In the construction of A_{ϕ} we now assume that ϕ is in NNF.

Construction of A_{ϕ} (Schema)

Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to ϕ

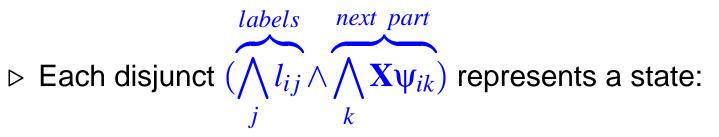
- $\psi_1 \mathbf{U} \psi_2 \Longrightarrow \psi_2 \lor (\psi_1 \land \mathbf{X}(\psi_1 \mathbf{U} \psi_2))$
- $\psi_1 \mathbf{R} \psi_2 \Longrightarrow \psi_2 \land (\psi_1 \lor \mathbf{X}(\psi_1 \mathbf{R} \psi_2))$

until we get a boolean combination of elementary subformulas of $\boldsymbol{\phi}$

Construction of A_{ϕ} (Schema) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form:

$$\bigvee_{i} (\bigwedge_{j} l_{ij} \wedge \bigwedge_{k} \mathbf{X} \psi_{ik})$$



- the conjunction of literals $\bigwedge_j l_{ij}$ represents a set of labels in Σ (e.g., if $Vars(\phi) = \{p, q, r\}$, $p \land \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\bigwedge_k \mathbf{X} \psi_{ik}$ represents the next part of the state (obbligations for the successors)
- \triangleright N.B., if no next part occurs, X^{\top} is implicitly assumed

Construction of A_{ϕ} (Schema) [cont.]

Step 3: For every state represented by $(\bigwedge_{j} l_{ij} \land \bigwedge_{k} \mathbf{X} \psi_{ik})$

- \triangleright draw an edge to all states which satisfy $\bigwedge_k \Psi_{ik}$
- \triangleright label the incoming edges with $\bigwedge_j l_{ij}$

N.B., if no next part occurs, \mathbf{X}^{\top} is implicitly assumed, so that an edge to a "true" node is drawn

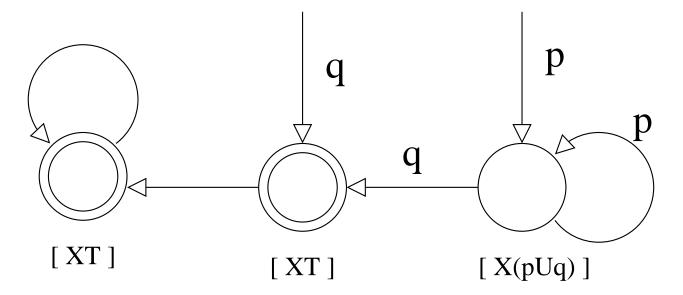
Construction of A_{φ} (Schema) [cont.]

Step 4: For every $\psi_i \mathbf{U} \phi_i$, for every state q_j , mark q_j with F_i iff $(\psi_i \mathbf{U} \phi_i) \notin q_j$ or $\phi_i \in q_j$

© Roberto Sebastiani, 2003

Example: pUq

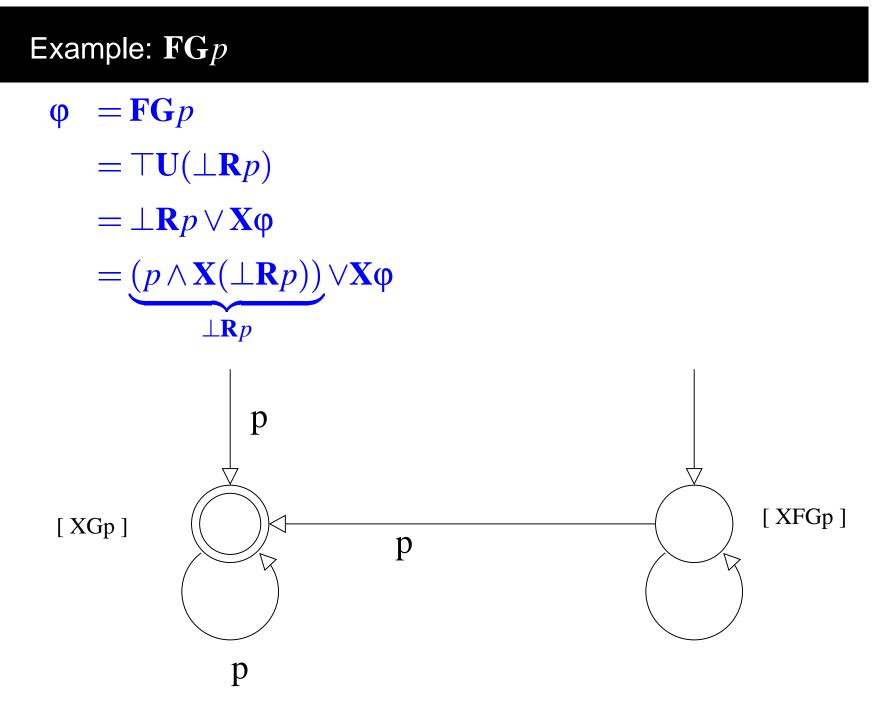
- $\boldsymbol{\varphi} = p \mathbf{U} q$
 - $= q \lor (p \land \mathbf{X}(p\mathbf{U}q))$
 - $= (q \land \mathbf{X} \top) \lor (p \land \mathbf{X}(p\mathbf{U}q))$



N.B.: e.g.,

"... \xrightarrow{p} ..." here equivalent to ... $\{p,q\}, p,\neg q\}\}$..., "... \longrightarrow ..." here equivalent to ... $\{p,q\}, \{p,\neg q\}, \{\neg p,q\}, \{\neg p,\neg q\}\}$.

