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Motivation
We can already do a lot with propositional logic.But it is unpleasant that we cannot access the structure ofatomic sentences.Atomic formulas of propositional logic are too atomic – theyare just statement which may be true or false but whichhave no internal structure.In First Order Logic (FOL) the atomic formulas areinterpreted as statements about relationships between
objects.
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Predicates and Constants
Let’s consider the statements:

Mary is female
John is male
Mary and John are siblingsIn propositional logic the above statements are atomicpropositions:
Mary-is-female
John-is-male
Mary-and-John-are-siblingsIn FOL atomic statements use predicates, with constants asargument:
Female(mary)
Male(john)
Siblings(mary,john)
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Variables and Quantifiers
Let’s consider the statements:

Everybody is male or female
A male is not a femaleIn FOL, predicates may have variables as arguments, whosevalue is bounded by quantifiers:
∀x. Male(x) ∨ Female(x)
∀x. Male(x)→ ¬Female(x)

Deduction (why?):
Mary is not male
¬Male(mary)
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Functions

Let’s consider the statement:
The father of a person is maleIn FOL objects of the domain may be denoted by functionsapplied to (other) objects:
∀x. Male(father(x))

Alessandro Artale Logic: First Order Logic (Part I)



Syntax of FOL: Terms and Atomic Sentences
Countably infinite supply of symbols (signature):variable symbols: x , y , z , . . .

n-ary function symbols: f , g, h, . . .individual constants: a, b, c , . . .
n-ary predicate symbols: P,Q,R, . . .

Terms: t → x variable
| a constant
| f (t1, . . . , tn) function application

Ground terms: terms that do not contain variables
Formulas: φ → P(t1, . . . , tn) atomic formulas
E.g., Brother (kingJohn, richardTheLionheart)

> (length(leftLegOf (richard )), length(leftLegOf (kingJohn)))
Alessandro Artale Logic: First Order Logic (Part I)



Syntax of FOL Formulas
Formulas: φ,ψ → P(t1, . . . , tn) atomic formulas

| ⊥ false
| > true
| ¬φ negation
| φ ∧ ψ conjunction
| φ ∨ ψ disjunction
| φ → ψ implication
| φ ↔ ψ equivalence
| ∀x . φ universal quantification
| ∃x . φ existential quantification

E.g. Everyone in England is smart: ∀x . In(x , england )→ Smart(x )Someone in France is smart: ∃x . In(x , france) ∧ Smart(x )
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Grounding FOL Formulas
A ground term is a term which does not contain any variable.E.g., succ(1, 2) is a ground function.A ground atomic formula is an atomic formula, all of whoseterms are ground.E.g., Sibling(kingJohn, richard ) is a ground atom.A ground literal is a ground atomic formula or the negationof one.A ground formula is a quantifier-free formula all of whoseatomic formulas are ground.E.g.,
Sibling(kingJohn, richard )→ Sibling(richard , kingJohn).
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Summary of Syntax of FOL
TermsvariablesconstantsfunctionsLiteralsatomic formulasrelation (predicate)negation of atomic formulasWell formed formulastruth-functional connectivesexistential and universal quantifiers
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Semantics of FOL: Intuitions
Just like in propositional logic, a (complex) FOL formula maybe true (or false) with respect to a given interpretation.An interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relationsAn atomic sentence P(t1, . . . , tn) is true in a giveninterpretation iffthe objects referred to by t1, . . . , tn are in the relationreferred to by the predicate P .An interpretation in which a formula is true is called a
model for the formula.
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Models for FOL: Example
objects

relations: sets of tuples of objects

< < < <{
, , , , . .. {

functional relations: all tuples of objects + "value" object

< < < <{
, , , , . .. {
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Semantic of FOL: Interpretations
Interpretation: I = 〈D, ·I〉 where D is an arbitrary non-emptyset and I is a function that mapsindividual constants to elements of D:

aI ∈ D
n-ary function symbols to functions over D:
f I ∈ [Dn → D]
n-ary predicate symbols to relation over D:
PI ⊆ Dn
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Semantic of FOL: Ground Terms and Atoms
Interpretation of ground terms:

f (t1, . . . , tn)I = f I (t1I , . . . , tnI ) (∈ D)
Satisfaction of ground atoms P(t1, . . . , tn):

I |= P(t1, . . . , tn) iff 〈t1I , . . . , tnI〉 ∈ PI
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Examples
D = {d1, . . . , dn, n > 1}
aI = d1
bI = d2

BlockI = {d1}
RedI = D

I |= Red(b)
I 6|= Block(b)

D = {1, 2, 3, . . .}
1I = 1
2I = 2...

