First Order Logics as a Modelling Language

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

December 14, 2017

★ Ξ →

1 Introduction

- Well formed formulas
- Free and bounded variables

2 FOL Formalization

- Simple Sentences
- FOL Interpretation
- Formalizing Problems
 - Graph Coloring Problem

Well formed formulas Free and bounded variables

FOL Syntax

Alphabet and formation rules

- Logical symbols: $\bot, \land, \lor, \rightarrow, \neg, \forall, \exists, =$
- Non Logical symbols:

a set $c_1, ..., c_n$ of constants a set $f_1, ..., f_m$ of functional symbols a set $P_1, ..., P_m$ of relational symbols

• Terms *T* :

$$T := c_i |x_i| f_i(T, ..., T)$$

• Well formed formulas W:

$$W := T = T | P_i(T, \dots, T) | \bot | W \land W | W \lor W | W \to W | \neg W | \forall x. W | \exists x. W$$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));
- $\neg r(x, a);$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));
- $\neg r(x, a);$
- q(x, p(a), b);

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));
- $\neg r(x, a);$
- q(x, p(a), b);
- p(g(f(a), g(x, f(x))));

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));
- $\neg r(x, a);$
- q(x, p(a), b);
- p(g(f(a), g(x, f(x))));
- q(f(a), f(f(x)), f(g(f(z), g(a, b))));

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- q(a);
- *p*(*y*);
- *p*(*g*(*b*));
- $\neg r(x, a);$
- q(x, p(a), b);
- p(g(f(a), g(x, f(x))));
- q(f(a), f(f(x)), f(g(f(z), g(a, b))));
- r(a, r(a, a));

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$
- $\neg r(p(a), x);$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$
- $\neg r(p(a), x);$
- ∃*a*.*r*(*a*, *a*);

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$
- $\neg r(p(a), x);$
- ∃a.r(a, a);
- $\exists x.q(x,f(x),b) \rightarrow \forall x.r(a,x);$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$
- $\neg r(p(a), x);$
- ∃a.r(a, a);
- $\exists x.q(x,f(x),b) \rightarrow \forall x.r(a,x);$
- $\exists x.p(r(a,x));$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

- r(a,g(a,a));
- g(a,g(a,a));
- $\forall x. \neg p(x);$
- $\neg r(p(a), x);$
- ∃*a*.*r*(*a*, *a*);
- $\exists x.q(x,f(x),b) \rightarrow \forall x.r(a,x);$
- $\exists x.p(r(a,x));$
- $\forall r(x, a);$

Well formed formulas Free and bounded variables

FOL Syntax

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Exercises

- $a \rightarrow p(b);$
- $r(x,b) \rightarrow \exists y.q(y,y,y);$
- $r(x,b) \lor \neg \exists y.g(y,b);$
- $\neg y \lor p(y);$
- ¬¬p(a);
- $\neg \forall x. \neg p(x);$
- $\forall x \exists y.(r(x,y) \rightarrow r(y,x));$
- $\forall x \exists y.(r(x,y) \rightarrow (r(y,x) \lor (f(a) = g(a,x))));$

Well formed formulas Free and bounded variables

Free variables

A free occurrence of a variable x is an occurrence of x which is not bounded by a $\forall x$ or $\exists x$ quantifier.

< ∃ > <

Well formed formulas Free and bounded variables

Free variables

A free occurrence of a variable x is an occurrence of x which is not bounded by a $\forall x$ or $\exists x$ quantifier.

A variable x is free in a formula ϕ (denoted by $\phi(x)$) if there is at least a free occurrence of x in ϕ .

→ Ξ →

Well formed formulas Free and bounded variables

A free occurrence of a variable x is an occurrence of x which is not bounded by a $\forall x$ or $\exists x$ quantifier.

A variable x is free in a formula ϕ (denoted by $\phi(x)$) if there is at least a free occurrence of x in ϕ .

A variable x is bounded in a formula ϕ if it is not free.

Well formed formulas Free and bounded variables

Free variables

Non Logical symbols

constants *a*, *b*; functions f^1, g^2 ; predicates p^1, r^2, q^3 .

Examples

Find free and bounded variables in the following formulas:

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Find free and bounded variables in the following formulas:

•
$$p(x) \wedge \neg r(y, a)$$

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Find free and bounded variables in the following formulas:

•
$$p(x) \wedge \neg r(y, a)$$

•
$$\exists x.r(x,y)$$

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Find free and bounded variables in the following formulas:

•
$$p(x) \wedge \neg r(y, a)$$

- $\exists x.r(x,y)$
- $\forall x.p(x) \rightarrow \exists y. \neg q(f(x), y, f(y))$

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Find free and bounded variables in the following formulas:

- $p(x) \wedge \neg r(y, a)$
- $\exists x.r(x,y)$
- $\forall x.p(x) \rightarrow \exists y. \neg q(f(x), y, f(y))$
- $\forall x \exists y.r(x, f(y))$

Non Logical symbols

```
constants a, b; functions f^1, g^2; predicates p^1, r^2, q^3.
```

Examples

Find free and bounded variables in the following formulas:

- $p(x) \wedge \neg r(y, a)$
- $\exists x.r(x,y)$
- $\forall x.p(x) \rightarrow \exists y. \neg q(f(x), y, f(y))$
- $\forall x \exists y.r(x, f(y))$
- $\forall x \exists y.r(x, f(y)) \rightarrow r(x, y)$

Non Logical symbols

constants a, b; functions f^1, g^2 ; predicates p^1, r^2, q^3 .

