
Logic: Propositional Logic (Part II)

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science
http://www.inf.unibz.it/˜artale

Descrete Mathematics and Logic — BSc course

Thanks to Prof. Enrico Franconi for provoding the slides

Alessandro Artale Logic: Propositional Logic (Part II)

Decision Procedures in Logic: Soundness

A decision procedure solves a problem with yes or no answers:

KB ⊢i α

Sentence α can be derived from the set of sentences KB by
procedure i .
Soundness: procedure i is sound if
whenever procedure i proves that a sentence α can be
derived from a set of sentences KB (KB ⊢i α), then it is also
true that KB entails α (KB |= α).

“no wrong inferences are drawn”
A sound procedure may fail to find the solution in some
cases, when there is actually one.

Alessandro Artale Logic: Propositional Logic (Part II)

Decision Procedures in Logic: Completeness

A decision procedure solves a problem with yes or no answers:

KB ⊢i α

Sentence α can be derived from the set of sentences KB by
procedure i .
Completeness: procedure i is complete if
whenever a set of sentences KB entails a sentence α
(KB |= α), then procedure i proves that α can be derived
from KB (KB ⊢i α).

“all the correct inferences are drawn”
A complete procedure may claim to have found a solution in
some cases, when there is actually no solution.

Alessandro Artale Logic: Propositional Logic (Part II)

Sound and Incomplete Algorithms

Sound and incomplete algorithms are very popular: they are
considered good approximations of problem solving
procedures.
Sound and incomplete algorithms may reduce the algorithm
complexity.
Sound and incomplete algorithms are often used due to the
inability of programmers to find sound and complete
algorithms.

Alessandro Artale Logic: Propositional Logic (Part II)

Good Decision procedures

If an incomplete reasoning mechanism is provided, we can
conclude either that the semantics of the representation
language does not really capture the meaning of the “world”
and of “what should follow ”, or that the algorithms can not
infer all the things we would expect.
Having sound and complete reasoning procedures is
important!
Sound and complete decision procedures are good
candidates for implementing reasoning modules within
larger applications.

Alessandro Artale Logic: Propositional Logic (Part II)

An extreme example

Let’s consider two decision procedures:

F , which always returns the result no independently from
its input
T , which always returns the result yes independently from
its input

Let’s consider the problem of computing entailment between
formulas:

F is a sound algorithm for computing entailment.
T is a complete algorithm for computing entailment.

Alessandro Artale Logic: Propositional Logic (Part II)

An extreme example

Let’s consider two decision procedures:

F , which always returns the result no independently from
its input
T , which always returns the result yes independently from
its input

Let’s consider the problem of computing entailment between
formulas:

F is a sound algorithm for computing entailment.
T is a complete algorithm for computing entailment.

Alessandro Artale Logic: Propositional Logic (Part II)

Decision Procedures for Propositional Logic

Truth tables provide a sound and complete decision
procedure for testing satisfiability, validity, and entailment
in propositional logic.

The proof is based on the observation that truth tables
enumerate all possible models.

Satisfiability, validity, and entailment in propositional logic
are thus decidable problems.
For problems involving a large number of atomic
propositions the amount of calculation required by using
truth tables may be prohibitive (always 2n , where n is the
number of atomic proposition involved in the formulas).

Alessandro Artale Logic: Propositional Logic (Part II)

Reduction to Satisfiability

A formula ϕ is satisfiable iff there is some interpretation I
(i.e., a truth value assignment) that satisfies ϕ (i.e., ϕ is true
under I , I |= ϕ, and I is a model of ϕ).
Validity, equivalence, and entailment can be reduced to
satisfiability:

ϕ is a valid (i.e., a tautology) iff ¬ϕ is unsatisfiable.
ϕ entails ψ (ϕ |= ψ) iff ϕ → ψ is valid (deduction theorem).

ϕ |= ψ iff ϕ ∧ ¬ψ is unsatisfiable .

ϕ is equivalent to ψ (ϕ ≡ ψ) iff ϕ ↔ ψ is valid.
ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ

A sound and complete procedure deciding satisfiability is all
we need: the tableaux method is a decision procedure
which checks the existence of a model.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus

The Tableaux Calculus is a decision procedure solving the
problem of satisfiability.
If a formula is satisfiable, the procedure will constructively
exhibit a model of the formula.
The basic idea is to incrementally build the model by
looking at the formula, by decomposing it guided by its
syntactic structure into sets of literals.
The procedure exhaustively looks at all the possibilities, so
that it can eventually prove that no model could be found for
unsatisfiable formulas.

