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Direct Proof and Counterexample I: Introduction 

Both discovery and proof are integral parts of problem 
solving. When you think you have discovered that a certain 
statement is true, try to figure out why it is true. 
 
If you succeed, you will know that your discovery is 
genuine. Even if you fail, the process of trying will give you 
insight into the nature of the problem and may lead to the 
discovery that the statement is false. 
 
“Details are crucial”: writing a proof forces us to be aware of 
weakness in our arguments and on unconscious 
assumptions. 



4 

Direct Proof and Counterexample I: Introduction 
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Definitions 
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Definitions – Even Vs. Odd 

In order to evaluate the truth or falsity of a statement, you 
must understand what the statement is about. In other 
words, you must know the meanings of all terms that occur 
in the statement.  
 
Mathematicians define terms very carefully and precisely 
and consider it important to learn definitions virtually word 
for word. 
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Example 1 – Even and Odd Integers 

Use the definitions of even and odd to justify your answers 
to the following questions. 
 
a. Is 0 even? 
b. Is −301 odd? 
c. If a and b are integers, is 6a2b even? 
d. If a and b are integers, is 10a + 8b + 1 odd? 
e. Is every integer either even or odd? 
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Example 1 – Solution 
Solution: 
a. Yes, 0 = 2·0. 
 

b. Yes, –301 = 2(–151) + 1. 
 

c. Yes, 6a2b = 2(3a2b), and since a and b are integers, so 
is 3a2b (being a product of integers). 

 

d. Yes, 10a + 8b + 1 = 2(5a + 4b) + 1, and since a and b 
are integers, so is 5a + 4b (being a sum of products of 
integers). 

 

e. The answer is yes, although the proof is not obvious.  

cont’d 
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Definitions – Prime Numbers 
The integer 6, which equals 2 � 3, is a product of two smaller 
positive integers.  
 

On the other hand, 7 cannot be written as a product of two 
smaller positive integers; its only positive factors are 1 and 7. 
A positive integer, such as 7, that cannot be written as a 
product of two smaller positive integers is called prime. 
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Example 2 – Prime and Composite Numbers 

a. Is 1 prime? 
b. Is every integer greater than 1 either prime or    

composite? 
c. Write the first six prime numbers. 
d. Write the first six composite numbers. 
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Example 2 – Solution 
  Solution: 
a. No. A prime number is required to be greater than 1. 
 

b. Yes. Let n be any integer that is greater than 1. Consider 
all pairs of positive integers r and s such that n = rs. 
There exist at least two such pairs, namely r = n and  
s = 1 and r = 1 and s = n. 

  Moreover, since n = rs, all such pairs satisfy the  
  inequalities 1 ≤ r ≤ n and 1 ≤ s ≤ n. If n is prime, then the  
  two displayed pairs are the only ways to write n as rs. 
  Otherwise, there exists a pair of positive integers r and s  
  such that n = rs and neither r nor s equals either 1 or n.  
  Therefore, in this case 1 < r < n and 1 < s < n, and hence  
  n is composite. 
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c. 2, 3, 5, 7, 11, 13 
 
d. 4, 6, 8, 9, 10, 12 
 

Example 2 – Solution cont’d 
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Proving Existential Statements 
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Proving Existential Statements 
A statement in the form 
                         ∃x ∈ D such that Q(x) 
is true if and only if, 
                   Q(x) is true for at least one x in D. 
 
One way to prove this is to find an x in D that makes Q(x) 
true: called constructive proofs of existence. 
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Example 3 – Constructive Proofs of Existence 

a. Prove the following: ∃ an even integer n that can be 
written in two ways as a sum of two prime numbers. 

 
b. Suppose that r and s are integers. Prove the following: 

∃ an integer k such that 22r + 18s = 2k. 
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Example 3 – Solution 
Solution: 
a. Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5, and 7 are  

    all prime numbers. 
 
b. Let k = 11r + 9s. 
Then k is an integer because it is a sum of products of 
integers; and by substitution, 2k = 2(11r + 9s), which equals 
22r + 18s by the distributive law of algebra. 

cont’d 
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Proving Existential Statements 
A non-constructive proof of existence involves showing 
either that : 
(a)  the existence of a value of x that makes Q(x) true is 

guaranteed by an axiom or a previously proved 
theorem, or  

(b)  the assumption that there is no such x leads to a 
contradiction. 