EvenI = {2, 4, 6, . . .}
succI = {(1 7→ 2), (2 7→ 3), . . .}

I 6|= Even(3)
I |= Even(succ(3))
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Semantics of FOL: Variable Assignments
Let V be the set of all variables. A Variable Assignment is afunction α : V → D.
Notation: α [x /d ] is a variable assignment identical to α exceptfor the variable x mapped to d .Interpretation of terms under I, α :

xI,α = α(x )
aI,α = aI

f (t1, . . . , tn)I,α = f I (t1I,α , . . . , tnI,α )
Satisfiability of atomic formulas:

I, α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI
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Variable Assignment example
D = {d1, . . . , dn, n > 1}
aI = d1
bI = d2

BlockI = {d1}
RedI = D
α = {(x 7→ d1), (y 7→ d2)}
I, α |= Red(x)

I, α [y/d1] |= Block(y)
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Semantics of FOL: Satisfiability of formulas
A formula φ is satisfied by (is true in) an interpretation I undera variable assignment α , in symbols I, α |= φ

I, α |= P(t1, . . . , tn) iff 〈t1I,α , . . . , tnI,α〉 ∈ PI

I, α |= ¬φ iff I, α 6|= φ
I, α |= φ ∧ ψ iff I, α |= φ and I, α |= ψ
I, α |= φ ∨ ψ iff I, α |= φ or I, α |= ψ
I, α |= ∀x . φ iff for all d ∈ D :

I, α [x /d ] |= φ
I, α |= ∃x . φ iff there exists a d ∈ D :

I, α [x /d ] |= φ
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Examples
D = {d1, . . . , dn, } n > 1

aI = d1

bI = d1

cI = d2

BlockI = {d1}
RedI = D
α = {(x 7→ d1), (y 7→ d2)}

1 I, α |= Block(c) ∨ ¬Block(c)?

2 I, α |= Block(x)→ Block(x) ∨ Block(y)?
3 I, α |= ∀x. Block(x)→ Red(x)?
4 Θ = {

Block(a), Block(b)
∀x (Block(x)→ Red(x))

}
I, α |= Θ?
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Example
Find a model of the formula:

∃y . [ P(y ) ∧ ¬Q(y ) ] ∧ ∀z . [ P(z ) ∨Q(z ) ]

Possible Solution.∆ = {a, b}
PI = {a}
QI = {b}

Alessandro Artale Logic: First Order Logic (Part I)



Example
Find a model of the formula:

∃y . [ P(y ) ∧ ¬Q(y ) ] ∧ ∀z . [ P(z ) ∨Q(z ) ]
Possible Solution.∆ = {a, b}
PI = {a}
QI = {b}

Alessandro Artale Logic: First Order Logic (Part I)



Satisfiability and Validity
An interpretation I is a model of φ under α , if

I, α |= φ.

Similarly as in propositional logic, a formula φ can be
satisfiable, unsatisfiable, falsifiable or valid—the definition is interms of the pair (I, α).A formula φ is

satisfiable, if there is some (I, α) that satisfies φ;
unsatisfiable, if φ is not satisfiable;
valid (i.e., a tautology), if every (I, α) is a model of φ;
falsifiable, if there is some (I, α) that does not satisfy φ.
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Equivalence

Analogously, two formulas are logically equivalent (φ ≡ ψ), if forall (I, α) we have:
I, α |= φ iff I, α |= ψ

Note: P(x) 6≡ P(y)!
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Free and Bound Variables
∀x. (R( y , z ) ∧ ∃ y. (¬P(y,x) ∨ R(y, z )))Variables in boxes are free; other variables are bound.