Alessandro Artale Logic: Propositional Logic (Part II)

Negation Normal Form

The tableaux calculus works only if the formula has been
translated into Negation Normal Form (NNF), i.e., all the
negations have been pushed down using De Morgan laws.

Example::
¬(A ∨ (B ∧ ¬C))
becomes
(¬A ∧ (¬B ∨ C))

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Construction

The Tableaux Calculus builds a Tree where:

The initial formula labels the root of the Tree;
Each internal node has one or two child nodes depending
on how a formula labeling the node is decomposed;
The leaves are labeled by sets of literals;
Each path in the Tree represents a possible interpretation
for the formula;
To build successor nodes in the Tree, so called completion
rules are applied;
The construction terminates when no more rules can be
applied.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Completion Rules

To build successor nodes in the Tree, so called completion rules
are applied.

ϕ ∧ ψ
ϕ
ψ

AND-rule. If a model satisfies a conjunction, then
it also satisfies each of the conjuncts. This rule
is deterministic and generates one successor node
with both ϕ and ψ.

ϕ ∨ ψ
ϕ ψ

OR-rule. If a model satisfies a disjunction, then
it also satisfies one of the disjuncts. It is a non-
deterministic rule, and it generates two alternative
branches of the tableaux.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus—Clash

Definition. For any atom p, the set {p,¬p} is a complementary
pair of literals (called also a clash).

Theorem. A set of literals is satisfiable if and only if it does not
contain a complementary pair of literals.
Proof Sketch. Let L be a set of literals. To show this theorem
consider the following interpretation:

∀p ∈ Σ,

I(p) = T if p ∈ L

I(p) = F if ¬p ∈ L

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn

♣

ManUn

♣

ManCity

♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn

♠

Chelsea

♠

ManCity

♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn♣

ManUn♣
ManCity

♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn

♠

Chelsea

♠

ManCity

♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn♣

ManUn♣
ManCity♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn

♠

Chelsea

♠

ManCity

♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn♣

ManUn♣
ManCity♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn

♠

Chelsea

♠

ManCity

♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn♣

ManUn♣
ManCity♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn♠

Chelsea ♠
ManCity ♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (I)

KB =
{ManUn ∧ ManCity,¬ManUn}

ManUn ∧ ManCity
¬ManUn♣

ManUn♣
ManCity♣

clash!

KB =
{Chelsea ∧ ManCity,¬ManUn}

Chelsea ∧ ManCity
¬ManUn♠

Chelsea ♠
ManCity ♠

completed

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn

♣

¬Chelsea

♣

¬ManUn

♣

♣

Chelsea ManUn

♣

clash! clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn

♠

¬ManUn

♣

♠

Chelsea ManUn

♣

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn

♣

¬Chelsea

♣

¬ManUn

♣

♣

Chelsea ManUn

♣

clash! clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn

♠

¬ManUn

♣

♠

Chelsea ManUn

♣

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn
♣ ¬Chelsea
♣ ¬ManUn

♣

♣ Chelsea ManUn

♣

clash!

clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn

♠

¬ManUn

♣

♠

Chelsea ManUn

♣

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn
♣ ¬Chelsea
♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn

♠

¬ManUn

♣

♠

Chelsea ManUn

♣

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn
♣ ¬Chelsea
♣ ¬ManUn ♣

♣ Chelsea ManUn ♣

clash! clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn
♠ ¬ManUn

♣

♠ Chelsea ManUn

♣

completed

clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Simple examples (II)

KB = {Chelsea ∨ ManUn,
¬Chelsea,¬ManUn}

Chelsea ∨ ManUn
♣ ¬Chelsea
♣ ¬ManUn ♣

♣ Chelsea ManUn

♣

clash! clash!

KB =
{Chelsea ∨ ManUn,¬ManUn}

Chelsea ∨ ManUn
♠ ¬ManUn ♣

♠ Chelsea ManUn ♣

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Alternative Notation

Instead of a branch with a clash and of a completed branch the
following alternative definition is also used:

Definition
Given a Tableau for a formula ϕ then:

A branch is said closed if it contains a clash; viceversa
if no more rules are applicable then a branch is said to be
open.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus
Finds a model for a given collection of sentences KB in negation
normal form.