 
The disadvantage of a non-constructive proof is that it may 
give virtually no clue about where or how x may be found. 
Thus, constructive proofs are preferred. 
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Disproving Universal Statements 
by Counterexample 
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Disproving Universal Statements by Counterexample 

To disprove a statement means to show that it is false.  
Consider the question of disproving a statement of the form 
 
                        ∀x in D, if P(x) then Q(x). 
 
Showing that this statement is false is equivalent to 
showing that its negation is true. The negation of the 
statement is existential: 
 
                   ∃x in D such that P(x) and not Q(x). 
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But to show that an existential statement is true, we 
generally give an example, and because the example is 
used to show that the original statement is false, we call it a 
counterexample.  
Thus the method of disproof by counterexample can be 
written as follows: 

Disproving Universal Statements by Counterexample 
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Example 4 – Disproof by Counterexample 

Disprove the following statement by finding a 
counterexample: 
          ∀ real numbers a and b, if a2 = b2 then a = b. 
Solution: 
To disprove this statement, you need to find real numbers a 
and b such that the hypothesis a2 = b2 is true and the 
conclusion a = b is false.  
 

The fact that both positive and negative integers have 
positive squares helps in the search. 
 

If you flip through some possibilities in your mind, you will 
quickly see that 1 and –1 will work (or 2 and –2, or 0.5 and 
–0.5, and so forth). 
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Proving Universal Statements 
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Proving Universal Statements 
The vast majority of mathematical statements to be proved 
are universal. In discussing how to prove such statements, 
it is helpful to imagine them in a standard form: 
 
                          ∀x ∈ D, if P(x) then Q(x). 
 
Note. When D is finite or when only a finite number of 
elements satisfy P(x), such a statement can be proved by 
the method of exhaustion. 
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Proving Universal Statements 
The most powerful technique for proving a universal 
statement is one that works regardless of the size of the 
domain over which the statement is quantified. 
 
It is called the method of generalizing from the generic 
particular. Here is the idea underlying the method: 
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Example 6 – Generalizing from the Generic Particular 

At some time you may have been shown a “mathematical 
trick” like the following.  
 
You ask a person to pick any number, add 5, multiply by 4, 
subtract 6, divide by 2, and subtract twice the original 
number.  
 
Then you astound the person by announcing that their final 
result was 7. How does this “trick” work? 
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Let an empty box � or the symbol x stand for the number 
the person picks.  
Here is what happens when the person follows your 
directions: 

Example 6 – Generalizing from the Generic Particular 
cont’d 
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Thus no matter what number the person starts with, the 
result will always be 7.  
 
Note that the x in the analysis above is particular (because 
it represents a single quantity), but it is also arbitrarily 
chosen or generic (because any number whatsoever can 
be put in its place).  
 
This illustrates the process of drawing a general conclusion 
from a particular but generic object. 

cont’d 
Example 6 – Generalizing from the Generic Particular 



28 

Proving Universal Statements 
When the method of generalizing from the generic 
particular is applied to a property of the form “If P(x) then 
Q(x),” the result is the method of direct proof. 
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Example 7 – A Direct Proof of a Theorem 

Theorem. The sum of any two even integers is even. 
 
Direct Proof: 
Whenever you are presented with a statement to be 
proved, it is a good idea to ask yourself whether you 
believe it to be true.  
 
In this case you might imagine some pairs of even integers, 
say 2 + 4, 6 + 10, 12 + 12, 28 + 54, and mentally check that 
their sums are even. 
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Example 7 – Solution 
 
To prove this statement in general: we need to show that 
no matter what even integers are given, their sum is even.  
 
It is possible to represent two even numbers as 2r and 2s 
for some integers r and s. By the distributive law of algebra; 

2r + 2s = 2(r + s),  
which is even. Thus the statement is true in general. 
 

cont’d 
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Example 7 – Solution 
Remark 
One of the basic laws of logic, called existential 
instantiation, says that if you know something exists, you 
can give it a name.  
 
However, you cannot use the same name to refer to two 
different things, both of which are currently under 
discussion. 

cont’d 
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Showing That an Existential 
Statement Is False 



33 

Showing That an Existential Statement Is False 

We have known that the negation of an existential 
statement is universal.  
 
