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Functions Defined on 
General Sets 

SECTION 7.1 
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Functions Defined on General Sets 
The following is the definition of a function that includes 
additional terminology associated. 
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Functions Acting on Sets 
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Functions Acting on Sets 
Given a function from a set X to a set Y, you can consider 
the set of images in Y of all the elements in a subset of X 
and the set of inverse images in X of all the elements in a 
subset of Y. 
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Example 13 – The Action of a Function on Subsets of a Set 

Let X = {1, 2, 3, 4} and Y = {a, b, c, d, e}, and define  
F : X → Y by the following arrow diagram: 
 
 
 
 
 
 
Let A = {1, 4}, C = {a, b}, and D = {c, e}.  
Find F(A), F(X), F−1(C), and F−1(D). 
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Example 13 – Solution 
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One-to-One and Onto, 
Inverse Functions 

SECTION 7.2 
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One-to-One and Onto, Inverse Functions 

In this section we discuss two important properties that 
functions may satisfy: the property of being one-to-one and 
the property of being onto. 
 
Functions that satisfy both properties are called one-to-one 
correspondences or one-to-one and onto functions. 
 
When a function is a one-to-one correspondence, the 
elements of its domain and co-domain match up perfectly, 
and we can define an inverse function from the co-domain 
to the domain that “undoes” the action of the function. 
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One-to-One Functions 
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One-to-One Functions 
We have noted earlier that a function may send several 
elements of its domain to the same element of its            
co-domain. 
 
In terms of arrow diagrams, this means that two or more 
arrows that start in the domain can point to the same 
element in the co-domain. 
 
If no two arrows that start in the domain point to the same 
element of the co-domain then the function is called one-to-
one or injective. 
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One-to-One Functions 
For a one-to-one function, each element of the range is the 
image of at most one element of the domain. 
 
 
 
 
 
 
 
To obtain a precise statement of what it means for a 
function not to be one-to-one, take the negation of one of 
the equivalent versions of the definition above.  
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One-to-One Functions 
Thus: 
 
 
 
That is, if elements x1 and x2 exist that have the same 
function value but are not equal, then F is not one-to-one. 
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One-to-One Functions 
This is illustrated in Figure 7.2.1 

A One-to-One Function Separates Points 
Figure 7.2.1 (a) 

A Function That Is Not One-to-One Collapses Points Together 
Figure 7.2.1 (b) 
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One-to-One Functions on  
Infinite Sets 
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One-to-One Functions on Infinite Sets 

Now suppose f is a function defined on an infinite set X. By 
definition, f is one-to-one if, and only if, the following 
universal statement is true: 
 
 

 
Thus, to prove f is one-to-one, you will generally use the 
method of direct proof: 
 

  suppose  x1 and x2 are elements of X such that   
     f (x1) = f (x2) 
 

and  show  that x1 = x2. 
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One-to-One Functions on Infinite Sets 

To show that f is not one-to-one, you will ordinarily 
 

    find elements x1 and x2 in X so that f (x1) = f (x2) but    
    x1 ≠ x2. 
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Example – Proving or Disproving That Functions Are One-to-One 

Define f : R → R and g: Z → Z by the rules. 
 
 
and 
 

a. Is f one-to-one? Prove or give a counterexample. 
 

b. Is g one-to-one? Prove or give a counterexample. 
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Example 2 – Solution 
It is usually best to start by taking a positive approach to 
answering questions like these. Try to prove the given 
functions are one-to-one and see whether you run into 
difficulty. 
 

If you finish without running into any problems, then you 
have a proof. If you do encounter a problem, then analyzing 
the problem may lead you to discover a counterexample. 
 
a. The function f : R → R is defined by the rule 
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Example 2 – Solution 
To prove that f is one-to-one, you need to prove that 
 
 
Substituting the definition of f into the outline of a direct 
proof, you 
 

        suppose x1 and x2 are any real numbers such that  
             4x1 – 1 = 4x2 – 1, 
 
and       show that x1 = x2. 

cont’d 
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Example 2 – Solution 
Can you reach what is to be shown from the supposition?  
 