Exercises

Find free and bounded variables in the following formulas:

- $\forall x.(p(x) \rightarrow \exists y. \neg q(f(x), y, f(y)))$
- $\forall x(\exists y.r(x,f(y)) \rightarrow r(x,y))$
- $\forall z.(p(z) \rightarrow \exists y.(\exists x.q(x,y,z) \lor q(z,y,x)))$
- $\forall z \exists u \exists y.(q(z, u, g(u, y)) \lor r(u, g(z, u)))$
- $\forall z \exists x \exists y (q(z, u, g(u, y)) \lor r(u, g(z, u)))$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Well formed formulas Free and bounded variables

Free variables

Intuitively..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

□ > < = > <

Well formed formulas Free and bounded variables

Free variables

Intuitively..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

• Friends(Bob, y)

/□ ▶ < 글 ▶ < 글

Well formed formulas Free and bounded variables

Free variables

Intuitively..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

• Friends(Bob, y) y free

御 と く き と く き と

э

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$

/□ ▶ < 글 ▶ < 글

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables

伺 ト イヨト イヨト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- Sum(x, 3) = 12

同 ト イ ヨ ト イ ヨ ト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- Sum(x,3) = 12 x free

・ 同 ト ・ ヨ ト ・ ヨ ト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- *Sum*(*x*, 3) = 12 *x* free
- $\exists x.(Sum(x,3) = 12)$

伺 ト く ヨ ト く ヨ ト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- *Sum*(*x*, 3) = 12 *x* free
- $\exists x.(Sum(x,3) = 12)$ no free variables

・ 同 ト ・ ヨ ト ・ ヨ ト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- *Sum*(*x*, 3) = 12 *x* free
- $\exists x.(Sum(x,3) = 12)$ no free variables
- $\exists x.(Sum(x, y) = 12)$

伺 ト く ヨ ト く ヨ ト

Intuitively ..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y. Friends(Bob, y)$ no free variables
- *Sum*(*x*, 3) = 12 *x* free
- $\exists x.(Sum(x,3) = 12)$ no free variables
- $\exists x.(Sum(x, y) = 12)$ y free

・ 同 ト ・ ヨ ト ・ ヨ ト

Simple Sentences FOL Interpretation Formalizing Problems

FOL: Intuitive Meaning

Examples

• bought(Frank, dvd)

Simple Sentences FOL Interpretation Formalizing Problems

FOL: Intuitive Meaning

Examples

bought(Frank, dvd)
 "Frank bought a dvd."

FOL: Intuitive Meaning

- bought(Frank, dvd) "Frank bought a dvd."
- $\exists x.bought(Frank, x)$

FOL: Intuitive Meaning

- bought(Frank, dvd) "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."

FOL: Intuitive Meaning

- bought(Frank, dvd) "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- $\forall x.(bought(Frank, x) \rightarrow bought(Susan, x))$

FOL: Intuitive Meaning

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."

FOL: Intuitive Meaning

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- $\forall x.bought(Frank, x) \rightarrow \forall x.bought(Susan, x)$

FOL: Intuitive Meaning

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- ∀x.bought(Frank, x) → ∀x.bought(Susan, x)
 "If Frank bought everything, so did Susan."

FOL: Intuitive Meaning

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- ∀x.bought(Frank, x) → ∀x.bought(Susan, x)
 "If Frank bought everything, so did Susan."
- $\forall x \exists y.bought(x, y)$

FOL: Intuitive Meaning

Examples

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- ∀x.bought(Frank, x) → ∀x.bought(Susan, x)
 "If Frank bought everything, so did Susan."
- $\forall x \exists y.bought(x, y)$

"Everyone bought something."

FOL: Intuitive Meaning

Examples

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- ∀x.bought(Frank, x) → ∀x.bought(Susan, x)
 "If Frank bought everything, so did Susan."
- $\forall x \exists y.bought(x, y)$

"Everyone bought something."

• $\exists x \forall y.bought(x, y)$

FOL: Intuitive Meaning

Examples

- bought(Frank, dvd)
 "Frank bought a dvd."
- ∃x.bought(Frank, x)
 "Frank bought something."
- ∀x.(bought(Frank, x) → bought(Susan, x))
 "Susan bought everything that Frank bought."
- ∀x.bought(Frank, x) → ∀x.bought(Susan, x)
 "If Frank bought everything, so did Susan."
- $\forall x \exists y.bought(x, y)$

"Everyone bought something."

• $\exists x \forall y.bought(x, y)$

"Someone bought everything."