Definition. The free variables of a formula are inductivelydefined over the structure of formulas (structural induction):free(x ) = {x}free(a) = ∅free(f (t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)free(P(t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)free(¬φ) = free(φ)free(φ ∗ ψ) = free(φ) ∪ free(ψ), ∗ = ∨,∧, . . .free(∀x . φ) = free(φ)− {x}free(∃x . φ) = free(φ)− {x}
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Open and Closed Formulas
A formula is closed or a sentence if no free variables occursin it. Viceversa, the formula is said open.
Note: For closed formulas, the properties logical
equivalence, satisfiability, entailment etc. do not depend onvariable assignments: If the property holds for one variableassignment then it holds for all of them. Thus,For closed formulas, the symbol α on the left hand side ofthe “|=” sign is omitted:

I |= φ

Note: Unless specified, in the following we consider closedformulas.
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Entailment

Entailment is defined similarly as in propositional logic.
Definition. The formula φ is logically implied by a formula ψ, if
φ is true in all models of ψ (symbolically, ψ |= φ):

ψ |= φ iff I |= φ, for all models I of ψ
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More Exercises

|= ∀x . (P(x ) ∨ ¬P(x ))

∃x . [ P(x ) ∧ (P(x )→ Q(x )) ] |= ∃x . Q(x )
|= ¬[∃x .∀y . ( P(x )→ Q(y ) ) ]
∃y . [ P(y ) ∧ ¬Q(y ) ] ∧ ∀z . [ P(z ) ∨Q(z ) ] satisfiable
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Equality
Equality is a special predicate.
Definition. Given two terms, t1, t2, t1 = t2 is true under a giveninterpretation, I, α |= t1 = t2, if and only if t1 and t2 refer to thesame object:

t1I,α = t2I,αConsider the following examples:
∀x . (∗(sqrt(x ), sqrt(x )) = x ), is satisfiable
2 = 2, is validDefinition of (full) Sibling in terms of Parent :

∀x , y . Sibling(x , y )↔(¬(x = y ) ∧ ∃m, f .¬(m = f ) ∧ Parent(m, x ) ∧ Parent(f , x ) ∧
Parent(m, y ) ∧ Parent(f , y ) )
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Universal quantification
Everyone in England is smart:
∀x . LivesIn(x , england )→ Smart(x )(∀x . φ) is equivalent to the conjunction of all possible
instantiations of x in φ:

LivesIn(kingJohn, england )→ Smart(kingJohn)
∧ LivesIn(richard , england )→ Smart(richard )
∧ LivesIn(england , england )→ Smart(england )
∧ . . .

Note. Typically, → is the main connective with ∀.Common mistake: using ∧ as the main connective with ∀:
∀x . LivesIn(x , england ) ∧ Smart(x )

means “Everyone lives in England and everyone is smart”
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Existential quantification
Someone in France is smart:
∃x . LivesIn(x , france) ∧ Smart(x )(∃x . φ) is equivalent to the disjunction of all possible
instantiations of x in φ:

LivesIn(kingJohn, france) ∧ Smart(kingJohn)
∨ LivesIn(richard , france) ∧ Smart(richard )
∨ LivesIn(france, france) ∧ Smart(france)
∨ . . .

Note. Typically, ∧ is the main connective with ∃.Common mistake: using → as the main connective with ∃:
∃x . LivesIn(x , france)→ Smart(x )

is true if there is anyone who is not in France!
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Logical Equivalences in FOL
Commutativity(∀x .∀y .φ) ≡ (∀y .∀x .φ)(∃x .∃y .φ) ≡ (∃y .∃x .φ)(∃x .∀y .φ) 6≡ (∀y .∃x .φ)
∀ and ∃ commute only in one direction

|= (∃x .∀y .φ)→ (∀y .∃x .φ)
∃x .∀y . Loves(x , y )“There is a person who loves everyone in the world”, then
∀y .∃x . Loves(x , y )“Everyone in the world is loved by at least one person”
Quantifier duality: each can be expressed using the other.