1 The Tableaux Calculus considers the knowledge base, KB,
as the root node of a refutation tree.

2 Starting from the root, add new formulas to the tableaux,
applying the completion rules.

3 Completion rules are either deterministic—they yield a
uniquely determined successor node – or
nondeterministic—yielding several possible alternative
successor nodes (branches).

4 Apply the completion rules to each branch until either
(a) an explicit contradiction due to the presence of two
complementary literals, {p,¬p}, in a branch (a clash) is
generated (i.e., an closed branch), or
(b) there is a completed branch where no more rules are
applicable (i.e., an open branch).

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Termination

Theorem. The construction of a tableau for any formula ϕ
terminates.
Termination can be proved considering that:

Rules are applied only once to each sub-formula;
At each step the algorithm decomposes a formula into one or
two simpler formulas, i.e., rules generate strict subformulas.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Correctness

The Tableaux Calculus for Propositional Logic is Correct.

Theorem—Soundness and completeness. A formula ϕ is
satisfiable if and only if the tableaux for ϕ contains a completed
branch.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness

Soundness: If the tableaux has one completed branch then the
formula is satisfiable.

To prove Soundness we need to show that the assignment that
satisfies the set of literals labeling a completed branch can be
extended to a model of the formula labeling the root.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness (cont.)

There are four steps in the proof:
1 Define a property of formulas;
2 Show that the set of formulas in a completed branch has

this property;
3 Prove that a set of formulas with this property is satisfiable;
4 Note that the formula in the root is in the set.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness (cont.)

Step 1. Define a property of formulas.
Definition–Hintikka Set. Let Θ be a set of formulas. Then Θ is a
Hintikka set iff:

1 For all atoms p appearing in a formula of Θ, either p ̸∈ Θ or
¬p ̸∈ Θ.

2 If ϕ ∧ ψ ∈ Θ, then ϕ ∈ Θ and ψ ∈ Θ.
3 If ϕ ∨ ψ ∈ Θ, then ϕ ∈ Θ or ψ ∈ Θ.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness (cont.)

Step 2.
Lemma 1. If Θ is the union of formulas gathered on a path from
the root to a completed leaf (i.e., a branch), then Θ is a Hintikka
set.
Proof.

Since the branch is completed, no complementary pair of
literals appears in Θ, so Condition (1) holds for Θ.
Conditions (2) and (3) easily hold since the branch is
supposed to be completed, i.e., the completion rules have
been applied and no more rules can be applied.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness (cont.)

Step 3.
Lamma 2. Let Θ be a Hintikka set. Then Θ is satisfiable.

We define an interpretation, I , and then show that the
interpretation is a model of Θ.

I(p) = T if p ∈ Θ
I(p) = F if ¬p ∈ Θ
I(p) = T if p ̸∈ Θ and ¬p ̸∈ Θ

By condition (1), I is well defined.
By structural induction we can easily show that
∀ϕ ∈ Θ, I |= ϕ.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Soundness (cont.)

Step 4.
Proof of Soundness.

Assume that ϕ has a tableaux with a completed branch.
By Lemma 1, Θ, the union of formulas on the nodes of that
branch, is a Hintikka set.
By Lemma 2, we can find an interprtation I for Θ.
Since ϕ ∈ Θ, then I |= ϕ.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Completeness

Completeness: It is easier to prove the contrapositive: If the
tableaux T has a clash in every branch, then the formula is
unsatisfiable.
Proof. We will prove a more general theorem:
if Tn , the subtree rooted at node n of T , closes then the set of
formulas Θ(n) labeling n is unsatisfiable.
By induction on the height hn on the node n of the Tree Tn
generated by the Completion Rules.

Base Case. h = 0. Thus n is a leaf. Clearly a leaf is a set of
literals and if it contains a clash it is unsatisfiable.
Induction Step. By Inductive Hypothesis, for any node m
root of a tree with height hm < hn , the set of formulas, Θm ,
labeling node m is unsatisfiable if the Tree rooted at m, say
Tm , contains a clash in every branch.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus: Completeness (cont.)