Simple Sentences FOL Interpretation Formalizing Problems

FOL: Intuitive Meaning

Example

Which of the following formulas is a formalization of the sentence: "There is a computer which is not used by any student"

- ₹ 🖬 🕨

FOL: Intuitive Meaning

Example

Which of the following formulas is a formalization of the sentence: "There is a computer which is not used by any student"

- $\exists x.(Computer(x) \land \forall y.(\neg Student(y) \land \neg Uses(y, x)))$
- $\exists x.(Computer(x) \rightarrow \forall y.(Student(y) \rightarrow \neg Uses(y, x)))$
- $\exists x.(Computer(x) \land \forall y.(Student(y) \rightarrow \neg Uses(y, x)))$

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Common mistake ..

"Everyone studying at DIT is smart."
 ∀x.(At(x, DIT) → Smart(x))

・ 同 ト ・ ヨ ト ・ ヨ

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Common mistake ..

 "Everyone studying at DIT is smart." ∀x.(At(x, DIT) → Smart(x)) and NOT ∀x.(At(x, DIT) ∧ Smart(x))

Formalizing English Sentences in FOL

Common mistake ..

• "Everyone studying at DIT is smart." $\forall x.(At(x, DIT) \rightarrow Smart(x))$ and NOT $\forall x.(At(x, DIT) \land Smart(x))$

"Everyone studies at DIT and everyone is smart"

A 3 b

Formalizing English Sentences in FOL

Common mistake ..

- "Everyone studying at DIT is smart." ∀x.(At(x, DIT) → Smart(x)) and NOT ∀x.(At(x, DIT) ∧ Smart(x)) "Everyone studies at DIT and everyone is smart"
 "Semeans studying at DIT is smart."
- "Someone studying at DIT is smart." ∃x.(At(x, DIT) ∧ Smart(x))

- A - B - M

Formalizing English Sentences in FOL

Common mistake ..

- "Everyone studying at DIT is smart." $\forall x.(At(x, DIT) \rightarrow Smart(x))$ and NOT $\forall x.(At(x, DIT) \land Smart(x))$ "Everyone studies at DIT and everyone is smart"
- "Someone studying at DIT is smart." $\exists x.(At(x, DIT) \land Smart(x))$ and NOT $\exists x.(At(x, DIT) \rightarrow Smart(x))$

- A - B - M

Formalizing English Sentences in FOL

Common mistake ..

- "Everyone studying at DIT is smart." ∀x.(At(x, DIT) → Smart(x)) and NOT ∀x.(At(x, DIT) ∧ Smart(x)) "Everyone studies at DIT and everyone is smart"
- "Someone studying at DIT is smart."
 ∃x.(At(x, DIT) ∧ Smart(x))
 and NOT
 ∃x.(At(x, DIT) → Smart(x))
 which is true if there is anyone who is not at DIT.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Common mistake.. (2)

Quantifiers of different type do NOT commute

- 4 同 ト 4 ヨ ト 4 ヨ

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Common mistake.. (2)

Quantifiers of different type do NOT commute $\exists x \forall y.\phi$ is not the same as $\forall y \exists x.\phi$

・ 同 ト ・ ヨ ト ・ ヨ

Formalizing English Sentences in FOL

Common mistake.. (2)

Quantifiers of different type do NOT commute $\exists x \forall y.\phi$ is not the same as $\forall y \exists x.\phi$

Example

• $\exists x \forall y. Loves(x, y)$

"There is a person who loves everyone in the world."

□ > < = > <

Formalizing English Sentences in FOL

Common mistake.. (2)

Quantifiers of different type do NOT commute $\exists x \forall y.\phi$ is not the same as $\forall y \exists x.\phi$

Example

• $\exists x \forall y. Loves(x, y)$

"There is a person who loves everyone in the world."

• $\forall y \exists x.Loves(x, y)$

"Everyone in the world is loved by at least one person."

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

• All Students are smart.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

All Students are smart.
 ∀x.(Student(x) → Smart(x))

・ 同 ト ・ ヨ ト ・ ヨ

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.

/□ ▶ < 글 ▶ < 글

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)

A 10

I ≡ ▶ < </p>

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student

→ 3 → 4 3

A 10

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student
 ∃x.(Student(x) ∧ Smart(x))

/∰ ▶ < ∃ ▶

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student
 ∃x.(Student(x) ∧ Smart(x))
- Every student loves some student

/⊒ > < ∃ >

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student
 ∃x.(Student(x) ∧ Smart(x))
- Every student loves some student
 ∀x.(Student(x) → ∃y.(Student(y) ∧ Loves(x, y)))

▲ □ ▶ ▲ □ ▶ ▲

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student
 ∃x.(Student(x) ∧ Smart(x))
- Every student loves some student
 ∀x.(Student(x) → ∃y.(Student(y) ∧ Loves(x, y)))
- Every student loves some other student.

Formalizing English Sentences in FOL

Examples

- All Students are smart.
 ∀x.(Student(x) → Smart(x))
- There exists a student.
 ∃x.Student(x)
- There exists a smart student
 ∃x.(Student(x) ∧ Smart(x))
- Every student loves some student
 ∀x.(Student(x) → ∃y.(Student(y) ∧ Loves(x, y)))
- Every student loves some other student. $\forall x.(Student(x) \rightarrow \exists y.(Student(y) \land \neg(x = y) \land Loves(x, y)))$

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

• There is a student who is loved by every other student.

- ₹ 🖬 🕨

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

• There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$

< 🗇 > < 🖃 >

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student.

