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@ We can already do a lot with propositional logic.

@ But it is unpleasant that we cannot access the structure of
atomic sentences.

e Atomic formulas of propositional logic are too atomic — they
are just statement which may be true or false but which
have no internal structure.

@ In First Order Logic (FOL) the atomic formulas are
interpreted as statements about relationships between
objects.
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Predicates and Constants

Let's consider the statements:

e Mary is female
John is male
Mary and John are siblings
In propositional logic the above statements are atomic
propositions:
@ Mary-is-female
John-is-male
Mary-and-John-are-siblings
In FOL atomic statements use , with constants as
argument:
@ Female(mary)
Male (john)
Siblings (mary, john)
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Variables and Quantifiers

Let's consider the statements:
e Fverybody is male or female
o A male is not a female

In FOL, predicates may have variables as arguments, whose
value is bounded by quantifiers:

@ Vx. Male(x)V Female(x)

@ Vx. Male(x) — —~Female(x)

Deduction (why?):
e Mary is not male

o —Male(mary)
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Functions

Let's consider the statement:
@ The father of a person is male

In FOL objects of the domain may be denoted by functions
applied to (other) objects:

@ Vx. Male(father(x))
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Syntax of FOL: Terms and Atomic Sentences

Countably infinite supply of symbols (signature):

@ variable symbols: x,y,z, ...
n-ary function symbols: f, g, h, ...
abc,...
n-ary predicate symbols: P, Q, R, ...

Terms: t — X variable

] d constant

| f(tr,..., tn) function application
Ground terms: terms that do not contain variables
Formulas: ¢ — P(t1,..., tn) atomic formulas

E.g, Brother(kingJohn, richardThelLionheart)
> (length(leftLegOf (richard)), length(leftLegOf (kingJohn)))
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Syntax of FOL Formulas

Formulas: ¢, ¢ — P(t1,...

E.g.

1
T
¢
AP
oV Y
b=
b
Vx. ¢
dx. ¢

 tn)

atomic formulas

false

true

negation

conjunction

disjunction

implication

equivalence

universal quantification
existential quantification

Fveryone in England is smart:  Vx. In(x, england) — Smart(x)
Someone in France is smart: 3x. In(x, france) N\ Smart(x)
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Grounding FOL Formulas

@ A ground term is a term which does not contain any variable.
E.g., succ(1,2) is a ground function.

@ A ground atomic formula is an atomic formula, all of whose
terms are ground.
E.g. Sibling(kingJohn, richard) is a ground atom.

@ A ground literal is a ground atomic formula or the negation
of one.

e A ground formula is a quantifier-free formula all of whose
atomic formulas are ground.
Eg.,
Sibling(kingJohn, richard) — Sibling(richard, kingJohn).
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Summary of Syntax of FOL

@ Terms

e variables

e constants

e functions
o Literals

e atomic formulas

e relation (predicate)

e negation of atomic formulas

@ Well formed formulas

e truth-functional connectives
e existential and universal quantifiers
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Semantics of FOL: Intuitions

@ Just like in propositional logic, a (complex) FOL formula may
be true (or false) with respect to a given interpretation.

@ An interpretation specifies for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

@ An atomic sentence P(ty, ..., t;) is true in a given
interpretation
iff
the objects referred to by ti, ..., t, are in the relation

referred to by the predicate P.

@ An interpretation in which a formula is true is called a
model for the formula.
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Models for FOL: Example

oblects %% NV

relations: sets of tuples of objects

(0, 6L,

functional relations: all tuples of objects + "value" object

(00, L0,
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Semantic of FOL: Interpretations

Interpretation: Z = (D, ) where D is an arbitrary non-empty
set and 7 is a function that maps

@ individual constants to elements of D:
aebD

@ n-ary function symbols to functions over D:
1 € D" — D|

@ n-ary predicate symbols to relation over D:
P C D"
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Semantic of FOL: Ground Terms and Atoms

Interpretation of ground terms:

fltn, .t = Al t7) (€D)
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Examples

