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Relations on Sets 
SECTION 8.1 
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Relations on Sets 
A formal way to denote a binary relation between two sets 
is to define it as a subset of the Cartesian product of the 
two sets.  
 
In general, we can define an n-ary relation to be a subset 
of a Cartesian product of n sets, where n is any integer 
greater than or equal to two.  
 
Such a relation is the fundamental structure used in 
relational databases. However, because we focus on binary 
relations, when we use the term relation by itself, we will 
mean binary relation. 
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Example 2 – The Congruence Modulo 2 Relation 

Define a relation E from Z to Z as follows: For all  
(m, n) ∈ Z × Z, 
 
 

a. Is 4 E 0? Is 2 E 6? Is 3 E (–3)? Is 5 E 2? 
b. List five integers that are related by E to 1. 
c. Prove that if n is any odd integer, then n E 1. 

 
Solution: 
a. Yes, 4 E 0 because 4 – 0 = 4 and 4 is even. 
 

    Yes, 2 E 6 because 2 – 6 = –4 and –4 is even. 
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Example 2 – Solution cont’d 

    Yes, 3 E (–3) because 3 – (–3) = 6 and 6 is even. 
 

    No, 5     2 because 5 – 2 = 3 and 3 is not even. 
 
b. There are many such lists. One is 

   1 because 1 – 1 = 0 is even, 
 

   3 because 3 – 1 = 2 is even, 
 

   5 because 5 – 1 = 4 is even, 
 

     –1 because –1 – 1 = –2 is even,  
 

     –3 because –3 – 1 = –4 is even. 
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Example 1 – Solution cont’d 

c. Proof:  
 Suppose n is any odd integer.  

 

 Then n = 2k + 1 for some integer k. Now by definition of  
E, n E 1 if, and only if, n – 1 is even. 

 
    But by substitution,  

 
        n – 1 = (2k + 1) – 1 = 2k,  

 

    and since k is an integer, 2k is even.  
 

 Hence n E 1 [as was to be shown]. 
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Example 1 – Solution cont’d 

It can be shown that integers m and n are related by E if, 
and only if, m mod 2 = n mod 2 (that is, both are even or 
both are odd).  
 
When this occurs m and n are said to be congruent  
modulo 2. 
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The Inverse of a Relation 
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The Inverse of a Relation 
If R is a relation from A to B, then a relation R 

–1 from B to A 
can be defined by interchanging the elements of all the 
ordered pairs of R. 
 
 
 
 

 
This definition can be written operationally as follows: 
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Example 4 – The Inverse of a Finite Relation 

Let A = {2, 3, 4} and B = {2, 6, 8} and let R be the “divides” 
relation from A to B: For all (x, y) ∈ A × B, 
 
 
a. State explicitly which ordered pairs are in R and R 

–1,          
and draw arrow diagrams for R and R 

–1. 
 

b. Describe R 

–1 in words. 
 
Solution: 
a. R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)} 
 

    R 

–1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)} 
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Example 4 – Solution cont’d 

 
 
 
 
 
 
To draw the arrow diagram for R 

–1, you can copy the arrow 
diagram for R but reverse the directions of the arrows. 



12 

Or you can redraw the diagram so that B is on the left. 
 
 
 
 
 

 
b. R 

–1 can be described in words as follows:   
    For all (y, x) ∈ B × A,  

  

       y R 

–1 x ⇔ y is a multiple of x. 

Example 4 – Solution cont’d 
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Directed Graph of a Relation 
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Directed Graph of a Relation 

 
 
 
When a relation R is defined on a set A, the arrow diagram 
of the relation can be modified so that it becomes a 
directed graph.  
 
Instead of representing A as two separate sets of points, 
represent A only once, and draw an arrow from each point 
of A to each R-related point.  
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Directed Graph of a Relation 

As with an ordinary arrow diagram, 
 
 
 
 
If a point is related to itself, a loop is drawn that extends out 
from the point and goes back to it. 
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Example 6 – Directed Graph of a Relation 

Let A = {3, 4, 5, 6, 7, 8} and define a relation R on A as 
follows: For all x, y ∈ A, 

    

     x R y ⇔ 2 | (x – y). 
 