▲ □ ▶ ▲ □ ▶ ▲

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. Student(Bill)

▲ □ ▶ ▲ □ ▶ ▲

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. Student(Bill)
- Bill takes either Analysis or Geometry (but not both).

A (10) < (10) < (10) </p>

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. *Student*(*Bill*)
- Bill takes either Analysis or Geometry (but not both). Takes(Bill, Analysis) ↔ ¬Takes(Bill, Geometry)

A (1) > (1) = (1) (1)

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. Student(Bill)
- Bill takes either Analysis or Geometry (but not both). Takes(Bill, Analysis) ↔ ¬Takes(Bill, Geometry)
- Bill takes Analysis and Geometry.

・ 同 ト ・ ヨ ト ・ ヨ

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. Student(Bill)
- Bill takes either Analysis or Geometry (but not both). Takes(Bill, Analysis) ↔ ¬Takes(Bill, Geometry)
- Bill takes Analysis and Geometry. Takes(Bill, Analysis) ∧ Takes(Bill, Geometry)

- 4 同 ト 4 ヨ ト 4 ヨ

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. *Student*(*Bill*)
- Bill takes either Analysis or Geometry (but not both). Takes(Bill, Analysis) ↔ ¬Takes(Bill, Geometry)
- Bill takes Analysis and Geometry. Takes(Bill, Analysis) ∧ Takes(Bill, Geometry)
- Bill doesn't take Analysis.

- 4 同 ト 4 ヨ ト 4 ヨ

Examples

- There is a student who is loved by every other student. $\exists x.(Student(x) \land \forall y.(Student(y) \land \neg(x = y) \rightarrow Loves(y, x)))$
- Bill is a student. Student(Bill)
- Bill takes either Analysis or Geometry (but not both). Takes(Bill, Analysis) ↔ ¬Takes(Bill, Geometry)
- Bill takes Analysis and Geometry. Takes(Bill, Analysis) ∧ Takes(Bill, Geometry)
- Bill doesn't take Analysis.
 ¬*Takes*(*Bill*, *Analysis*)

- 4 同 🕨 - 4 目 🕨 - 4 目

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

• No students love Bill.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister.
 ∀x∀y.(SisterOf(x, Bill) ∧ SisterOf(y, Bill) → x = y)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister.
 ∀x∀y.(SisterOf(x, Bill) ∧ SisterOf(y, Bill) → x = y)
- Bill has (exactly) one sister.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister. $\forall x \forall y.(SisterOf(x, Bill) \land SisterOf(y, Bill) \rightarrow x = y)$
- Bill has (exactly) one sister. $\exists x.(SisterOf(x, Bill) \land \forall y.(SisterOf(y, Bill) \rightarrow x = y))$

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister. $\forall x \forall y.(SisterOf(x, Bill) \land SisterOf(y, Bill) \rightarrow x = y)$
- Bill has (exactly) one sister. $\exists x.(SisterOf(x, Bill) \land \forall y.(SisterOf(y, Bill) \rightarrow x = y))$
- Bill has at least two sisters.

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

- No students love Bill.
 ¬∃x.(Student(x) ∧ Loves(x, Bill))
- Bill has at least one sister.
 ∃x.SisterOf(x, Bill)
- Bill has no sister.
 ¬∃x.SisterOf(x, Bill)
- Bill has at most one sister. $\forall x \forall y.(SisterOf(x, Bill) \land SisterOf(y, Bill) \rightarrow x = y)$
- Bill has (exactly) one sister. $\exists x.(SisterOf(x, Bill) \land \forall y.(SisterOf(y, Bill) \rightarrow x = y))$
- Bill has at least two sisters.
 ∃x∃y.(SisterOf(x, Bill) ∧ SisterOf(y, Bill) ∧ ¬(x = y))

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

• Every student takes at least one course.

< 同 ▶

æ

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))

< 17 ▶

-

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry.

< 同 ▶

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry.
 ∃x.(Student(x) ∧ Failed(x, Geometry) ∧ ∀y.(Student(y) ∧ Failed(y, Geometry) → x = y))

< 17 ▶

- ∢ ≣ ▶

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry.
 ∃x.(Student(x) ∧ Failed(x, Geometry) ∧ ∀y.(Student(y) ∧ Failed(y, Geometry) → x = y))
- No student failed Geometry but at least one student failed Analysis.

< 67 ▶

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry. $\exists x.(Student(x) \land Failed(x, Geometry) \land \forall y.(Student(y) \land Failed(y, Geometry) \rightarrow x = y))$
- No student failed Geometry but at least one student failed Analysis.

 $\neg \exists x.(Student(x) \land Failed(x, Geometry)) \land \exists x.(Student(x) \land Failed(x, Analysis))$

▲□ ► < □ ► </p>

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry.
 ∃x.(Student(x) ∧ Failed(x, Geometry) ∧ ∀y.(Student(y) ∧ Failed(y, Geometry) → x = y))
- No student failed Geometry but at least one student failed Analysis.

 $\neg \exists x.(Student(x) \land Failed(x, Geometry)) \land \exists x.(Student(x) \land Failed(x, Analysis))$

• Every student who takes Analysis also takes Geometry.

