
CHAPTER 5

SEQUENCES,
MATHEMATICAL
INDUCTION, AND

RECURSION

Alessandro Artale – UniBZ - http://www.inf.unibz.it/∼artale/

Copyright © Cengage Learning. All rights reserved.

Application: Correctness of
Algorithms

SECTION 5.5

3

Application: Correctness of Algorithms

We will say that a program is correct if it produces the
output specified for each set of input data, as specified in
the documentation.

4

Application: Correctness of Algorithms

In order to get a program to run at all, the programmer must
first fix all syntax errors (such as writing ik instead of if,
failing to declare a variable, or using a restricted keyword
for a variable name).

When the syntax errors have been removed, however, the
program may still contain logical errors that prevent it from
producing correct output.

But for most programs the number of possible sets of input
data is either infinite or very large, and so no amount of
program testing can give perfect confidence that the
program will be correct for all possible sets of legal input
data.

5

Assertions

6

Assertions
Consider an algorithm that is designed to produce a certain
final state from a certain initial state. Both the initial and
final states can be expressed as predicates involving the
input and output variables.

Often the predicate describing the initial state is called the
pre-condition for the algorithm, and the predicate
describing the final state is called the post-condition for
the algorithm.

7

Example 1 – Algorithm Pre-Conditions and Post-Conditions

Examples of pre- and post-conditions for some typical
algorithms.

a. Algorithm to compute a product of non-negative integers

 Pre-condition: The input variables m and n are
 non-negative integers.

 Post-condition: The output variable p equals m*n.

8

Example 1 – Algorithm Pre-Conditions and Post-Conditions

b. Algorithm to find quotient and remainder of the division
 of one positive integer by another

 Pre-condition: The input variables a and b are positive
 integers.

 Post-condition: The output variables q and r are integers
 such that a = bq + r and 0 ≤ r < b.

cont’d

9

Example 1 – Algorithm Pre-Conditions and Post-Conditions

c. Algorithm to sort a one-dimensional array of real
numbers

 Pre-condition: The input variable A[1], A[2], . . . , A[n] is

 a one-dimensional array of real numbers.

 Post-condition: The output variable B[1], B[2], . . . , B[n]

 is a one-dimensional array of real
 numbers with same elements as A[1],
 A[2], . . . , A[n] but with the property that
 B[i] ≤ B[j] whenever i ≤ j.

cont’d

10

Loop Invariants

11

Loop Invariants
The method of loop invariants is used to prove correctness
of a loop with respect to certain pre- and post-conditions. It
is based on the principle of mathematical induction.

Suppose that an algorithm contains a while loop and that
entry to this loop is restricted by a condition G, called the
guard.

Suppose also that assertions describing the current states
of algorithm variables have been placed immediately
preceding and immediately following the loop.

12

Loop Invariants
The assertion just preceding the loop is called the
pre-condition for the loop and the one just following is
called the post-condition for the loop. The annotated
loop has the following appearance:

13

Loop Invariants

Establishing the correctness of a loop uses the concept of
loop invariant. A loop invariant is a predicate with domain
a set of integers, which satisfies the condition: For each
iteration of the loop, if the predicate is true before the
iteration, then it is true after the iteration.

14

Loop Invariants
Furthermore, if the predicate satisfies the following two
additional conditions, the loop will be correct with respect to
its pre- and post-conditions:

1. It is true before the first iteration of the loop.

2. If the loop terminates after a finite number of iterations,
 the truth of the loop invariant ensures the truth of the
 post-condition of the loop.

15

Loop Invariants
The following theorem, called the loop invariant theorem,
formalizes these ideas.

16

Example 2 – Correctness of a Loop to Compute a Product

The following loop is designed to compute the product m*x
for a non-negative integer m and a real number x, without
using a built-in multiplication operation.
Before the loop, variables i and product have been
introduced and given initial values i = 0 and product = 0.

17

Example 2 – Correctness of a Loop to Compute a Product

Let the loop invariant be

The guard condition G of the while loop is

Use the loop invariant theorem to prove that the while loop
is correct with respect to the given pre- and
post-conditions.

cont’d

18

Example 2 – Solution
I. Basis Property: [I(0) is true before the first iteration of
 the loop.]
 I(0) is “i = 0 and product = 0 � x”, which is true before the
 first iteration of the loop because 0 � x = 0.

II. Inductive Property: [If G ∧ I(k) is true before a loop
 iteration (where k ≥ 0), then I(k + 1) is true after the loop
 iteration.]

19

Example 2 – Solution
Suppose k is a nonnegative integer such that G ∧ I(k) is
true before an iteration of the loop. Then, i ≠ m, i = k, and
product = k*x.