Draw the directed graph of R. 
 
Solution: 
Note that 3 R 3 because 3 – 3 = 0 and 2 | 0 since 0 = 2 � 0. 
Thus there is a loop from 3 to itself.  
 

Similarly, there is a loop from 4 to itself, from 5 to itself, and 
so forth, since the difference of each integer with itself is 0, 
and 2 | 0. 
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Example 6 – Solution cont’d 

Note also that 3 R 5 because 3 – 5 = –2 = 2 � (–1). And  
5 R 3 because 5 – 3 = 2 = 2 � 1.  
 

Hence there is an arrow from 3 to 5 and also an arrow from 
5 to 3.  
 

The other arrows in the directed graph, as shown below, 
are obtained by similar reasoning. 
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N-ary Relations and Relational 
Databases 
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N-ary Relations and Relational Databases 

N-ary relations form the mathematical foundation for 
relational database theory.  
 
A binary relation is a subset of a Cartesian product of two 
sets, similarly, an n-ary relation is a subset of a Cartesian 
product of n sets. 
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Example 7 – A Simple Database 
The following is a radically simplified version of a database 
that might be used in a hospital.  
 
Let A1 be a set of positive integers, A2 a set of alphabetic 
character strings, A3 a set of numeric character strings, and 
A4 a set of alphabetic character strings. 
 
Define a quaternary relation R on A1 × A2 × A3 × A4 as 
follows: 
 

(a1, a2, a3, a4) ∈ R ⇔   a patient with patient ID number a1, 
         named a2, was admitted on date a3, 
         with primary diagnosis a4. 
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Example 7 – A Simple Database 
At a particular hospital, this relation might contain the 
following 4-tuples: 

 

(011985, John Schmidt, 020710, asthma) 
 

(574329, Tak Kurosawa, 0114910, pneumonia) 
 

(466581, Mary Lazars, 0103910, appendicitis) 
 

(008352, Joan Kaplan, 112409, gastritis) 
 

(011985, John Schmidt, 021710, pneumonia) 
 

(244388, Sarah Wu, 010310, broken leg) 
 

(778400, Jamal Baskers, 122709, appendicitis) 

cont’d 



22 

Example 7 – A Simple Database 
In discussions of relational databases, the tuples are 
normally thought of as being written in tables.  
 
Each row of the table corresponds to one tuple, and the 
header for each column gives the descriptive attribute for 
the elements in the column.  
 
Operations within a database allow the data to be 
manipulated in many different ways. 

cont’d 
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Example 7 – A Simple Database 
For example, in the database language SQL, if the above 
database is denoted S, the result of the query 
 

  SELECT Patient_ID#, Name FROM S WHERE 
  Admission_Date = 010310 

 
would be a list of the ID numbers and names of all patients 
admitted on 01-03-10: 
 

            466581   Mary Lazars, 
            244388   Sarah Wu. 

cont’d 
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Example 7 – A Simple Database 
This is obtained by taking the intersection of the set  
A1 × A2 × {010310} × A4 with the database and then 
projecting onto the first two coordinates. 
 
Similarly, SELECT can be used to obtain a list of all 
admission dates of a given patient.  
 
For John Schmidt this list is 
 

         02-07-10   and 
 

         02-17-10 

cont’d 
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Example 7 – A Simple Database 
Individual entries in a database can be added, deleted, or 
updated, and most databases can sort data entries in 
various ways.  
 
In addition, entire databases can be merged, and the 
entries common to two databases can be moved to a new 
database. 

cont’d 
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Reflexivity, Symmetry, and 
Transitivity 

SECTION 8.2 
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Reflexivity, Symmetry, and Transitivity 

Let A = {2, 3, 4, 6, 7, 9} and define a relation R on A as 
follows: For all x, y ∈ A, 
 
 
Then 2 R 2 because 2 – 2 = 0, and 3 | 0.  
 
Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and 9 R 9. 
 
Also 6 R 3 because 6 – 3 = 3, and 3 | 3. 
 
And 3 R 6 because 3 – 6 = –(6 – 3) = –3, and 3 | (–3).  
 
Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4.  
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Reflexivity, Symmetry, and Transitivity 

Thus the directed graph for R has  
the appearance shown at the right. 
 
This graph has three important  
properties: 
 
1. Each point of the graph has an arrow looping around  
    from it back to itself. 
 
2. In each case where there is an arrow going from one  
    point to a second, there is an arrow going from the  
    second point back to the first. 
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Reflexivity, Symmetry, and Transitivity 

3. In each case where there is an arrow going from one  
    point to a second and from the second point to a third,  
    there is an arrow going from the first point to the third.  
    That is, there are no “incomplete directed triangles” in  
    the graph. 
 

Properties (1), (2), and (3) correspond to properties of 
general relations called reflexivity, symmetry, and 
transitivity. 
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Reflexivity, Symmetry, and Transitivity 

Because of the equivalence of the expressions x R y and 
(x, y) ∈ R for all x and y in A, the reflexive, symmetric, and 
transitive properties can also be written as follows: 
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Example 1 – Properties of Relations on Finite Sets 

Let A = {0, 1, 2, 3} and define relations R, S, and T on A as 
follows: 
 

   R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}, 
 

   S = {(0, 0), (0, 2), (0, 3), (2, 3)}, 
 

   T = {(0, 1), (2, 3)}. 
 
a. Is R reflexive? symmetric? transitive? 
 
b. Is S reflexive? symmetric? transitive? 
 
c. Is T reflexive? symmetric? transitive? 
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Example 1(a) – Solution 
The directed graph of R has the appearance shown below. 
 
 
 
 
 
 
 
 
R is reflexive: There is a loop at each point of the directed 
graph. This means that each element of A is related to 
itself, so R is reflexive.  
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Example 1(a) – Solution 
R is symmetric: In each case where there is an arrow 
going from one point of the graph to a second, there is an 
arrow going from the second point back to the first.  
 

This means that whenever one element of A is related by R 
to a second, then the second is related to the first. Hence R 
is symmetric. 
 

R is not transitive: There is an arrow going from 1 to 0 
and an arrow going from 0 to 3, but there is no arrow going 
from 1 to 3.  
 

This means that there are elements of A—0, 1, and  
3—such that 1 R 0 and 0 R 3 but 1     3. Hence R is not 
transitive. 

cont’d 
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Example 1(b) – Solution 
The directed graph of S has the appearance shown below. 
 
 
 
 
 
 
S is not reflexive: There is no loop at 1, for example.  
Thus (1, 1)    S, and so S is not reflexive. 
 
S is not symmetric: There is an arrow from 0 to 2 but not 
from 2 to 0. Hence (0, 2) ∈ S but (2, 0)    S, and so S is not 
symmetric. 

cont’d 
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Example 1(b) – Solution 
S is transitive: There are three cases for which there is an 
arrow going from one point of the graph to a second and 
from the second point to a third:  
 

Namely, there are arrows going from 0 to 2 and from 2 to 3; 
there are arrows going from 0 to 0 and from 0 to 2; and 
there are arrows going from 0 to 0 and from 0 to 3. 
 

In each case there is an arrow going from the first point to 
the third. (Note again that the “first,” “second,” and “third” 
points need not be distinct.)  
 

This means that whenever (x, y) ∈ S and (y, z) ∈ S, then 
(x, z) ∈ S, for all x, y, z ∈ {0, 1, 2, 3}, and so S is transitive. 

cont’d 
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Example 1(c) – Solution 
The directed graph of T has  
the appearance shown at right. 

 

T is not reflexive: There is no loop at 0, for example. Thus 
(0, 0)    T, so T is not reflexive. 

 

T is not symmetric: There is an arrow from 0 to 1 but not 
from 1 to 0. Thus (0, 1) ∈ T but (1, 0)    T, and so T is not 
symmetric. 

 

T is transitive: The transitivity condition is vacuously true 
for T. To see this, observe that the transitivity condition 
says that 

 

For all x, y, z ∈ A, if (x, y) ∈ T and (y, z) ∈ T then (x, z) ∈ T. 

cont’d 
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Example 1(c) – Solution 
The only way for this to be false would be for there to exist 
elements of A that make the hypothesis true and the 
conclusion false.  
 