A (1) > A (2) > A

Examples

- Every student takes at least one course.
 ∀x.(Student(x) → ∃y.(Course(y) ∧ Takes(x, y)))
- Only one student failed Geometry.
 ∃x.(Student(x) ∧ Failed(x, Geometry) ∧ ∀y.(Student(y) ∧ Failed(y, Geometry) → x = y))
- No student failed Geometry but at least one student failed Analysis.

 $\neg \exists x.(Student(x) \land Failed(x, Geometry)) \land \exists x.(Student(x) \land Failed(x, Analysis))$

Every student who takes Analysis also takes Geometry.
 ∀x.(Student(x) ∧ Takes(x, Analysis) → Takes(x, Geometry))

Formalizing English Sentences in FOL

Exercises

Define an appropriate language and formalize the following sentences in FOL:

- someone likes Mary.
- nobody likes Mary.
- nobody loves Bob but Bob loves Mary.
- if David loves someone, then he loves Mary.
- if someone loves David, then he (someone) loves also Mary.
- everybody loves David or Mary.

▲ □ ▶ ▲ □ ▶ ▲

Exercises

Define an appropriate language and formalize the following sentences in FOL:

- there is at least one person who loves Mary.
- there is at most one person who loves Mary.
- there is exactly one person who loves Mary.
- there are exactly two persons who love Mary.
- if Bob loves everyone that Mary loves, and Bob loves David, then Mary doesn't love David.
- Only Mary loves Bob.

A (10) < (10) < (10) </p>

Formalizing English Sentences in FOL

Example

Define an appropriate language and formalize the following sentences in FOL:

- "A is above C, D is on E and above F."
- "A is green while C is not."
- "Everything is on something."
- "Everything that has nothing on it, is free."
- "Everything that is green is free."
- "There is something that is red and is not free."
- "Everything that is not green and is above B, is red."

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.

▲ □ ▶ ▲ □ ▶ ▲

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.

Example

"A is above C, D is above F and on E."
 φ₁ : Above(A, C) ∧ Above(E, F) ∧ On(D, E)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

Example

- "A is above C, D is above F and on E."
 φ₁: Above(A, C) ∧ Above(E, F) ∧ On(D, E)
- "A is green while C is not." ϕ_2 : Green(A) $\wedge \neg$ Green(C)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

Example

- "A is above C, D is above F and on E."
 φ₁: Above(A, C) ∧ Above(E, F) ∧ On(D, E)
- "A is green while C is not." ϕ_2 : Green(A) $\land \neg$ Green(C)
- "Everything is on something."
 φ₃ : ∀x∃y.On(x, y)

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

Example

- "A is above C, D is above F and on E."
 φ₁: Above(A, C) ∧ Above(E, F) ∧ On(D, E)
- "A is green while C is not." ϕ_2 : Green(A) $\land \neg$ Green(C)
- "Everything is on something."
 φ₃ : ∀x∃y.On(x, y)
- "Everything that has nothing on it, is free." $\phi_4: \forall x.(\neg \exists y.On(y,x) \rightarrow Free(x))$

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: $On^2, Above^2, Free^1, Red^1, Green^1$.

Example

• "Everything that is green is free." $\phi_5: \forall x.(Green(x) \rightarrow Free(x))$

- **→** → **→**

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: $On^2, Above^2, Free^1, Red^1, Green^1$.

Example

- "Everything that is green is free." $\phi_5: \forall x.(Green(x) \rightarrow Free(x))$
- "There is something that is red and is not free." $\phi_6: \exists x.(Red(x) \land \neg Free(x))$

Simple Sentences FOL Interpretation Formalizing Problems

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

Example

- "Everything that is green is free." $\phi_5: \forall x.(Green(x) \rightarrow Free(x))$
- "There is something that is red and is not free." $\phi_6: \exists x.(Red(x) \land \neg Free(x))$
- "Everything that is not green and is above B, is red." $\phi_7: \forall x.(\neg Green(x) \land Above(x, B) \rightarrow Red(x))$

- 4 同 🕨 🖌 4 目 🖌 4 目

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.

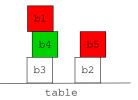
- **→** → **→**

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.

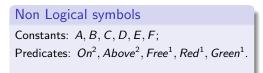


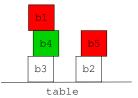
▲ □ ▶ ▲ □ ▶ ▲

э

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World





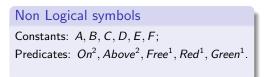
.⊒ . ►

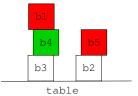
Interpretation \mathcal{I}_1

• $\mathcal{I}_1(A) = b_1$, $\mathcal{I}_1(B) = b_2$, $\mathcal{I}_1(C) = b_3$, $\mathcal{I}_1(D) = b_4$, $\mathcal{I}_1(E) = b_5$, $\mathcal{I}_1(F) = table$