D {dl """" dp, n > 1}
bl =
Block! = {dl}
Red! = D
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Examples

D {dl ..... dp, n > 1}
bl =
Block! = {dl}
Red! = D
T | Red(b)

Z K Block(b)
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Examples

D {dr,..., dp,n > 1}

ol = d

bl =

Block! = {dl}
Red’ = D D - (123 )

Z | Red(b) 11 - 1

I { Block(b) I = 2
Even! = {246, ..}
succ? = {(1—2),2~23),..}
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Examples

D
oz
s

Block?
Red”

=

d>
1
o,
1I
Red (b)
21
Block(b)
Event
succt
T
T

i

{1,2,3,...}
1
2
{2.4,6,...}

{1—2),2~3),...}
Even(3)
Even(succ(3))
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Semantics of FOL: Variable Assignments

Let V' be the set of all variables. A Variable Assignment is a

function a: V' — D.
Notation: a[x/d]is a variable assignment identical to a except
for the variable x mapped to d.

Interpretation of terms under Z, a:

xB = ax)
aZ,or _ aI
f(tr, ... t)F9 = fHte 19

Satisfiability of atomic formulas:

T a |: P(tl, o tn) iff <t11,0(’ o tnI’a> c pI
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Variable Assignment example

D {d, ..., dp, n > 1}
a = d
v =
Block! = {di}
Red? = D

I,a [ Red(x)
T, dly/dy] = Block(y)
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Semantics of FOL: Satisfiability of formulas

A formula ¢ is satisfied by (is true in) an interpretation Z under
a variable assignment @, in symbols Z, a |= ¢

T,ak Pt ..., t) it (nle tat?) € P*
T,aE~¢ H T, afo
T,aEoNYy it Z,aE=dandZ al= ¢
T,aE=opVvy it T, aE¢orZ al=y
I,al=Vx. ¢ iff forall deD:

I, alx/dl = ¢
T,ak=3x. ¢ iff thereexistsa d e D:
Z,ax/d] = ¢
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Examples

D = {d,  .d}n>1
L = d
b = d,
I = &
Block? = {di}
Red” = D
a = {x—d) (y— d)}

@ Z. o= Block(c) V -Block(c)?
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Examples

D = {d,  .d}n>1
L = d
b = d,
I = &
Block? = {di}
Red” = D
a = {x—d) (y— d)}

@ Z. o= Block(c) V -Block(c)?
@ 7. a=Block(x) — Block(x) VBlock(y)?
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Examples

D = {d,....dy}n>1
al = d
vt = d
g =
Block! = {di}
Red? = D
a = {@x—d) ([y— )}

@ Z. o= Block(c) V -Block(c)?
@ 7. a=Block(x) — Block(x) VBlock(y)?
© 7 al=Vx. Block(x) — Red(x)?
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Examples

Block?
Red?

a

{d,....dy,} n>1
dr

dy

e

{ai}

D

{x— di) (y— )}

@ Z. o= Block(c) V -Block(c)?
@ 7. a=Block(x) — Block(x) VBlock(y)?
© 7 al=Vx. Block(x) — Red(x)?

00|
I,akE=©?

Block(a), Block(b)
Vx (Block(x) — Red(x))
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Example

Find a model of the formula:

y. [ Py) A =Qly) [AVz.[ P(z) V Q(z) |
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Example

Find a model of the formula:

y. [ Py) A =Qly) [AVz.[ P(z) V Q(z) |

Possible Solution.

A = {a, b}
Pt = {a}
Q" = {b}
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Satisfiability and Validity

An interpretation Z is a model of ¢ under «, if
T, ak=o.

Similarly as in propositional logic, a formula ¢ can be
satisfiable, unsatisfiable, falsifiable or valid—the definition is in
terms of the pair (Z, a).