That is, there would have to be elements x, y, and z in A 
such that (x, y) ∈ T and (y, z) ∈ T and (x, z)    T. 
 

In other words, there would have to be two ordered pairs in 
T that have the potential to “link up” by having the second 
element of one pair be the first element of the other pair. 
 

But the only elements in T are (0, 1) and (2, 3), and these 
do not have the potential to link up. Hence the hypothesis is 
never true. It follows that it is impossible for T not to be 
transitive, and thus T is transitive. 

cont’d 
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Properties of Relations on  
Infinite Sets 
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Properties of Relations on Infinite Sets 
Suppose a relation R is defined on an infinite set A. To 
prove the relation is reflexive, symmetric, or transitive, first 
write down what is to be proved.  
For instance, for symmetry you need to prove that 
 
                           ∀ x, y ∈ A, if x R y then y R x. 
 
Then use the definitions of A and R to rewrite the statement 
for the particular case in question. For instance, for the 
“equality” relation on the set of real numbers, the rewritten 
statement is 
 
                           ∀ x, y ∈ R, if x = y then y = x. 



40 

Properties of Relations on Infinite Sets 

Sometimes the truth of the rewritten statement will be 
immediately obvious (as it is here).  
 
At other times you will need to prove it using the method of 
generalizing from the generic particular. 
  
We begin with the relation of equality, one of the simplest 
and yet most important relations. 
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Example 2 – Properties of Equality 
Define a relation R on R (the set of all real numbers) as 
follows: For all real numbers x and y. 
 
 
 
a. Is R reflexive?  
 
b. Is R symmetric?  
 
c. Is R transitive? 
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Example 2(a) – Solution 
R is reflexive: R is reflexive if, and only if, the following 
statement is true: 
 

                             For all x ∈ R, x R x.  
 

Since x R x just means that x = x, this is the same as 
saying 
 

                             For all x ∈ R, x = x. 
 

But this statement is certainly true; every real number is 
equal to itself. 
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Example 2(b) – Solution 
R is symmetric: R is symmetric if, and only if, the following 
statement is true: 
 
                        For all x, y ∈ R, if x R y then y R x. 
 
By definition of R, x R y means that x = y and y R x means 
that y = x. Hence R is symmetric if, and only if, 
 
                        For all x, y ∈ R, if x = y then y = x. 
 
But this statement is certainly true; if one number is equal 
to a second, then the second is equal to the first. 

cont’d 
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Example 2(c) – Solution 
R is transitive: R is transitive if, and only if, the following 
statement is true: 
 
             For all x, y, z ∈ R, if x R y and y R z then x R z. 
 
By definition of R, x R y means that x = y, y R z means that 
y = z, and x R z means that x = z. Hence R is transitive if, 
and only if, the following statement is true: 
 
            For all x, y, z ∈ R, if x = y and y = z then x = z. 
 
But this statement is certainly true: If one real number 
equals a second and the second equals a third, then the 
first equals the third. 

cont’d 
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Example 4 – Properties of Congruence Modulo 3 

Define a relation T on Z (the set of all integers) as follows: 
For all integers m and n, 
 
 
 
This relation is called congruence modulo 3. 
 
a. Is T reflexive?  
 
b. Is T symmetric?  
 
c. Is T transitive? 
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Example 4(a) – Solution 
T is reflexive: To show that T is reflexive, it is necessary to 
show that 
 

                             For all m ∈ Z,       m T m. 
 

By definition of T, this means that 
 

                             For all m ∈ Z,        3 | (m – m). 
 

Or, since m – m = 0,       For all m ∈ Z,    3 | 0. 
 

But this is true: 3 | 0 since 0 = 3 � 0. Hence T is reflexive. 
This reasoning is formalized in the following proof. 
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Example 4(b) – Solution 
T is symmetric: To show that T is symmetric, it is 
necessary to show that 
 
                    For all m, n ∈ Z,  if m T n then n T m. 
 
By definition of T this means that 
 
              For all m, n ∈ Z, if 3 | (m – n) then 3 | (n – m). 
 
Is this true? Suppose m and n are particular but arbitrarily 
chosen integers such that 3 | (m – n).  
 