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World



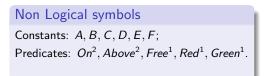


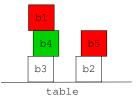
▲ 同 ▶ → 三 ▶

- $\mathcal{I}_1(A) = b_1$, $\mathcal{I}_1(B) = b_2$, $\mathcal{I}_1(C) = b_3$, $\mathcal{I}_1(D) = b_4$, $\mathcal{I}_1(E) = b_5$, $\mathcal{I}_1(F) = table$
- $\mathcal{I}_1(On) = \{ \langle b_1, b_4 \rangle, \langle b_4, b_3 \rangle, \langle b_3, table \rangle, \langle b_5, b_2 \rangle, \langle b_2, table \rangle \}$

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World



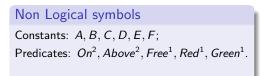


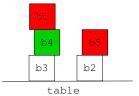
- 4 同 ト 4 ヨ ト 4 ヨ

- $\mathcal{I}_1(A) = b_1$, $\mathcal{I}_1(B) = b_2$, $\mathcal{I}_1(C) = b_3$, $\mathcal{I}_1(D) = b_4$, $\mathcal{I}_1(E) = b_5$, $\mathcal{I}_1(F) = table$
- $\mathcal{I}_1(On) = \{ \langle b_1, b_4 \rangle, \langle b_4, b_3 \rangle, \langle b_3, table \rangle, \langle b_5, b_2 \rangle, \langle b_2, table \rangle \}$
- $\mathcal{I}_1(Above) = \{ \langle b_1, b_4 \rangle, \langle b_1, b_3 \rangle, \langle b_1, table \rangle, \langle b_4, b_3 \rangle, \langle b_4, table \rangle, \langle b_3, table \rangle, \langle b_5, b_2 \rangle, \langle b_5, table \rangle, \langle b_2, table \rangle \}$

Simple Sentences FOL Interpretation Formalizing Problems

An interpretation \mathcal{I}_1 in the Blocks World





< 日 > < 同 > < 三 > < 三 >

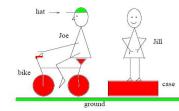
- $\mathcal{I}_1(A) = b_1$, $\mathcal{I}_1(B) = b_2$, $\mathcal{I}_1(C) = b_3$, $\mathcal{I}_1(D) = b_4$, $\mathcal{I}_1(E) = b_5$, $\mathcal{I}_1(F) = table$
- $\mathcal{I}_1(On) = \{ \langle b_1, b_4 \rangle, \langle b_4, b_3 \rangle, \langle b_3, table \rangle, \langle b_5, b_2 \rangle, \langle b_2, table \rangle \}$
- $\mathcal{I}_1(Above) = \{ \langle b_1, b_4 \rangle, \langle b_1, b_3 \rangle, \langle b_1, table \rangle, \langle b_4, b_3 \rangle, \langle b_4, table \rangle, \langle b_3, table \rangle, \langle b_5, b_2 \rangle, \langle b_5, table \rangle, \langle b_2, table \rangle \}$
- $\mathcal{I}_1(Free) = \{ \langle b_1 \rangle, \langle b_5 \rangle \}, \mathcal{I}_1(Green) = \{ \langle b_4 \rangle \}, \mathcal{I}_1(Red) = \{ \langle b_1 \rangle, \langle b_5 \rangle \}$

Simple Sentences FOL Interpretation Formalizing Problems

A different interpretation \mathcal{I}_2

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.



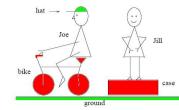
- ● ● ●

Simple Sentences FOL Interpretation Formalizing Problems

A different interpretation \mathcal{I}_2

Non Logical symbols

Constants: A, B, C, D, E, F; Predicates: $On^2, Above^2, Free^1, Red^1, Green^1$.



Interpretation \mathcal{I}_2

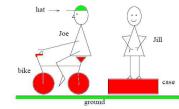
• $\mathcal{I}_2(A) = hat$, $\mathcal{I}_2(B) = Joe$, $\mathcal{I}_2(C) = bike$, $\mathcal{I}_2(D) = Jill$, $\mathcal{I}_2(E) = case$, $\mathcal{I}_2(F) = ground$

Simple Sentences FOL Interpretation Formalizing Problems

A different interpretation \mathcal{I}_2

Non Logical symbols

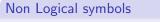
Constants: A, B, C, D, E, F; Predicates: $On^2, Above^2, Free^1, Red^1, Green^1$.



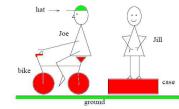
- $\mathcal{I}_2(A) = hat$, $\mathcal{I}_2(B) = Joe$, $\mathcal{I}_2(C) = bike$, $\mathcal{I}_2(D) = Jill$, $\mathcal{I}_2(E) = case$, $\mathcal{I}_2(F) = ground$
- $\mathcal{I}_2(On) = \{ \langle hat, Joe \rangle, \langle Joe, bike \rangle, \langle bike, ground \rangle, \langle Jill, case \rangle, \langle case, ground \rangle \}$

Simple Sentences FOL Interpretation Formalizing Problems

A different interpretation \mathcal{I}_2



Constants: A, B, C, D, E, F; Predicates: On^2 , $Above^2$, $Free^1$, Red^1 , $Green^1$.

