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Set Theory: Definitions 
SECTION 6.1 
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Set Theory: Definitions and the Element Method of Proof 

The words set and element are undefined terms of set 
theory just as sentence, true, and false are undefined terms 
of logic. 
 
The founder of set theory, Georg Cantor (1845, Saint-
Petersburg, Russia), suggested imagining a set as a 
“collection into a whole M of definite and separate objects 
of our intuition or our thought. These objects are called the 
elements of M.” 
 
Cantor used the letter M because it is the first letter of the 
German word for set: Menge. 
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The Empty Set 
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The Empty Set 
A set is defined by the elements that compose it. This being 
so, can there be a set that has no elements? It turns out 
that it is convenient to allow for such a set. 

Because it is unique, we can give it a special name. We call 
it the empty set (or null set) and denote it by the symbol 
Ø. 

Thus {1, 3} ∩ {2, 4} = Ø and {x ∈ R| x2 = –1} = Ø. 
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Cartesian Products 
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Ordered n-tuples 
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Example 13 – Ordered n-tuples 
a.  
 
b. 
 
Solution: 
a. No. By definition of equality of ordered 4-tuples, 
 
 
    But 3 ≠ 4, and so the ordered 4-tuples are not equal. 
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Example 13 – Solution 
b. Yes. By definition of equality of ordered triples, 
 
 

 Because these equations are all true, the two ordered 
triples are equal. 

cont’d 
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Cartesian Products 
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Example 14 – Cartesian Products 
Let A1 = {x, y}, A2 = {1, 2, 3}, and A3 = {a, b}. 
 
a.                                             b. 
 
c. 
 
Solution: 
a. A1 × A2 = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)} 
 
b. The Cartesian product of A1 and A2 is a set, so it may be 
    used as one of the sets making up another Cartesian 
    product. This is the case for (A1 × A2) × A3. 



12 

Example 14 – Solution 
 
 
 
 
 
 
 
c. The Cartesian product A1 × A2 × A3 is superficially similar 

to, but is not quite the same mathematical object as,  
(A1 × A2) × A3. (A1 × A2) × A3 is a set of ordered pairs of 
which one element is itself an ordered pair, whereas  
A1 × A2 × A3 is a set of ordered triples. 

cont’d 
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Example 14 – Solution 
By definition of Cartesian product, 

cont’d 
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Power Sets 
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Power Sets 
There are various situations in which it is useful to consider 
the set of all subsets of a particular set.  
 
The power set axiom guarantees that this is a set. 
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Example 12 – Power Set of a Set 
Find the power set of the set {x, y}. That is, find     ({x, y}). 
 
Solution: 
    ({x, y}) is the set of all subsets of {x, y}. We know that Ø 
is a subset of every set, and so Ø ∈     ({x, y}). 
 
Also any set is a subset of itself, so {x, y} ∈     ({x, y}). The 
only other subsets of {x, y} are {x} and {y}, so 
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The Number of Subsets of a Set 
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The Number of Subsets of a Set 
The following theorem states the important fact that if a set 
has n elements, then its power set has 2n elements.  
 
The proof uses mathematical induction and is based on the 
following observations. Suppose X is a set and z is an 
element of X. 
 
1. The subsets of X can be split into two groups: those that  
    do not contain z and those that do contain z. 
 
2. The subsets of X that do not contain z are the same as  
    the subsets of X – {z}. 
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The Number of Subsets of a Set 
    The subsets of X that do not contain z can be matched 

one to one with the subsets of X that do contain z by 
matching each subset A that does not contain z to the 
subset A ∪ {z} that contains z.  
 

    Thus there are as many subsets of X that contain z as 
there are subsets of X that do not contain z.  
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The Number of Subsets of a Set 
    For instance, if X = {x, y, z}, the following table shows the 

correspondence between subsets of X that do not 
contain z and subsets of X that contain z. 
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The Number of Subsets of a Set 
Proof (by mathematical induction): 
      Let the property P(n) be the sentence 
      Any set with n elements has 2n subsets. 
 

Show that P(0) is true: 
To establish P(0), we must show that 
              Any set with 0 elements has 20 subsets. 
 

But the only set with zero elements is the empty set, and 
the only subset of the empty set is itself.  
 

Thus a set with zero elements has one subset. Since  
1 = 20, we have that P(0) is true. 
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The Number of Subsets of a Set 
Show that for all integers k ≥ 0, if P(k) is true then  
P(k + 1) is also true: [Suppose that P(k) is true for a 
particular but arbitrarily chosen integer k ≥ 0. That is:]  
 

Suppose that k is any integer with k ≥ 0 such that 
 

    Any set with k elements has 2k subsets. 
 

[We must show that P(k + 1) is true. That is:]  
 

We must show that 
 

    Any set with k + 1 elements has 2k+1 subsets. 
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The Number of Subsets of a Set 
Let X be a set with k + 1 elements. Since k + 1 ≥ 1, we may 
pick an element z in X. Observe that any subset of X either 
contains z or not.  
 
Any subset A of X – {z} can be matched up with a subset B, 
equal to A ∪ {z}, of X that contains z.  
 