Must it follow that 3 | (n – m)? [In other words, can we find 
an integer so that n – m = 3 � (that integer)?] 

cont’d 
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Example 4(b) – Solution 
By definition of “divides,” since 
 

                               3 | (m – n), 
 

      then                 m – n = 3k            for some integer k. 
 

The crucial observation is that n – m = –(m – n). Hence, 
you can multiply both sides of this equation by –1 to obtain 
 

                                  –(m – n) = –3k, 
 

which is equivalent to    n – m = 3(–k). 
 

[Thus we have found an integer, namely –k, so that  
n – m = 3 � (that integer).] 

cont’d 
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Example 4(b) – Solution 
Since –k is an integer, this equation shows that 
 

                               3 | (n – m). 
 

It follows that T is symmetric. 
 
The reasoning is formalized in the following proof. 

cont’d 
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Example 4(c) – Solution 
T is transitive: To show that T is transitive, it is necessary 
to show that 
 

         For all m, n, p ∈ Z, if m T n and n T p then m T p. 
 

By definition of T this means that 
 

         For all m, n ∈ Z,     
                          if 3 | (m – n) and 3 | (n – p) then 3 | (m – p). 
 

Is this true? Suppose m, n, and p are particular but 
arbitrarily chosen integers such that 3 | (m – n) and  
3 | (n – p).  
 

Must it follow that 3 | (m – p)? [In other words, can we find 
an integer so that m – p = 3 � (that integer)?] 

cont’d 
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Example 4(c) – Solution 
By definition of “divides,” since 
 

                      3 | (m – n) and 3 | (n – p), 
 

then          m – n = 3r          for some integer r, 
 

and           n – p = 3s          for some integer s. 
 

The crucial observation is that (m – n) + (n – p) = m – p. 
 

Add these two equations together to obtain 
 

                     (m – n) + (n – p) = 3r + 3s, 
 

which is equivalent to m – p = 3(r + s). 
[Thus we have found an integer so that m – p = 3 � (that 
integer).] 

cont’d 
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Example 4(c) – Solution 
Since r and s are integers, r + s is an integer. So this 
equation shows that 
                                     3 | (m – p). 
 
It follows that T is transitive. 
 
The reasoning is formalized in the following proof.    

cont’d 
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The Transitive Closure of a 
Relation 
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The Transitive Closure of a Relation 

Generally speaking, a relation fails to be transitive because 
it fails to contain certain ordered pairs.  
 
For example, if (1, 3) and (3, 4) are in a relation R, then the 
pair (1, 4) must be in R if R is to be transitive.  
 
To obtain a transitive relation from one that is not transitive, 
it is necessary to add ordered pairs. 
 
Roughly speaking, the relation obtained by adding the least 
number of ordered pairs to ensure transitivity is called the 
transitive closure of the relation. 
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The Transitive Closure of a Relation 

In a sense made precise by the formal definition, the 
transitive closure of a relation is the smallest transitive 
relation that contains the relation. 
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Example 5 – Transitive Closure of a Relation 

Let A = {0, 1, 2, 3} and consider the relation R defined on A 
as follows: 
                        R = {(0, 1), (1, 2), (2, 3)}. 

 

Find the transitive closure of R. 
 
Solution: 
         Every ordered pair in R is in R 

t, so 
 

                 {(0, 1), (1, 2), (2, 3)} ⊆ R 

t. 
 
Thus the directed graph of R 

t contains  
the arrows shown at the right. 
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Example 5 – Solution 
Since there are arrows going from 0 to 1 and from 1 to 2,  
R 

t must have an arrow going from 0 to 2.  
 

Hence (0, 2) ∈ R 

t. Then (0, 2) ∈ R 

t and (2, 3) ∈ R 

t, so since 
R 

t is transitive, (0, 3) ∈ R 

t.  
 

Also, since (1, 2) ∈ R 

t and (2, 3) ∈ R 

t, then (1, 3) ∈ R 

t. 
 

Thus R 

t contains at least the following ordered pairs: 
 

           {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. 
 

But this relation is transitive; hence it  
equals R 

t. Note that the directed graph  
of R 

t is as shown at the right. 

cont’d 