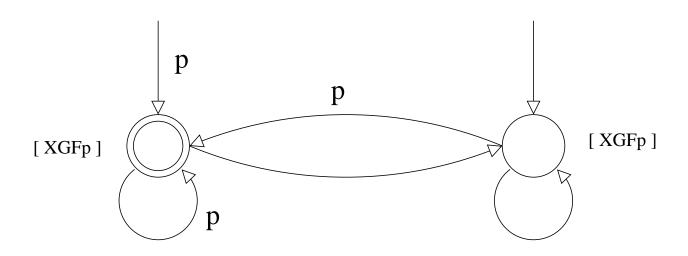
© Roberto Sebastiani, 2003



Example: $\mathbf{G}Fp$

- $\boldsymbol{\varphi} = \mathbf{GF}p$
 - $= \perp \mathbf{R}(\top \mathbf{U}p)$
 - $= \top \mathbf{U} p \wedge \mathbf{X} \boldsymbol{\varphi}$
 - $= (p \lor \mathbf{X}(\mathbf{F}p)) \land \mathbf{X}\varphi$
 - $= (p \land \mathbf{X} \varphi) \lor (\mathbf{X} \varphi \land \mathbf{X} \mathbf{F} p)$
 - $= (p \wedge \mathbf{X} \boldsymbol{\varphi}) \vee \mathbf{X} (\boldsymbol{\varphi} \wedge \mathbf{F} p)$

 $= (p \land \mathbf{X} \varphi) \lor \mathbf{X} \varphi \qquad \text{N.B.:} (\varphi \land \mathbf{F} p) = \varphi$



©Roberto Sebastiani, 2003

Content

$\sqrt{\bullet}$	THE PROBLEM	2
$\sqrt{\bullet}$	AUTOMATA ON FINITE WORDS	7
$\sqrt{\bullet}$	AUTOMATA ON INFINITE WORDS	25
$\sqrt{\bullet}$	FROM KRIPKE STRUCTURES TO BÜCHI AUT.	41
$\sqrt{\bullet}$	FROM LTL FORMULAS TO BÜCHI AUTOMATA .	45
$\Rightarrow ullet$	AUTOMATA-THEORETIC LTL MODEL CHECKING	60

Automata-Theoretic LTL Model Checking

- 1. Compute A_M
- 2. Compute A_{ϕ}
- 3. Compute the product $A_M \times A_{\phi}$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

Automata-Theoretic LTL Model Checking: complexity

- 1. Compute A_M : $|A_M| = O(|M|)$
- 2. Compute A_{ϕ}
- 3. Compute the product $A_M \times A_{\phi}$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

Automata-Theoretic LTL Model Checking: complexity [cont.]

- 1. Compute A_M : $|A_M| = O(|M|)$
- 2. Compute A_{ϕ} : $|A_{\phi}| = O(2^{|\phi|})$
- 3. Compute the product $A_M \times A_{\phi}$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

Automata-Theoretic LTL Model Checking: complexity [cont.]

- 1. Compute A_M : $|A_M| = O(|M|)$
- 2. Compute A_{φ} : $|A_{\varphi}| = O(2^{|\varphi|})$
- 3. Compute the product $A_M \times A_{\varphi}$: $|A_M \times A_{\varphi}| = |A_M| \cdot |A_{\varphi}| = O(|M| \cdot 2^{|\varphi|})$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

Automata-Theoretic LTL Model Checking: complexity [cont.]

Four steps:

- 1. Compute A_M : $|A_M| = O(|M|)$
- 2. Compute A_{φ} : $|A_{\varphi}| = O(2^{|\varphi|})$
- 3. Compute the product $A_M \times A_{\varphi}$: $|A_M \times A_{\varphi}| = |A_M| \cdot |A_{\varphi}| = O(|M| \cdot 2^{|\varphi|})$
- 4. Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$: $O(|A_M \times A_{\varphi}|) = O(|M| \cdot 2^{|\varphi|})$

 \implies the complexity of LTL M.C. grows linearly wrt. the size of the model *M* and exponentially wrt. the size of the property φ

Final Remarks

- ▷ Büchi automata are in general more expressive than LTL!
- ⇒ Some tools (e.g., Spin, ObjectGEODE) allow specifications to be expressed directly as NBA's
- \implies complementation of NBA important!
 - ▷ for every LTL formula, there are many possible equivalent NBA's
- \implies lots of research for finding "the best" conversion algorithm
- performing the product and checking emptiness very relevant
- \implies lots of techniques developed (e.g., partial order reduction)
- \implies lots on ongoing research