∀x . Likes(x , iceCream) ≡ ¬∃x .¬Likes(x , iceCream)
∃x . Likes(x , broccoli ) ≡ ¬∀x .¬Likes(x , broccoli )
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Logical Equivalences in FOL (cont.)
Quantification distributes if the variable is not free.

(∀x .φ) ∧ ψ ≡ ∀x . (φ ∧ ψ) if x not free in ψ(∀x .φ) ∨ ψ ≡ ∀x . (φ ∨ ψ) if x not free in ψ(∃x .φ) ∧ ψ ≡ ∃x . (φ ∧ ψ) if x not free in ψ(∃x .φ) ∨ ψ ≡ ∃x . (φ ∨ ψ) if x not free in ψ
∀ distributes over ∧ - ∃ distributes over ∨

∀x . (φ ∧ ψ) ≡ ∀x .φ ∧ ∀x .ψ
∃x . (φ ∨ ψ) ≡ ∃x .φ ∨ ∃x .ψ
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Logical Equivalences in FOL (cont.)

Quantification over Implication.

∀x . (φ → ψ(x )) ≡ φ → ∀x .ψ(x ) if x is not free in φ
∀x . (φ(x )→ ψ) ≡ (∃x .φ(x ))→ ψ if x is not free in ψ

∃x . (φ(x )→ ψ(x )) ≡ (∀x .φ(x )→ ∃x .ψ(x ))
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Exercises
Show the following:

¬∀x .φ ≡ ∃x .¬φ (De Morgan)
¬∃x .φ ≡ ∀x .¬φ (De Morgan)
6|= (∀y .∃x .φ)→ (∃x .∀y .φ)
|= ∀x .φ ∨ ∀x .ψ → ∀x (φ ∨ ψ)
6|= ∀x (φ ∨ ψ)→ ∀x .φ ∨ ∀x .ψ
|= ∃x (φ ∧ ψ)→ ∃x .φ ∧ ∃x .ψ
6|= ∃x .φ ∧ ∃x .ψ → ∃x (φ ∧ ψ)
|= (∃x .φ(x )→ ∀x .ψ(x ))→ ∀x (φ(x )→ ψ(x ))
|= ∀x (φ(x )→ ψ(x ))→ (∃x .φ(x )→ ∃x .ψ(x ))
|= ∀x (φ(x )→ ψ(x ))→ (∀x .φ(x )→ ∃x .ψ(x ))
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The Prenex Normal Form
Quantifier prefix + (quantifier free) matrix

∀x1∀x2∃x3 . . . ∀xnφ

1 Elimination of → and ↔
2 push ¬ inwards
3 pull quantifiers outwardsE.g. ¬∀x. ((∀x. p(x))→ q(x))

¬∀x. (¬(∀x. p(x)) ∨ q(x))
∃x. ((∀x. p(x)) ∧ ¬q(x))
and now?

Definition: renaming of variables. Let φ[x /t ] be the formula φwhere all occurrences of x have been replaced by the term t .
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The Prenex Normal Form: Theorem
Lemma. Let y be a variable that does not occur in φ.Then we have ∀xφ ≡ (∀xφ)[x /y ] and ∃xφ ≡ (∃xφ)[x /y ].
Theorem. There is an algorithm that computes for every formulaits equivalent prenex normal form:

1 Rename bound variables;
2 Eliminate → and ↔;
3 Push ¬ inwards;
4 Extract quantifiers outwards.
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The Prenex Normal Form: Example

Original formula ∃x∀y . p(x , y )→ ∀y∃x . p(x , y )Rename bound variables ∃x∀y . p(x , y )→ ∀w∃z . p(z ,w )Eliminate → and ↔ ¬∃x∀y . p(x , y ) ∨ ∀w∃z . p(z ,w )Push ¬ inwards ∀x∃y .¬p(x , y ) ∨ ∀w∃z . p(z ,w )Extract quantifiers outwards ∀x∃y∀w∃z .¬p(x , y ) ∨ p(z ,w )
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FOL at work: reasoning by cases
Θ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧
LOVES(susan,andrea) ∧
LOVES(andrea,bill) ∧
Female(susan) ∧
¬Female(bill)

bill: ¬Female

andrea susan: Female

john

?