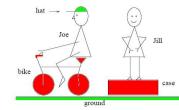


- $\mathcal{I}_2(A) = hat$, $\mathcal{I}_2(B) = Joe$, $\mathcal{I}_2(C) = bike$, $\mathcal{I}_2(D) = Jill$, $\mathcal{I}_2(E) = case$, $\mathcal{I}_2(F) = ground$
- $\mathcal{I}_2(On) = \{ \langle hat, Joe \rangle, \langle Joe, bike \rangle, \langle bike, ground \rangle, \langle Jill, case \rangle, \langle case, ground \rangle \}$
- \$\mathcal{I}_2(Above) = {\langle hat, Joe\rangle, \langle hat, bike\rangle, \langle hat, ground\rangle, \langle Joe, ground\rangle, \langle Jill, case\rangle, \langle Jill, ground\rangle, \langle case, ground\rangle }

Simple Sentences FOL Interpretation Formalizing Problems

A different interpretation \mathcal{I}_2

Constants: A, B, C, D, E, F; Predicates: $On^2, Above^2, Free^1, Red^1, Green^1$.



- $\mathcal{I}_2(A) = hat$, $\mathcal{I}_2(B) = Joe$, $\mathcal{I}_2(C) = bike$, $\mathcal{I}_2(D) = Jill$, $\mathcal{I}_2(E) = case$, $\mathcal{I}_2(F) = ground$
- $\mathcal{I}_2(On) = \{ \langle hat, Joe \rangle, \langle Joe, bike \rangle, \langle bike, ground \rangle, \langle Jill, case \rangle, \langle case, ground \rangle \}$
- \$\mathcal{I}_2(Above) = {\langle hat, Joe\rangle, \langle hat, bike\rangle, \langle hat, ground\rangle, \langle Joe, ground\rangle, \langle Jill, case\rangle, \langle Jill, ground\rangle, \langle case, ground\rangle }
- $\mathcal{I}_2(Free) = \{ \langle hat \rangle, \langle Jill \rangle \}, \mathcal{I}_2(Green) = \{ \langle hat \rangle, \langle ground \rangle \},$ $\mathcal{I}_2(Red) = \{ \langle bike \rangle, \langle case \rangle \}$

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

For each of the following formulas, decide whether they are satisfied by \mathcal{I}_1 and/or $\mathcal{I}_2:$

- ϕ_1 : Above(A, C) \land Above(E, F) \land On(D, E)
- ϕ_2 : Green(A) $\land \neg$ Green(C)
- $\phi_3: \forall x \exists y. On(x, y)$
- $\phi_4: \forall x.(\neg \exists y.On(y,x) \rightarrow Free(x))$
- $\phi_5: \forall x.(Green(x) \rightarrow Free(x))$
- ϕ_6 : $\exists x.(Red(x) \land \neg Free(x))$
- ϕ_7 : $\forall x.(\neg Green(x) \land Above(x, B) \rightarrow Red(x))$

▲ □ ▶ ▲ □ ▶ ▲

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

For each of the following formulas, decide whether they are satisfied by \mathcal{I}_1 and/or $\mathcal{I}_2:$

- ϕ_1 : Above(A, C) \land Above(E, F) \land On(D, E)
- ϕ_2 : Green(A) $\land \neg$ Green(C)
- $\phi_3: \forall x \exists y. On(x, y)$
- $\phi_4: \forall x.(\neg \exists y.On(y,x) \rightarrow Free(x))$
- $\phi_5: \forall x.(Green(x) \rightarrow Free(x))$
- ϕ_6 : $\exists x.(Red(x) \land \neg Free(x))$
- ϕ_7 : $\forall x.(\neg Green(x) \land Above(x, B) \rightarrow Red(x))$

Sol.

- $\mathcal{I}_1 \models \neg \phi_1 \land \neg \phi_2 \land \neg \phi_3 \land \phi_4 \land \neg \phi_5 \land \neg \phi_6 \land \phi_7$
- $\mathcal{I}_2 \models \phi_1 \land \phi_2 \land \neg \phi_3 \land \phi_4 \land \neg \phi_5 \land \phi_6 \land \phi_7$

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- (1) All actors and journalists invited to the party are late.
- (2) There is at least a person who is on time.
- (3) There is at least an invited person who is neither a journalist nor an actor.

Formalize the sentences and prove that (3) is not a logical consequence of (1) and (2)

▲□ ► ▲ □ ► ▲

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

• All actors and journalists invited to the party are late.

- 4 同 ト 4 ヨ ト 4 ヨ

э

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 - (1) $\forall x.((a(x) \lor j(x)) \land i(x) \to l(x))$

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.

▲ □ ▶ ▲ □ ▶ ▲

-

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.
 (2) ∃x.¬I(x)

- 4 同 ト 4 ヨ ト 4 ヨ

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.
 (2) ∃x.¬I(x)
- There is at least an invited person who is neither a journalist nor an actor.