A formula ¢ is

@ satisfiable, if there is some (Z, a) that satisfies ¢;
e unsatisfiable, if ¢ is not satisfiable;
e valid (i.e, a tautology), if every (Z, a) is a model of ¢;

o falsifiable, if there is some (Z, @) that does not satisfy ¢.
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Equivalence

Analogously, two formulas are logically equivalent (¢ = ), if for
all (Z, a) we have:

T,aE¢ if T,aly

Note: P(x) = P(y)!
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Free and Bound Variables

vx. R(yl,[z) A Ty (-P(y,x) V R(y,[z])))

Variables in boxes are free; other variables are bound.

Definition. The free variables of a formula are inductively
defined over the structure of formulas (structural induction):

free(x)

free(

{x}
0
free(t1) U ... Ufree(ty)

free(t1) U ... Ufree(ty)

(

(
free(¢)
free(¢p) U free(y)), * =V, A, ...
free(¢) — {x}
(¢)

free(¢p) — {x}
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Open and Closed Formulas

@ A formula is closed or a sentence if no free variables occurs
in it. Viceversa, the formula is said open.

@ Note: For closed formulas, the properties logical
equivalence, satisfiability, entailment etc. do not depend on
variable assignments: If the property holds for one variable
assignment then it holds for all of them. Thus,

e For closed formulas, the symbol a on the left hand side of
the "=" sign is omitted:

IE®

Note: Unless specified, in the following we consider closed
formulas.
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Entailment

Entailment is defined similarly as in propositional logic.

Definition. The formula ¢ is logically implied by a formula ¢, if
¢ is true in all models of ¢/ (symbolically, ¢ = ¢):

Y=o iff Ik ¢, forall models Z of ¢
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More Exercises

° |=Vx. (P(x)V =P(x))

Logic: First Order Logic (Part I)



More Exercises

e = ¥x. (P(x)V =P(x))
e Idx. [ P(X) A (P(x) = Q(x)) | = Ix. Q(x)
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More Exercises

e = ¥x. (P(x)V =P(x))
e Idx. [ P(X) A (P(x) = Q(x)) | = Ix. Q(x)
o |= ~[Ex.¥y. (Plx) = Qly)) ]
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More Exercises

° = ¥x. (P(x)V ﬂP(x))

e Ix. [ P(x) A (P(x) = QX)) | = Ix. Q(x)

o - -[x.Wy. (PKX) — ( )]

e dy. [ Ply)AN=Q(y) |AVz.] P(z) V Q(z) | satisfiable
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Equality

Equality is a special predicate.

Definition. Given two terms, ti, tp, t1 = t» is true under a given
interpretation, Z, a |= t; = tp, if and only if t; and t, refer to the
same object:

tll,a _ tQI,a

Consider the following examples:

Vx. (x(sqrt(x), sqrt(x)) = x), is satisfiable

2 =2 is valid
Definition of (full) Sibling in terms of Parent:
Vx,y.Sibling(x,y) <
(~(x =y)Adm, f.=~(m = f) A Parent(m, x) A Parent(f, x) A

Parent(m, y) N\ Parent(f,y) )
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Universal quantification

@ Everyone in England is smart:
Vx. Livesin(x, england) — Smart(x)

° is equivalent to the conjunction of all possible
instantiations of x in ¢:

Livesin(kingJohn, england) — Smart(kingJohn)
A Livesin(richard, england) — Smart(richard)
A Livesin(england, england) — Smart(england)
A

@ Note. Typically, — is the main connective with V.
Common mistake: using A as the main connective with V:

Vx. Livesin(x, england) A Smart(x)

means “Everyone lives in England and everyone is smart”
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Existential quantification

@ Someone in France is smart:
dx. Livesin(x, france) A Smart(x)

° is equivalent to the disjunction of all possible
instantiations of x in ¢:

Livesin(kingJohn, france) A Smart(kingJohn)
V' Livesin(richard, france) \ Smart(richard)
V  Livesin(france, france) A\ Smart(france)
V

@ Note. Typically, A is the main connective with 4.
Common mistake: using — as the main connective with =

dx. Livesin(x, france) — Smart(x)

is true if there is anyone who is not in France!
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Logical Equivalences in FOL

Commutativity
o (Vx.Vy. ) = (Vy.Vx. ¢)
o (Ix.dy.¢) = (dy.3Ix. ¢)
@ (Ix.Vy. ) # (Vy.3dx. 9)
V and 3 commute only in one direction
o = (Ix.Vy.¢) — (Vy.3Ix. 9)
Ix.Vy. Loves(x, y)
“There is a person who loves everyone in the world", then
Vy.3dx. Loves(x, y)
‘Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other.