�

�
�
��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES
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FOL at work: reasoning by cases (cont.)

bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES

Entailment: Does John have a female friend loving a male (i.e.,not female) person?

YES!Θ |= ∃X ,Y .
FRIEND(john,X ) ∧ Female(X ) ∧ LOVES(X ,Y ) ∧ ¬Female(Y )
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FOL at work: reasoning by cases (cont.)

bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES

Entailment: Does John have a female friend loving a male (i.e.,not female) person? YES!Θ |= ∃X ,Y .
FRIEND(john,X ) ∧ Female(X ) ∧ LOVES(X ,Y ) ∧ ¬Female(Y )
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FOL at work: reasoning by cases (cont.)
In all models where andrea is not a Female, then:

bill: ¬Female

[¬Female] andrea susan: Female

john

?

�

�
�

��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES

FRIEND(john,susan), Female(susan),
LOVES(susan,andrea), ¬Female(andrea)
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FOL at work: reasoning by cases (cont.)
In all models where andrea is a Female, then:

bill: ¬Female

[Female] andrea susan: Female

john

?

�

�
�

��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES

FRIEND(john,andrea), Female(andrea),
LOVES(andrea,bill), ¬ Female(bill)
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Theories and Models
Θ1 = FRIEND(john, susan) ∧

FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
Male(bill) ∧
∀X . Male(X )↔ ¬Female(X )

bill: Male Male
.= ¬Female

andrea susan: Female

john

?

�

�
�
��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES
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Theories and Models (cont.)

bill: Male Male
.= ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@
@@R

FRIEND FRIEND

LOVES

LOVES

Entailment: Does John have a female friend loving a maleperson?
Θ1 |= ∃X ,Y .
FRIEND(john,X ) ∧ Female(X ) ∧ LOVES(X ,Y ) ∧ Male(Y )
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Theories and Models (cont.)
Θ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧
LOVES(susan,andrea) ∧
LOVES(andrea,bill) ∧
Female(susan) ∧
¬Female(bill)

∆ = {john, susan, andrea, bill}
FemaleI = {susan}

Θ1 = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
Male(bill) ∧
∀X . Male(X )↔ ¬Female(X )

∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea}
MaleI1 = {bill, john}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan}
MaleI2 = {bill, andrea, john}
∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea, john}
MaleI1 = {bill}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan, john}
MaleI2 = {bill, andrea}
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Theories and Models (cont.)
Θ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧
LOVES(susan,andrea) ∧
LOVES(andrea,bill) ∧
Female(susan) ∧
¬Female(bill)

∆ = {john, susan, andrea, bill}
FemaleI = {susan}

Θ1 = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
Male(bill) ∧
∀X . Male(X )↔ ¬Female(X )

∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea}
MaleI1 = {bill, john}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan}
MaleI2 = {bill, andrea, john}
∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea, john}
MaleI1 = {bill}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan, john}
MaleI2 = {bill, andrea}
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Theories and Models (cont.)
Θ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧
LOVES(susan,andrea) ∧
LOVES(andrea,bill) ∧
Female(susan) ∧
¬Female(bill)

∆ = {john, susan, andrea, bill}
FemaleI = {susan}

Θ1 = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
Male(bill) ∧
∀X . Male(X )↔ ¬Female(X )

∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea}
MaleI1 = {bill, john}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan}
MaleI2 = {bill, andrea, john}
∆I1 = {john, susan, andrea, bill}
FemaleI1 = {susan, andrea, john}
MaleI1 = {bill}
∆I2 = {john, susan, andrea, bill}
FemaleI2 = {susan, john}
MaleI2 = {bill, andrea}
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Theories and Models (cont.)
The following entailments hold:
Θ 6|= Female(andrea)Θ 6|= ¬Female(andrea)
Θ1 6|= Female(andrea)Θ1 6|= ¬Female(andrea)Θ1 6|= Male(andrea)Θ1 6|= ¬Male(andrea)
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Exercise

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

?

Is it true that the top block is on a white block touching a blackblock?
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