Since i ≠ m, the guard is passed and statement 1 is
executed. Before execution of statement 1,

Thus execution of statement 1 has the following effect:

cont’d

20

Example 2 – Solution
Similarly, before statement 2 is executed,

so after execution of statement 2,

Hence after the loop iteration, the statement I(k + 1),
namely, (i = k + 1 and product = (k + 1)x), is true. This is
what we needed to show.

cont’d

21

Example 2 – Solution
III. Eventual Falsity of Guard: [After a finite number of
 iterations of the loop, G becomes false.]
 The guard G is the condition i ≠ m, and m is a
 nonnegative integer.

 By II, since I(n) is true then:

 for all integers n ≥ 0, if the loop is iterated
 n times, then i = n.

 So after m iterations of the loop, i = m.

 Thus G becomes false after m iterations of the loop.

cont’d

22

Example 2 – Solution
IV. Correctness of the Post-Condition: [If N is the least
 number of iterations after which G is false and I(N) is
 true, then the value of the algorithm variables will be as
 specified in the post-condition of the loop.]
 According to the post-condition, the value of product
 after execution of the loop should be m*x.

 If G becomes false after N iterations, i = m.
 If I(N) is true, then i = N and product = N*x.

 Since both conditions (G false and I(N) true) are
 satisfied, i = m = N and product = m*x as required.

cont’d

23

The Well-Ordering Principle
for the Integers

24

The Well-Ordering Principle for the Integers

The well-ordering principle for the integers looks very
different from both the ordinary and the strong principles of
mathematical induction, but it can be shown that all three
principles are equivalent.

That is, if any one of the three is true, then so are both of
the others.

25

Correctness of the Division Algorithm

26

Correctness of the Division Algorithm

The division algorithm is supposed to take a nonnegative
integer a and a positive integer d and compute nonnegative
integers q and r such that a = q*d + r and 0 ≤ r < d.

Initially, the variables r and q are introduced and given the
values r = a and q = 0.

27

Correctness of the Division Algorithm

The crucial loop, annotated with pre- and post-conditions, is
the following:

28

Correctness of the Division Algorithm

Proof:
To prove the correctness of the loop, let the loop invariant
be

The guard of the while loop is

29

Correctness of the Division Algorithm

I. Basis property: [I(0) is true before the first iteration of
 the loop.]

 I(0) is “r = a – 0 � d ≥ 0 and q = 0.” But by the
 pre-condition, r = a, a ≥ 0, and q = 0. Thus, I(0) is true
 before the first iteration of the loop.

II. Inductive Property: [If G ∧ I(k) is true before an
 iteration of the loop (where k ≥ 0), then I(k + 1) is true
 after an iteration of the loop.]

30

Correctness of the Division Algorithm

 Suppose k is a nonnegative integer such that G ∧ I(k) is
 true before an iteration of the loop. Since G is true, r ≥ d
 and the loop is entered. Also since I(k) is true,
 r = a – kd ≥ 0 and k = q. Hence, before execution of
 statements 1 and 2,

 When statements 1 and 2 are executed, then,

 and

31

Correctness of the Division Algorithm

 In addition, since rold ≥ d before execution of statements
 1 and 2, after execution of these statements,

 Putting equations (5.5.2), (5.5.3), and (5.5.4) together
 shows that after iteration of the loop,

 Hence I(k + 1) is true.

32

Correctness of the Division Algorithm

III. Eventual Falsity of the Guard: [After a finite number of
 iterations of the loop, G becomes false.]

 The guard G is the condition r ≥ d. Each iteration of the
 loop reduces the value of r by d and yet leaves r
 nonnegative.

 Thus the values of r form a decreasing sequence of
 nonnegative integers, and so (by the well-ordering
 principle) there must be a smallest such r, say rmin.

33

Correctness of the Division Algorithm

 Then rmin < d. [If rmin were greater than d, the loop would
 iterate another time, and a new value of r equal to
 rmin – d would be obtained. But this new value would be
 smaller than rmin which would contradict the fact that rmin
 is the smallest remainder obtained by repeated iteration
 of the loop.]

 Hence as soon as the value r = rmin is computed, the
 value of r becomes less than d, and so the guard G is
 false.

34

Correctness of the Division Algorithm

IV. Correctness of the Post-Condition: [If N is the least
 number of iterations after which G is false and I(N) is
 true, then the values of the algorithm variables will be
 as specified in the post-condition of the loop.]

 Suppose that for some nonnegative integer N, G is false
 and I(N) is true. Then r < d, r = a – Nd, r ≥ 0, and q = N.
 Since q = N, by substitution,

 Or,

35

Correctness of the Division Algorithm

 Combining the two inequalities involving r gives

 But these are the values of q and r specified in the
 post-condition, so the proof is complete.

