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Application: Correctness of Algorithms 

 
 
 
We will say that a program is correct if it produces the 
output specified for each set of input data, as specified in 
the documentation. 
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Application: Correctness of Algorithms 

In order to get a program to run at all, the programmer must 
first fix all syntax errors (such as writing ik instead of if, 
failing to declare a variable, or using a restricted keyword 
for a variable name). 
 

When the syntax errors have been removed, however, the 
program may still contain logical errors that prevent it from 
producing correct output.  
 

But for most programs the number of possible sets of input 
data is either infinite or very large, and so no amount of 
program testing can give perfect confidence that the 
program will be correct for all possible sets of legal input 
data. 
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Assertions 
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Assertions 
Consider an algorithm that is designed to produce a certain 
final state from a certain initial state. Both the initial and 
final states can be expressed as predicates involving the 
input and output variables. 
 
Often the predicate describing the initial state is called the 
pre-condition for the algorithm, and the predicate 
describing the final state is called the post-condition for 
the algorithm. 
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Example 1 – Algorithm Pre-Conditions and Post-Conditions 

Examples of pre- and post-conditions for some typical 
algorithms. 
 
a. Algorithm to compute a product of non-negative integers 
      
    Pre-condition: The input variables m and n are 
                           non-negative integers. 
 

    Post-condition: The output variable p equals m*n. 
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Example 1 – Algorithm Pre-Conditions and Post-Conditions 

b. Algorithm to find quotient and remainder of the division 
    of one positive integer by another  
 
    Pre-condition: The input variables a and b are positive      
                            integers. 
 
    Post-condition: The output variables q and r are integers  
                             such that a = bq + r and 0 ≤ r < b. 

cont’d 
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Example 1 – Algorithm Pre-Conditions and Post-Conditions 

c. Algorithm to sort a one-dimensional array of real 
numbers 

 
    Pre-condition: The input variable A[1], A[2], . . . , A[n] is 

                       a one-dimensional array of real numbers. 
 
    Post-condition: The output variable B[1], B[2], . . . , B[n]  

                         is a one-dimensional array of real 
                         numbers with same elements as A[1],  
                         A[2], . . . , A[n] but with the property that  
                         B[i ] ≤ B[ j ] whenever i ≤ j.  

cont’d 
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Loop Invariants 
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Loop Invariants 
The method of loop invariants is used to prove correctness 
of a loop with respect to certain pre- and post-conditions. It 
is based on the principle of mathematical induction. 
 
Suppose that an algorithm contains a while loop and that 
entry to this loop is restricted by a condition G, called the 
guard.  
 
Suppose also that assertions describing the current states 
of algorithm variables have been placed immediately 
preceding and immediately following the loop.  
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Loop Invariants 
The assertion just preceding the loop is called the  
pre-condition for the loop and the one just following is 
called the post-condition for the loop. The annotated 
loop has the following appearance: 
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Loop Invariants 
 
 
 
 
 
Establishing the correctness of a loop uses the concept of 
loop invariant. A loop invariant is a predicate with domain 
a set of integers, which satisfies the condition: For each 
iteration of the loop, if the predicate is true before the 
iteration, then it is true after the iteration. 
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Loop Invariants 
Furthermore, if the predicate satisfies the following two 
additional conditions, the loop will be correct with respect to 
its pre- and post-conditions: 
 
1. It is true before the first iteration of the loop. 
 
2. If the loop terminates after a finite number of iterations, 
    the truth of the loop invariant ensures the truth of the 
    post-condition of the loop. 
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Loop Invariants 
The following theorem, called the loop invariant theorem, 
formalizes these ideas. 
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Example 2 – Correctness of a Loop to Compute a Product 

The following loop is designed to compute the product m*x 
for a non-negative integer m and a real number x, without 
using a built-in multiplication operation.  
Before the loop, variables i and product have been 
introduced and given initial values i = 0 and product = 0. 
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Example 2 – Correctness of a Loop to Compute a Product 

Let the loop invariant be 
 
 
 
The guard condition G of the while loop is 
 
 
 
Use the loop invariant theorem to prove that the while loop 
is correct with respect to the given pre- and  
post-conditions. 

cont’d 
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Example 2 – Solution 
I. Basis Property: [I(0) is true before the first iteration of 
   the loop.]  
   I(0) is “i = 0 and product = 0 � x”, which is true before the 
   first iteration of the loop because 0 � x = 0. 
 
II. Inductive Property: [If G ∧ I(k) is true before a loop 
    iteration (where k ≥ 0), then I(k + 1) is true after the loop 
    iteration.] 
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Example 2 – Solution 
Suppose k is a nonnegative integer such that G ∧ I(k) is 
true before an iteration of the loop. Then, i ≠ m, i = k, and 
product = k*x. 
 