Of course. Just add 1 to both sides of the equation in the 
supposition and then divide both sides by 4. 
 
This discussion is summarized in the following formal 
answer. 

cont’d 
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Example 2 – Solution 
Proof: 
Suppose x1 and x2 are real numbers such that f (x1) = f (x2). 
[We must show that x1 = x2.]  
 

By definition of f, 
 
 

Adding 1 to both sides gives 
 
 

and dividing both sides by 4 gives 
 
 

which is what was to be shown. 

cont’d 
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Example 2 – Solution 
b. The function g: Z → Z is defined by the rule 
 
 
 
    As above, you start as though you were going to prove  
    that g is one-to-one.  
 

    Substituting the definition of g into the outline of a direct  
    proof, you 
 

      suppose n1 and n2 are integers such that 
 

    and      try to show that n1 = n2. 

cont’d 
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Example 2 – Solution 
Can you reach what is to be shown from the supposition? 
No! It is quite possible for two numbers to have the same 
squares and yet be different.  
 
For example, 22 = (–2)2 but 2 ≠ –2. 
 
Thus, in trying to prove that g is one-to-one, you run into 
difficulty.  
 
But analyzing this difficulty leads to the discovery of a 
counterexample, which shows that g is not one-to-one. 

cont’d 



25 

Example 2 – Solution 
This discussion is summarized as follows: 
 
 
 
 

Counterexample: 
Let n1 = 2 and n2 = 2. Then by definition of g, 
 
 
 
Hence 
 

and so g is not one-to-one. 

cont’d 
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Onto Functions 
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Onto Functions 
We noted that there may be elements of the 
co-domain of a function that are not the image of any 
element in the domain. 
 

When a function is onto, its range is equal to its co-domain. 
Such functions are called onto or surjective.  
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Onto Functions 
To obtain a precise statement of what it means for a 
function not to be onto, take the negation of the definition of 
onto: 
 
 
 

That is, there is some element in Y that is not the image of 
any element in X.  
 

In terms of arrow diagrams, a function is onto if each 
element of the co-domain has an arrow pointing to it from 
some element of the domain. A function is not onto if at 
least one element in its co-domain does not have an arrow 
pointing to it.  
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Onto Functions 
This is illustrated in Figure 7.2.3. 

A Function That Is Onto 
Figure 7.2.3 (a) 

A Function That Is Not Onto 
Figure 7.2.3 (b) 
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Onto Functions on Infinite Sets 
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Onto Functions on Infinite Sets 
Now suppose F is a function from a set X to a set Y, and 
suppose Y is infinite. By definition, F is onto if, and only if, 
the following universal statement is true: 
 
 

Thus to prove F is onto, you will ordinarily use the method 
of generalizing from the generic particular: 
 

 suppose that y is any element of Y 
and  show that there is an element x of X with F(x) = y. 
 

To prove F is not onto, you will usually 
 find an element y of Y such that y ≠ F(x) for any x    
 in X. 
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Example 5 – Proving or Disproving That Functions Are Onto 

Define f : R → R and h: Z → Z by the rules 
 
 
And 
 
 

a. Is f onto? Prove or give a counterexample. 
 

b. Is h onto? Prove or give a counterexample. 
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Example 5 – Solution 
a. The best approach is to start trying to prove that f is onto 

and be alert for difficulties that might indicate that it is 
not. Now f : R → R is the function defined by the rule 

 
     To prove that f is onto, you must prove 
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Example 5 – Solution 
Substituting the definition of f into the outline of a proof by 
the method of generalizing from the generic particular, you  
 

 suppose y is a real number  
 

and  show that there exists a real number x such that 
 y = 4x – 1. 

 
Scratch Work: If such a real number x exists, then 

cont’d 
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Example 5 – Solution 
Thus if such a number x exists, it must equal (y + 1)/4. 
Does such a number exist? Yes.  
 