Consequently, there are as many subsets of X that contain 
z as do not: 

 The number of subsets of X are twice the number of 
 subsets of X – {z}.  
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The Number of Subsets of a Set 
But X – {z} has k elements, and so 
 

 
 

Therefore, 
 
 
 
 
 

[This is what was to be shown.]  
[Since we have proved both the basis step and the 
inductive step, we conclude that the theorem is true.] 
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Russell’s Paradox 
(1872–1970) 
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Russell’s Paradox 
Russell’s Paradox: Most sets are not elements of 
themselves. For instance, the set of all integers is not an 
integer and the set of all horses is not a horse.  
 
However, we can imagine the possibility of a set’s being an 
element of itself. For instance, the set of all abstract ideas 
might be considered an abstract idea.  
 
If we are allowed to use any description of a property as the 
defining property of a set, we can let S be the set of all sets 
that are not elements of themselves: 
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Russell’s Paradox 
Is S an element of itself? The answer is neither yes nor no.  
 
For if S ∈ S, then S must satisfies the defining property for 
S, and hence S ∉ S.  
But if S ∉ S, then S is a set such that S ∉ S and so S 
satisfies the defining property for S, which implies that  
S ∈ S.  
 
Thus neither is S ∈ S nor is S ∉ S, which is a contradiction.  
 
To help explain his discovery to laypeople, Russell devised 
a puzzle, the barber puzzle, whose solution exhibits the 
same logic as his paradox. 
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Example 3 – The Barber Puzzle 
In a certain town there is a male barber who shaves all 
those men, and only those men, who do not shave 
themselves.  
 

 Question: Does the barber shave himself? 
 
Solution: 
Neither yes nor no. If the barber shaves himself, he is a 
member of the class of men who shave themselves.  
 
But no member of this class is shaved by the barber, and 
so the barber does not shave himself.  
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Example 3 – Solution 
On the other hand, if the barber does not shave himself, he 
belongs to the class of men who do not shave themselves.  
 
But the barber shaves every man in this class, so the 
barber does shave himself. 

cont’d 
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Russell’s Paradox 
So let’s accept the fact that the paradox has no easy 
solution and see where that thought leads. Since the barber 
neither shaves himself nor doesn’t shave himself, the 
sentence “The barber shaves himself” is neither true nor 
false.  
 
But the sentence arose in a natural way from a description 
of a situation. If the situation actually existed, then the 
sentence would have to be either true or false.  
 
Thus we are forced to conclude that the situation described 
in the puzzle simply cannot exist in the world as we know it. 
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Russell’s Paradox 
In a similar way, the conclusion to be drawn from Russell’s 
paradox itself is that the object S is not a set.  
 
Because if it actually were a set, in the sense of satisfying 
the general properties of sets that we have been assuming, 
then it either would be an element of itself or not. 
 
One way to avoid this contradiction is to assume the 
existence of a Universal Set such that every set must be a 
subset of this Universal Set. 
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Russell’s Paradox -- Solution 
Let U be a universal set and suppose that all sets under 
discussion must be subsets of U. Let 
 
In Russell’s paradox, both implications 
 
can be proved, and the contradictory conclusion 
 

   
is therefore deduced.  
If all sets under discussion are subsets of U, the implication  
S ∈ S → S ∉ S is proved in almost the same way as it is for 
Russell’s paradox: (Suppose S ∈ S. Then by definition of 
S, S ⊆ U and S ∉ S. In particular, S ∉ S.) 
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Russell’s Paradox 
On the other hand, from the supposition that S ∉ S we can 
only deduce that the statement “S ⊆ U and S ∉ S” is false.  
 
By De Morgan’s laws, this means that “S    U or  
S ∈ S.” Since S ∈ S would contradict the supposition that  
S ∉ S, we eliminate it and conclude that S    U.  
 
In other words, the only conclusion we can draw is that the 
seeming “definition” of S is faulty—that is, that S is not a 
set in U. 
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Alan Turing  (1912– 1954)  
The Halting Problem 
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The Halting Problem 
If you have some experience programming computers, you 
know how badly an infinite loop can tie up a computer 
system.  
 
It would be useful to be able to preprocess a program and 
its data set by running it through a checking program that 
determines whether execution of the given program with 
the given data set would result in an infinite loop.  
 
Can an algorithm for such a program be written? 
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The Halting Problem 
In other words, can an algorithm be written that will accept 
any algorithm X and any data set D as input and will then 
print “halts” or “loops forever” to indicate whether X 
terminates in a finite number of steps or loops forever when 
run with data set D?  
 
In the 1930s, Turing proved that the answer to this question 
is no. 
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The Halting Problem 
CheckHalt(X, D) 

 if X terminates in a finite number of steps when run 
  with data set D 
 then return “halts” 
 else return “loops forever” 

 
Note: the sequence of characters making up an algorithm 
X can be regarded as a data set itself. 
 
Test(X) 

 if  CheckHalt(X, X) = “halts” then loop forever 
 else if CheckHalt(X, X) = “loops forever” then stop. 
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The Halting Problem 
Run the algorithm Test with input Test: Test(Test). 
 

Test(Test) terminates after a finite number of steps, then 
CheckHalt(Test, Test) = “halts” and so Test(Test) loops 
forever, and we have a contradiction. 
 
Test(Test) does not terminate after a finite number of 
steps, then CheckHalt(Test, Test) = “loops forever” and so 
Test(Test) terminates, and again we have a contradiction. 
 
Then we can conclude that such a Test algorithm does not 
exist. 