Since i ≠ m, the guard is passed and statement 1 is 
executed. Before execution of statement 1, 
 
  
Thus execution of statement 1 has the following effect: 

cont’d 
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Example 2 – Solution 
Similarly, before statement 2 is executed, 
 
 
so after execution of statement 2, 
 
 
 
Hence after the loop iteration, the statement I(k + 1), 
namely, (i = k + 1 and product = (k + 1)x), is true. This is 
what we needed to show. 

cont’d 
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Example 2 – Solution 
III. Eventual Falsity of Guard: [After a finite number of 
     iterations of the loop, G becomes false.] 
     The guard G is the condition i ≠ m, and m is a     
      nonnegative integer.  
 

      By II, since I(n) is true then: 
 

 for all integers n ≥ 0, if the loop is iterated  
           n times, then i = n. 
 

      So after m iterations of the loop, i = m.  
 

      Thus G becomes false after m iterations of the loop. 

cont’d 
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Example 2 – Solution 
IV. Correctness of the Post-Condition: [If N is the least 
     number of iterations after which G is false and I(N) is 
     true, then the value of the algorithm variables will be as 
     specified in the post-condition of the loop.] 
     According to the post-condition, the value of product 
     after execution of the loop should be m*x.  
 
     If G becomes false after N iterations, i = m.    
     If I(N) is true, then i = N and product = N*x.  
 
     Since both conditions (G false and I(N) true) are  
     satisfied, i = m = N and product = m*x as required. 

cont’d 
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The Well-Ordering Principle  
for the Integers 
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The Well-Ordering Principle for the Integers 

The well-ordering principle for the integers looks very 
different from both the ordinary and the strong principles of 
mathematical induction, but it can be shown that all three 
principles are equivalent.  
 
That is, if any one of the three is true, then so are both of 
the others. 
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Correctness of the Division Algorithm 
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Correctness of the Division Algorithm 

The division algorithm is supposed to take a nonnegative 
integer a and a positive integer d and compute nonnegative 
integers q and r such that a = q*d + r and 0 ≤ r < d. 
 
Initially, the variables r and q are introduced and given the 
values r = a and q = 0.  
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Correctness of the Division Algorithm 

The crucial loop, annotated with pre- and post-conditions, is 
the following: 
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Correctness of the Division Algorithm 

Proof: 
To prove the correctness of the loop, let the loop invariant 
be 
 
 
The guard of the while loop is 
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Correctness of the Division Algorithm 

I. Basis property: [I(0) is true before the first iteration of   
   the loop.] 

   I(0) is “r = a – 0 � d ≥ 0 and q = 0.” But by the  
   pre-condition, r = a, a ≥ 0, and q = 0. Thus, I(0) is true  
   before the first iteration of the loop. 
 
II. Inductive Property: [If G ∧ I(k) is true before an  
    iteration of the loop (where k ≥ 0), then I(k + 1) is true  
    after an iteration of the loop.] 
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Correctness of the Division Algorithm 

   Suppose k is a nonnegative integer such that G ∧ I(k) is     
   true before an iteration of the loop. Since G is true, r ≥ d  
   and the loop is entered. Also since I(k) is true, 
   r = a – kd ≥ 0 and k = q. Hence, before execution of     
   statements 1 and 2, 

 
     
    When statements 1 and 2 are executed, then, 
 
       and 
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Correctness of the Division Algorithm 

   In addition, since rold ≥ d before execution of statements  
   1 and 2, after execution of these statements, 
 
 
   Putting equations (5.5.2), (5.5.3), and (5.5.4) together  
   shows that after iteration of the loop, 
 
 
   Hence I(k + 1) is true. 



32 

Correctness of the Division Algorithm 

III. Eventual Falsity of the Guard: [After a finite number of  
     iterations of the loop, G becomes false.] 
 
     The guard G is the condition r ≥ d. Each iteration of the  
     loop reduces the value of r by d and yet leaves r  
     nonnegative. 
 
     Thus the values of r form a decreasing sequence of  
     nonnegative integers, and so (by the well-ordering  
     principle) there must be a smallest such r, say rmin. 
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Correctness of the Division Algorithm 

     Then rmin < d. [If rmin were greater than d, the loop would  
     iterate another time, and a new value of r equal to  
     rmin – d would be obtained. But this new value would be  
     smaller than rmin which would contradict the fact that rmin    
     is the smallest remainder obtained by repeated iteration  
     of the loop.] 
 
     Hence as soon as the value r = rmin is computed, the    
     value of r becomes less than d, and so the guard G is  
     false. 
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Correctness of the Division Algorithm 

IV. Correctness of the Post-Condition: [If N is the least   
      number of iterations after which G is false and I(N) is  
      true, then the values of the algorithm variables will be 
      as specified in the post-condition of the loop.] 
 
     Suppose that for some nonnegative integer N, G is false  
     and I(N) is true. Then r < d, r = a – Nd, r ≥ 0, and q = N.  
     Since q = N, by substitution, 
 
     Or, 
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Correctness of the Division Algorithm 

    Combining the two inequalities involving r gives 
 
 
    But these are the values of q and r specified in the  
    post-condition, so the proof is complete. 


