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Problem 1 [6 points] Induction.

• Show that for any set of n ≥ 1 elements its power set contains 2n elements. [2 points]

• Loop Invariant. The following while loop is annotated with a pre- and a post-condition and also
a loop invariant. Use the loop invariant theorem to prove the correctness of the loop with respect
to the pre- and post-conditions. [4 points]

[Pre-condition: smallest = A[1] and i = 1]

while i 6= m do
i := i + 1
if(A[i] < smallest) then smallest := A[i]

end while

[Post-condition: smallest = minimum value of A[1], . . . , A[m]]

Loop Invariant I(n): smallest is the minimum value of A[1], A[2], . . . , A[n + 1] and i = n + 1.

Problem 2 [6 points] Sets.

• Show P({a, b, c}), i.e., the power set of the set {a, b, c}. [1 point]

• Given the following sets: A = {1, 2}, B = {a, b, c}. Show the Cartesian Product A×B. [1 point]

• Show that P(A ∩B) = P(A) ∩ P(B). [4 points]

Problem 3 [9 points] Cardinality.

• Give the definition of 2 sets have the same cardinality and also the definition of a set being
countably infinite.

• Determine whether each of this sets is finite, countably infinite or uncountable. In case the
set is countably infinite, show a one-to-one correspondence from the set of positive integers.

1. The set of positive integers less than 1.000.000;

2. The set of positive integers multiple of 7;

3. The set of real numbers between 0 and 2.

• Let Z+ be the set of positive Integers and B = {−1,−2}. Show that Z+ ∪B is a countable set.

Problem 4 [8 points] Relations.

• Say which of the following relations is an equivalence relation. In case it is not, say what is the
missing property. [2 points]

1. R1 = {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)};



2. R2 = {(0, 0), (0, 1), (0, 2), (2, 2), (1, 0), (1, 2), (2, 0), (1, 1), (3, 3)}.

• Let R the following equivalence relation: R = {(x, y) ∈ R×R | x−y ∈ Z}. What is the equivalence
class of 1 with respect to R? [1 point]

• Let R be a partial order relation. Show that R− (the inverse of R) is also a partial order relation. [2
points]

• Given the following set A = {{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}} and the
subset relation on A, say ⊆A. Show the following concerning the poset (A,⊆A): [3 points]

1. The Hasse diagram;

2. The minimal and maximal elements;

3. A topological sort.

Problem 5 [4 points] Graphs and Trees.

• Find all non-isomorphic trees with 5 vertices. Provide an explanation with your answer.

• Given the following non-isomorphic graphs:
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For each pair of simple graphs G and G ′ in 6–13, determine
whether G and G ′ are isomorphic. If they are, give a function
g: V (G)→ V (G ′) that defines the isomorphism. If they are not,
give an invariant for graph isomorphism that they do not share.
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14. Draw all nonisomorphic simple graphs with three vertices.

15. Draw all nonisomorphic simple graphs with four vertices.

16. Draw all nonisomorphic graphs with three vertices and no
more than two edges.

17. Draw all nonisomorphic graphs with four vertices and no
more than two edges.

18.H Draw all nonisomorphic graphs with four vertices and three
edges.

19. Draw all nonisomorphic graphs with six vertices, all having
degree 2.

20. Draw four nonisomorphic graphs with six vertices, two of
degree 4 and four of degree 3.
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Describe an invariant property for graph isomorphism that they do not share.