@ Vx. Likes(x, iceCream) = —~3x. ~Likes(x, iceCream)
@ dx. Likes(x, broccoli) = -~V x. - Likes(x, broccoli)
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Logical Equivalences in FOL (cont.)

Quantification distributes if the variable is not free.

L
X
S
<
<
I
L
X

V distributes over A - 3 distributes over Vv

VX (ONY) = VXx.oNVX Y
Ix. (¢ V ) Ix. oV Ix Y
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Logical Equivalences in FOL (cont.)

Quantification over Implication.

Vx. (o — Y(x)) = ¢ — Vx. (x) if x is not free in ¢
Vx. (d(x) = @) = (Fx. d(x)) = ¢ if x is not free in ¢
3 (B1x) = dix)) = (Fx. Dx) — Zx. (x))
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Exercises

Show the following:

@ Vx.¢ = 3dx. ¢ (De Morgan)

e —~dx.¢ = Vx.~¢ (De Morgan)

o [~ (Yy.3x. ¢) — (Ix.Vy. p)

o EVx.oVVx.(y— ¥x(¢V )

° = Vx(pV ) = Vx.pVVx.

o =3Ix(pAY) = Ix.opAIx. Y

o H=Ix.oAIx. Y — Ix(P A Y)

o |= (Fx. (x) = Vx. (x)) = Vx(d(x) = (X))
(Ix. Pp(x) = Ix. Y(x))
(Vx. p(x) — Ix. Y(x))

o | Vx($(x) > i)

o = Vx(¢(x) = ¢lx)) —
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The Prenex Normal Form

Quantifier prefix + (quantifier free) matrix

VxiVxodxs ... VXxp¢

@ Elimination of — and <

@ push - inwards

@ pull quantifiers outwards

Eg ~Vx. (7 p(x)) = q(x)
~x. (2(Vx. p(x)) V q(x))
Fx. ((Vx. p(x)) A ~q(x))
and now?

Let ¢[x/t] be the formula ¢
where all occurrences of x have been replaced by the term t.
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The Prenex Normal Form: Theorem

Lemma. Let y be a variable that does not occur in ¢.
Then we have ¥x¢ = (Vxo¢)[x/y| and Ix¢ = (Ixp)[x/y].

Theorem. There is an algorithm that computes for every formula
its equivalent prenex normal form:

@ Rename bound variables:

@ Eliminate — and «;

@ Push - inwards;

@ Extract quantifiers outwards.
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The Prenex Normal Form: Example

Original formula

Rename bound variables
Eliminate — and <

Push = inwards

Extract quantifiers outwards

IxVy. p(x, y) — Vy3Ix.p(x, y)

IxVy.p(x,y) = Vw3z. p(z, w)
-3IxVy. p(x, y) vV VYw3z. p(z, w)
Vx3dy. =p(x,y)VVw3z. p(z, w)
Vx3dyVw3z. -p(x,y) V p(z, w)
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FOL at work: reasoning by cases

© = FRIEND(john,susan) A
FRIEND(john,andrea) A
LOVES (susan,andrea) A
LOVES (andrea,bill) A
Female(susan) A

-Female(bill)
john
FRIEN/ \\RIEND
andrea «——— LOVES susan: Female
lLOVES

bill: —Female
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FOL at work: reasoning by cases (cont.)

john
FRI%Ta//// \\\\\STIEND
andrea LOVES susan: Female

LOVES

bill: -—Female

Entailment: Does John have a female friend loving a male (ie.,
not female) person?
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FOL at work: reasoning by cases (cont.)

john
FRI%Ta//// \\\\\STIEND
andrea LOVES susan: Female

lLOVES

bill: -—Female

Entailment: Does John have a female friend loving a male (ie.,
not female) person?