Case 1. The determinist rule is applied to node n with
height hn . Then, Θn = {ϕ ∧ ψ} ∪ Θ′

n . Then,
Θn−1 = {ϕ,ψ} ∪ Θ′

n , with hn−1 < hn . Now, if Tn has a clash
in every branch so is Tn−1 and by induction Θn−1 is
unsatisfiable, i.e., for all interpretation I , either I ̸|= Θ′

n , or
I ̸|= {ϕ,ψ}. In both cases, I cannot be a model of Θn which
is then unsatisfiable.
Case 2. The non-determinist rule is applied to node n with
height hn . Then, Θn = {ϕ ∨ ψ} ∪ Θ′

n . Then,
Θ(n−1) = {ϕ} ∪ Θ′

n , and Θ(n−1)′ = {ψ} ∪ Θ′
n , with hn−1 < hn .

Now, if Tn has a clash in every branch so are the two
sub-Tree T(n−1) and T(n−1)′ and by induction Θ(n−1) and
Θ(n−1)′ are both unsatisfiable. Thus, for all interpretation I ,
either I ̸|= Θ′

n or both I ̸|= ϕ and I ̸|= ψ. In both cases, I
cannot be a model of Θn which is then unsatisfiable.

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux Calculus Vs. Models: Summary

A completed branch of the Tableaux gives a model of the
KB: the KB is satisfiable. Since all formulas have been
reduced (in the leaf) to sets of literals, it is possible to find
an interpretation which make all the sentences in the
branch true.
If there is no completed branch (i.e., every branch has a
clash), then it is not possible to find an assignment making
the original KB true: the KB is unsatisfiable. In fact, the
original formulas from which the tree is constructed can not
be true simultaneously.

Alessandro Artale Logic: Propositional Logic (Part II)

Entailment and Refutation

ϕ |= ψ iff ϕ ∧ ¬ψ is not satisfiable.
The tableaux may exhibit a counter-example (why?).
{Chelsea ∨ ManUn,¬ManUn} |=

Chelsea
(true)

Chelsea ∨ ManUn
¬Chelsea
¬ManUn

Chelsea ManUn

clash! clash!

{Chelsea ∨ ManUn} |= ManUn
(false)

Chelsea ∨ ManUn
¬ManUn

Chelsea ManUn

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Entailment and Refutation

ϕ |= ψ iff ϕ ∧ ¬ψ is not satisfiable.
The tableaux may exhibit a counter-example (why?).
{Chelsea ∨ ManUn,¬ManUn} |=

Chelsea
(true)

Chelsea ∨ ManUn
¬Chelsea
¬ManUn

Chelsea ManUn

clash! clash!

{Chelsea ∨ ManUn} |= ManUn
(false)

Chelsea ∨ ManUn
¬ManUn

Chelsea ManUn

completed clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Efficiency

The algorithm for constructing a tableau is not deterministic: at
each steps, we need to choose:

1 which leaf to extend, and
2 if the leaf contains more than one formula which is not a

literal, which formula to decompose.

Alessandro Artale Logic: Propositional Logic (Part II)

Efficiency: Euristics
1 It is better to apply first AND-rules before OR-rules to avoid

duplication: eg., try with ϕ = (p ∨ q) ∧ (¬p ∧ ¬q).
2 Closing a branch if it contains a formula and its negation,

e.g., (p ∧ (q,∨r)) Vs. ¬(p ∧ (q,∨r)).
3 Be guided by the syntax looking for conflicts, e.g., try with

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q
¬p
a ∧ b ∧ c

p
q

clash!

p ∧ q
¬p
a ∧ b ∧ c

a
b
c

p
q

clash!

Alessandro Artale Logic: Propositional Logic (Part II)

Efficiency: Euristics
1 It is better to apply first AND-rules before OR-rules to avoid

duplication: eg., try with ϕ = (p ∨ q) ∧ (¬p ∧ ¬q).
2 Closing a branch if it contains a formula and its negation,

e.g., (p ∧ (q,∨r)) Vs. ¬(p ∧ (q,∨r)).
3 Be guided by the syntax looking for conflicts, e.g., try with

KB = p ∧ q,¬p, a ∧ b ∧ c

p ∧ q
¬p
a ∧ b ∧ c

p
q

clash!