▲□ ► < □ ► </p>

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.
 (2) ∃x.¬I(x)
- There is at least an invited person who is neither a journalist nor an actor.
 (3) ∃x.(i(x) ∧ ¬a(x) ∧ ¬j(x))

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.
 (2) ∃x.¬l(x)
- There is at least an invited person who is neither a journalist nor an actor.
 (3) ∃x.(i(x) ∧ ¬a(x) ∧ ¬j(x))

It's sufficient to find an interpretation ${\mathcal I}$ for which the logical consequence does not hold:

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
 (1) ∀x.((a(x) ∨ j(x)) ∧ i(x) → l(x))
- There is at least a person who is on time.
 (2) ∃x.¬l(x)
- There is at least an invited person who is neither a journalist nor an actor.
 (3) ∃x.(i(x) ∧ ¬a(x) ∧ ¬j(x))

It's sufficient to find an interpretation $\ensuremath{\mathcal{I}}$ for which the logical consequence does not hold:

	l(x)	a(x)	j(x)	i(x)
Bob	F	Т	F	F
Tom	Т	Т	F	Т
Mary	Т	F	Т	Т

Simple Sentences FOL Interpretation Formalizing Problems

FOL Satisfiability

Exercise

Let $\Delta = \{1, 3, 5, 15\}$ and \mathcal{I} be an interpretation on Δ interpreting the predicate symbols E^1 as 'being even', M^2 as 'being a multiple of' and L^2 as 'being less then', and s.t. $\mathcal{I}(a) = 1, \mathcal{I}(b) = 3, \mathcal{I}(c) = 5, \mathcal{I}(d) = 15$. Determine whether \mathcal{I} satisfies the following formulas:

 $\begin{array}{lll} \exists y.E(y) & \forall x.\neg E(x) & \forall x.M(x,a) & \forall x.M(x,b) & \exists x.M(x,d) \\ \exists x.L(x,a) & \forall x.(E(x) \rightarrow M(x,a)) & \forall x \exists y.L(x,y) & \forall x \exists y.M(x,y) \\ \forall x.(M(x,b) \rightarrow L(x,c)) & \forall x \forall y.(L(x,y) \rightarrow \neg L(y,x)) \\ \forall x.(M(x,c) \lor L(x,c)) & \end{array}$

- 4 同 2 4 回 2 4 U

3

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring Problem

Provide a propositional language and a set of axioms that formalize the graph coloring problem of a graph with at most n nodes, with connection degree $\leq m$, and with less then k + 1 colors.

- node degree: number of adjacent nodes
- connection degree of a graph: max among all the degree of its nodes
- Graph coloring problem: given a non-oriented graph, associate a color to each of its nodes in such a way that no pair of adjacent nodes have the same color.

A (1) > (1) = (1)

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

• A unary function color, where color(x) is the color associated to the node x

▲ □ ▶ ▲ □ ▶ ▲

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node

・ 一 ・ ・ ・ ・ ・ ・

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node
- A binary predicate edge, where edge(x, y) means that x is connected to y

▲ □ ▶ ▲ □ ▶ ▲

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node
- A binary predicate edge, where edge(x, y) means that x is connected to y

FOL Axioms

Two connected node are not equally colored:

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node
- A binary predicate edge, where edge(x, y) means that x is connected to y

FOL Axioms

Two connected node are not equally colored: $\forall x \forall y.(edge(x, y) \rightarrow (color(x) \neq color(y))$

(1)

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node
- A binary predicate edge, where edge(x, y) means that x is connected to y

FOL Axioms

Two connected node are not equally colored:

 $\forall x \forall y. (\mathsf{edge}(x, y) \to (\mathsf{color}(x) \neq \mathsf{color}(y)) \tag{1}$

A node does not have more than k connected nodes:

Simple Sentences FOL Interpretation Formalizing Problems

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where color(x) is the color associated to the node x
- A unary predicate node, where node(x) means that x is a node
- A binary predicate edge, where edge(x, y) means that x is connected to y

FOL Axioms

Two connected node are not equally colored:

$$\forall x \forall y.(\mathsf{edge}(x, y) \to (\mathsf{color}(x) \neq \mathsf{color}(y)) \tag{1}$$

A node does not have more than k connected nodes:

$$\forall x \forall x_1 \dots \forall x_{k+1} . \left(\bigwedge_{h=1}^{k+1} \operatorname{edge}(x, x_h) \to \bigvee_{i, j=1, j \neq i}^{k+1} x_i = x_j \right)$$
(2)

୨୯୯

Graph Coloring: Propositional Formalization

Prop. Language

- For each 1 ≤ i ≤ n and 1 ≤ c ≤ k, color_{ic} is a proposition, which intuitively means that "the i-th node has the c color"
- For each 1 ≤ i ≠ j ≤ n, edge_{ij} is a proposition, which intuitively means that "the i-th node is connected with the j-th node".

Prop. Axioms

- for each 1 ≤ i ≤ n, V^k_{c=1} color_{ic}
 "each node has at least one color"
- for each 1 ≤ i ≤ n and 1 ≤ c, c' ≤ k, color_{ic} → ¬color_{ic'} "every node has at most 1 color"
- for each $1 \le i, j \le n$ and $1 \le c \le k$, $edge_{ij} \to \neg(color_{ic} \land color_{jc})$ "adjacent nodes do not have the same color"
- for each $1 \leq i \leq n$, and each $J \subseteq \{1..n\}$, where |J| = m, $\bigwedge_{j \in J} edge_{ij} \rightarrow \bigwedge_{j \notin J} \neg edge_{ij}$ "every node has at most *m* connected nodes"

Luciano Serafini First Order Logics as a Modelling Language

200