To show this, let x = (y + 1)/4, and then made sure that  
 

(1) x is a real number and that  
 

(2) f really does send x to y.  
 

The following formal answer summarizes this process. 

cont’d 
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Example 5 – Solution 
Proof: 
Let y ∈ R. [We must show that ∃x in R such that f (x) = y.] 
Let x = (y + 1)/4. 
 

Then x is a real number since sums and quotients (other 
than by 0) of real numbers are real numbers. It follows that 
 
 
 
 
 

 
[This is what was to be shown.] 

cont’d 
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Example 5 – Solution 
b. The function h: Z → Z is defined by the rule 
 
 
 

     To prove that h is onto, it would be necessary to prove 
     that 
 
 

     Substituting the definition of h into the outline of a proof  
     by the method of generalizing from the generic 
     particular, you 

 suppose m is any integer                   
 

     and     try to show that there is an integer n with  
                4n – 1 = m. 

cont’d 
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Example 5 – Solution 
Can you reach what is to be shown from the supposition? 
No! If 4n – 1 = m, then 
 
 
But n must be an integer. And when, for example, m = 0, 
then 
 
 

which is not an integer. 
 

Thus, in trying to prove that h is onto, you run into difficulty, 
and this difficulty reveals a counterexample that shows h is 
not onto. 

cont’d 
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One-to-One Correspondences 
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One-to-One Correspondences 
Consider a function F: X → Y that is both one-to-one and 
onto.  
 
u Given any element x in X, there is a unique 

corresponding element y = F(x) in Y (since F is a 
function). 

u Also given any element y in Y, there is an element x in X 
such that F(x) = y (since F is onto), and 

u There is only one such x (since F is one-to-one). 
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One-to-One Correspondences 
Thus, a function that is one-to-one and onto sets up a 
pairing between the elements of X and the elements of Y 
that matches each element of X with exactly one element of 
Y and each element of Y with exactly one element of X. 
 

Such a pairing is called a one-to-one correspondence or 
bijection and is illustrated by the arrow diagram in  
Figure 7.2.5.  
 

An Arrow Diagram for a One-to-One Correspondence 
Figure 7.2.5 
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One-to-One Correspondences 
One-to-one correspondences are often used as aids to 
counting.  
The pairing of Figure 7.2.5, for example, shows that there 
are five elements in the set X. 
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Inverse Functions 
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Inverse Functions 
If F is a one-to-one correspondence from a set X to a set Y, 
then there is a function from Y to X that “undoes” the 
actions of F; that is, it sends each element of Y back to the 
element of X that it came from. This function is called the 
inverse function for F. 
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Inverse Functions 
The proof of Theorem 7.2.2 follows immediately from the 
definition of one-to-one and onto.  
 

Given an element y in Y, there is an element x in X with  
F(x) = y because F is onto; x is unique because F is       
one-to-one. 
 
 
 
 

Note that according to this definition, the logarithmic 
function with base b > 0 is the inverse of the exponential 
function with base b. 
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Inverse Functions 
The diagram that follows illustrates the fact that an inverse 
function sends each element back to where it came from. 
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Theorem 7.2.3 

If X and Y are sets and F: X → Y is one-to-one and onto, 
then F-1: Y → X is also one-to-one and onto. 
 
Proof: 

F−1 is one-to-one: Let y1 and y2 be elements of Y such that 
F−1(y1) = F−1(y2). [We must show that y1 = y2.] Let x = 
F−1(y1) = F−1(y2). Then x ∈ X, and by definition of F−1,  
F(x) = y1 since x = F−1(y1), and F(x) = y2 since x = F−1(y2). 
Consequently, y1 = y2 since each is equal to F(x).  
 
F−1 is onto: Let x ∈ X. [We must show that there exists an 
element y in Y such that F−1(y) = x.] Let y = F(x). Then y ∈ 
Y, and by definition of F−1, F−1(y) = x.  

Inverse Functions 