p ∧ q
¬p
a ∧ b ∧ c

a
b
c

p
q

clash!
Alessandro Artale Logic: Propositional Logic (Part II)

Efficiency: Euristics
1 It is better to apply first AND-rules before OR-rules to avoid

duplication: eg., try with ϕ = (p ∨ q) ∧ (¬p ∧ ¬q).
2 Closing a branch if it contains a formula and its negation,

e.g., (p ∧ (q,∨r)) Vs. ¬(p ∧ (q,∨r)).
3 Be guided by the syntax looking for conflicts, e.g., try with

KB = p ∧ q,¬p, a ∧ b ∧ c
p ∧ q
¬p
a ∧ b ∧ c

p
q

clash!

p ∧ q
¬p
a ∧ b ∧ c

a
b
c

p
q

clash!
Alessandro Artale Logic: Propositional Logic (Part II)

Efficiency: comparison with truth tables

The complexity of truth tables depends on the number of
atomic formulas appearing in the KB,
the complexity of tableaux depends on the syntactic
structure of the formulas in KB.

Try:
KB = ((p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ r) ∧ (¬p ∨ ¬r))

Alessandro Artale Logic: Propositional Logic (Part II)

Tableaux as a Decision Procedure

Tableaux is a decision procedure for computing satisfiability,
validity, and entailment in propositional logics:

it is a sound algorithm
it is a complete algorithm
it is a terminating algorithm

Alessandro Artale Logic: Propositional Logic (Part II)

Propositional Logic at work:
the Graph Colouring Problem

The Graph Colouring problem is a well-known combinatorial
problem from graph theory:

A graph is defined as G = (V ,E), where
V = {v1, v2, . . . , vn} is the set of vertices and
E = {(vi , vj), . . . , (vk , vl)} the set of edges connecting pairs
of vertices.
Find a colouring function C : V → N , such that connected
vertices always have different colours.
There is a decision variant of this problem: the question is
to decide whether for a particular number of colours, a
couloring of the given graph exists.

Alessandro Artale Logic: Propositional Logic (Part II)

Encoding as satisfiability problem

A straightforward strategy for encoding the Graph Colouring
Decision Problem into a satisfiability problem in propositional
logic:

Each assignment of a colour to a single vertex is
represented by a propositional variable;
Each colouring constraint (edge of the graph) is represented
by a set of clauses ensuring that the adjacent vertices have
different colours,
Two additional sets of clauses ensure that valid assignments
assign exactly one colour to each vertex.

Alessandro Artale Logic: Propositional Logic (Part II)

Example

Italy Hungary

Austria

2 colors (Black and White): Satis-
fiable
Edge axioms:
(BI → ¬BA) ∧ (WI → ¬WA)
(BH → ¬BA) ∧ (WH → ¬WA)
Node axioms:
(BI ∨ WI),. . .
(BI → ¬WI)
(BH → ¬WH)
(BA → ¬WA)

France Italy

Switzerland

2 colors (Black and White): Unsat-
isfiable
Edge axioms:
(BF → ¬BS) ∧ (WF → ¬WS)
(BS → ¬BI) ∧ (WS → ¬WI)
(BF → ¬BI) ∧ (WF → ¬WI)
Node axioms:
(BF ∨ WF), . . .
(BF → ¬WF)
(BS → ¬WS)
(BI → ¬WI)

Alessandro Artale Logic: Propositional Logic (Part II)

Complexity of the problem

vertices edges colours vars clauses
30 60 3 90 300
50 115 3 150 545
75 180 3 225 840

100 239 3 300 1117
125 301 3 375 1403
150 360 3 450 1680
175 417 3 525 1951
200 479 3 600 2237

Alessandro Artale Logic: Propositional Logic (Part II)

Other hot problems for propositional logic

The general scenario in Blocks World planning comprises a
number of blocks and a table. The blocks can be piled onto
each other, where the downmost block of a pile is always on
the table. Given an initial and a goal configuration of blocks,
the problem is to find a sequence of single block move
operations which, when applied to the initial configuration,
leads to the goal situation.
In the Logistics planning domain, packages have to be
moved between different locations in different cities. Within
cities, packages are carried by trucks while between cities
they are flown in planes. Both, trucks and airplanes are of
limited capacity.
Circuit fault analysis, Scheduling, · · ·

Alessandro Artale Logic: Propositional Logic (Part II)