YES!

03X, Y.
FRIEND(john, X) A Female(X) A LOVES(X, Y) A -Female(Y)
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FOL at work: reasoning by cases (cont.)

In all models where andrea is not a Female, then:

john
FRIEN/ \\I::?IENI)
[-Female] andrea LQ& susan: Female
LOVES

bill: —Female

FRIEND(john,susan), Female(susan),
LOVES (susan,andrea), —Female(andrea)
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FOL at work: reasoning by cases (cont.)

In all models where andrea is a Female, then:

john

FRIEND'/ wmwn
LOVES

[Female] andrea <«  susan: Female
LOVES

bill: =Female

FRIEND(john,andrea), Female(andrea),
LOVES (andrea,bill), - Female(bill)

Logic: First Order Logic (Part I)



Theories and Models

©1 = FRIEND(john, susan) A
FRIEND(john, andrea) A
LOVES(susan, andrea) A
LOVES(andrea, bill) A
Female(susan) A
Male(bill) A
VX. Male(X) <> —Female(X)

john

FRIffE;/// \\\\\iTIEND
LOVES

andrea <——— susan: Female
LOVES

bill: Male Male= —Female
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Theories and Models (cont.)

john
FRIEV \RIEND
andrea LDVES susan: Female
l LOVES
bill: Male Male= —Female

Entailment: Does John have a female friend loving a male
person?

0 = 3X, Y.
FRIEND(john, X) A Female(X) A LOVES(X, Y) A Male(Y)
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Theories and Models (cont.)

© = FRIEND(john,susan) A
FRIEND(john,andrea) A
LOVES (susan,andrea) A
LOVES (andrea,bill) A
Female(susan) A
-Female(bill)

©; = FRIEND(john, susan) A
FRIEND(john, andrea) A
LOVES(susan, andrea) A
LOVES(andrea, bill) A
Female(susan) A
Male(bill) A
VX. Male(X) <> —Female(X)
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Theories and Models (cont.)

© = FRIEND(john,susan) A
FRIEND(john,andrea) A
LOVES (susan,andrea) A
LOVES (andrea,bill) A
Female(susan) A
-Female(bill)

A = {john, susan, andrea, bill}
Female®l = {susan}

©; = FRIEND(john, susan) A
FRIEND(john, andrea) A
LOVES(susan, andrea) A
LOVES(andrea, bill) A
Female(susan) A
Male(bill) A
VX. Male(X) <> —Female(X)
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Theories and Models (cont.)

© = FRIEND(john,susan) A
FRIEND(john,andrea) A
LOVES (susan,andrea) A
LOVES (andrea,bill) A
Female(susan) A
-Female(bill)

©; = FRIEND(john, susan) A
FRIEND(john, andrea) A
LOVES(susan, andrea) A
LOVES(andrea, bill) A
Female(susan) A
Male(bill) A
VX. Male(X) <> —Female(X)

A = {john, susan, andrea, bill}
Female®l = {susan}

AT = {john, susan, andrea, bill}
Femalell = {susan, andrea}
Male’t = {bill, john}

A2 = {john, susan, andrea, bill}
Female’2 = {susan}
Male’ = {bill, andrea, john}

ATl = {john, susan, andrea, bill}
Femalel! = {susan, andrea, john}
Male”t = {bill}

A2 = {john, susan, andrea, bill}
Female’? = {susan, john}
Male’ = {bill, andrea}
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Theories and Models (cont.)

The following entailments hold:

O |~ Female(andrea)
O [ —Female(andrea)

O; - Female(andrea)
O; [ ~Female(andrea)
O1 = Male(andrea)

©1 = "Male(andrea)
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Exercise

.

Is it true that the top block is on a white block touching a black
block?
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