It follows that to prove an existential statement is false, you 
must prove a universal statement (its negation) is true. 
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Example 9 – Disproving an Existential Statement 

Show that the following statement is false: 
  There is a positive integer n such that n2 + 3n + 2 is prime. 
 
Solution: 
Proving that the given statement is false is equivalent to 
proving its negation is true.  
 

The negation is 
 

      For all positive integers n, n2 + 3n + 2 is not prime. 
 

Because the negation is universal, it is proved by 
generalizing from the generic particular. 
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Example 9 – Solution 
Claim: The statement “There is a positive integer n such  
            that n2 + 3n + 2 is prime” is false. 
 

Proof: 
Suppose n is any [particular but arbitrarily chosen] positive 
integer. [We will show that n2 + 3n + 2 is not prime.] 
 

We can factor n2 + 3n + 2 to obtain  
                         n2 + 3n + 2 = (n + 1)(n + 2). 
 

We also note that n + 1 and n + 2 are integers (because 
they are sums of integers) and that both n + 1 > 1 and  
n + 2 > 1 (because n ≥ 1).Thus n2 + 3n + 2 is a product of 
two integers each greater than 1, and so n2 + 3n + 2 is not 
prime. 

cont’d 
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Common Mistakes 
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Common Mistakes 
The following are some of the most common mistakes 
people make when writing mathematical proofs. 
 
1. Arguing from examples. 
    Looking at examples is one of the most helpful practices  
    a problem solver can engage in and is encouraged by all  
    good mathematics teachers.  
 
    However, it is a mistake to  think that a general  
    statement can be proved by showing it to be true for  
    some special cases. A property referred to in a universal  
    statement may be true in many instances without being  
    true in general. 
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Common Mistakes 
2. Using the same letter to mean two different things. 
    Some beginning theorem provers give a new variable the 

same name as a previously introduced variable. 
 
3. Jumping to a conclusion. 
    To jump to a conclusion means to allege the truth of 

something without giving an adequate reason. 
 

4. Circular reasoning. 
    To engage in circular reasoning means to assume what 

is to be proved; it is a variation of jumping to a 
conclusion. 
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Common Mistakes 
5. Confusion between what is known and what is still to    
    be shown. 
    A more subtle way to engage in circular reasoning  
    occurs when the conclusion to be shown is restated  
    using a variable. 
 
6. Use of any rather than some. 
    There are a few situations in which the words any and  
    some can be used interchangeably. 
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Conjecture, Proof, and Disproof 
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Conjecture, Proof, and Disproof 
More than 350 years ago, the French mathematician Pierre 
de Fermat claimed that it is impossible to find positive 
integers x, y, z with xn + yn = zn , if n is an integer that is at 
least 3. (For n = 2, the equation has many integer solutions, 
such as 32 + 42 = 52 and 52 + 122 = 132.) 
 
Fermat wrote his claim in the margin of a book, along with 
the comment “I have discovered a truly remarkable 
PROOF of this theorem which this margin is too small to 
contain.”  
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Conjecture, Proof, and Disproof 
No proof, however, was found among his papers, for what 
came to be known as Fermat’s last theorem.  The proof 
was only recently released in 1994 by Andrew Wiles, and 
formally published in 1995, after 358 years of effort by 
mathematicians.  
 
One of the oldest problems in mathematics that remains 
unsolved is the Goldbach conjecture.  

More than 250 years ago, Christian Goldbach (1690–1764) 
conjectured that every even integer greater than 2 can be 
represented as the sum of two prime numbers. 
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Conjecture, Proof, and Disproof 
Explicit computer-aided calculations have shown the 
conjecture to be true up to at least 1018. But there is a huge 
chasm between 1018 and infinity. 
 
As pointed out by James Gleick of the New York Times, 
many other plausible conjectures in number theory have 
proved false.  
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Conjecture, Proof, and Disproof 
Leonhard Euler (1707–1783), for example, proposed in the 
eighteenth century that a4 + b4 + c4 = d4 had no nontrivial 
integer number solutions. 
 
In other words, no three perfect fourth powers add up to 
another perfect fourth power. For small numbers, Euler’s 
conjecture looked good. 
 
But in 1987 a Harvard mathematician, Noam Elkies, proved 
it wrong. The smallest counterexample, found by Roger 
Frye of Thinking Machines Corporation in a long computer 
search, is 95,8004 + 217,5194 + 414,5604 = 422,4814. 


