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Knowledge bases

Inference engine
Knowledge base

(*]
logical theory

«— domain-independent algorithms
«— domain-specific content

= set of sentences in a formal language =

° approach to build an intelligent agent:
TELL him what he needs to know

@ Then he can As
from the KB

K himself what to do—answers should follow

@ Agents can be viewed at:

e the knowledge level—what they know, regardless of how it

is implemen

ted;

e or at the implementation level—data structures in KB and

algorithms t

hat manipulate them
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Logic in general

Logic is a formal language for information such that
conclusions can be drawn.
@ Syntax defines the sentences in the language

@ Semantics define the "meaning” of sentences; e, define
truth of a sentence in a world

e E.g, the language of arithmetic

X+ 2 >y is asentence; x2+ y > is not a sentence
X+ 2 >y is true iff the number x + 2 is no less than the

number y
X+2>yistruein where x =7, y=1
X+ 2> yisfalse in where x =0, y=6

X+ 2 > x4+ 1is true in every world.
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The one and only Logic?

Logics of higher order

Modal logics

o epistemic
o temporal and spatial
o ...

Description logic
Non-monotonic logic

°
°
@ Intuitionistic logic
°

But: There are “standard approaches’
~» propositional and predicate logic
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Reasoning: Entailment — Logical Implication

o Knowledge base KB entails (or, logically implies)
sentence a
if and only if
a is true in all worlds where KB is true
e F.g, the KB containing "Manchester United won" and

‘Manchester City won"
entails “Either Manchester United won or Manchester City

won”
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Semantics in Logic is in terms of Models: structured worlds with
respect to which truth of sentences can be evaluated.
@ We say M is a model of a sentence « if a is true in M.
@ M(a) is the set of all models of o
e Semantics of Entailment: KB = « if and only if
M(KB) € M(a)
e E.g KB = {United won, City won}
a = City won
or
a = Manchester won

a = either City or Manchester won
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Reasoning: Inference — Deduction — Derivation

@ KB F, a = sentence a can be (or, or
) from KB by procedure i

@ It refers to an algorithmic procedure that manipulate

sentences in the input KB to produce o as an output

@ Soundness: 7 is sound if
whenever KB I a, it is also true that KB = a

o Completeness: 1 is complete if
whenever KB = a, it is also true that KB F; «

o Ideally a logic must be expressive enough to say almost
anything of interest, and equipped with a sound and
complete inference procedure.
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Reasoning: Entailment Vs. Inference

We are interested in the questions:

e when a statement is entailed by a set of statements,
in symbols: © [= ¢,

@ can we define inference, in symbols: © ; ¢, in such a way
that inference and entailment coincide?

o Formally, we are looking for an inference procedures, F;,
such that:
OF ¢ iff k¢
o If this is the case, then the inference procedure is said to be
Sound and Complete.
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Propositional Logics: Basic ldeas

The elementary building blocks of propositional logic are atomic
statements that cannot be decomposed any further: propositions.
Eg.,

@ "The block is red”
@ "One plus one equals two"
e ‘It is raining”

Using logical connectives “and’, “or’
propositional formulas.

. "not”, we can build

Logic: Propositional Logic (Part I)



Syntax of Propositional Logic

Countable alphabet ¥ of atomic propositions: a, b, c, . . ..

o, — a atomic formula
1 false
T true
¢ negation

Propositional formulas:

¢V disjunction
¢ — ¢ implication

\
\
|
| ¢ AN conjunction
|
|
| ¢ — Yy equivalence

@ Atom: atomic formula e Clause: disjunction of
e Literal: (negated) atomic literals
formula
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Syntax of Propositional Logic

Operator Precedence: from high to low is: =, A, V, —, <

Examples of Formulas
@ = pVqgVr
@ pANQg—a
@ (pA-q)V(aAnb)«=cVd
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Semantics: Intuition

@ Atomic statements can be true T or false F.

@ The truth value of formulas is determined by the truth values
of the atoms ( or ).

Example: (aV b) A c

o If aand b are false and c¢ is true, then the formula is not true.
@ Then logical entailment could be defined as follows:

@ ¢ is logically implied by ©, © |= ¢, if ¢ is true in all “states
of the world" in which © is true.
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Semantics: Formally

A truth value assignment (or interpretation) of the atoms in I is

a function Z:

I:¥—{TF}

Note: Instead of Z(a) we also write a’.

Definition: A formula ¢ is satisfied by an interpretation 7
(Z = ¢), or is true under Z, if and only if:

TkEa
TkE-¢
ITEOANY
ITEoVY
Th¢—y
IE¢d—Y

IET,

THL

a=T

I ¢

Tk ¢andZ =y
ITkE¢orl =y

fZ = ¢, thenT = ¢
T ¢, ifandonly UZ = ¢

~
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Exercises

Let:
a — T
I b — F
c — F
d — T
Check the truth value under Z of the following formulas:
e b—-cVvd
ecVvVd—b
e be=cvd

o ((aVbh)e (cVd)A(=(@aAb)V(cA~d)

Logic: Propositional Logic (Part I)



Exercises

e Find an interpretation and a formula such that the formula
is true in that interpretation (or: the interpretation satisfies
the formula).

e Find an interpretation and a formula such that the formula
is not true in that interpretation (or: the interpretation does
not satisfy the formula).

e Find a formula which can’t be true in any interpretation (or:
no interpretation can satisfy the formula).
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Satisfiability and Validity

An interpretation Z is said to be a model of ¢ when:

ITk¢

Definition. A formula ¢ is
, if there is some 7 that is a model of ¢,

, if ¢ is not satisfiable,

, if there is some 7 that does not satisfy ¢,

°
°

° (ie., a tautology), if every 7 is a model of ¢.

°

o Two formulas are (¢ = ), if for all Z:

TE¢iff Ty
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Truth Tables

A truth table is a convenient format for displaying the semantics
of a formula by showing its truth value for every possible
interpretation of the formula.

Definition. Let ¢ be a formula with n atoms. A truth table is a
table with n+ 1 columns and 2" rows. There is a column for
each atom in ¢, plus a column for the formula ¢. The first n
columns specify the interpretation Z that maps atoms in ¢ to
{T,F}. The last column shows the truth value of ¢ under Z.

Example: Truth Table for the formula A A B:

A B ANB
False | False | False
False | True False
True | False | False
True True True
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Exercise

Satisfiable, tautology?
((a A b) <> a) — b)

(7 = =) = (¢ — @)
(@aVbV-ac)A(maV-bVd)A(-aV bV —d)

Equivalent?

(@VgAx) = (eV Y APAX)
(Vi) = PNy

Try to use truth tables to support your conclusions.
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Important Facts

Theorem.
@ ¢ is valid iff =¢ is unsatisfiable.
@ ¢ is unsatisfiable iff = ¢ is valid.

@ ¢ is satisflable iff ~¢ is falsifiable.

Relationship between <> and =
Theorem.

o ¢ =y iff g Y is a tautology.

Logical equivalence justifies substitution of one formula for
another.

Substitution Theorem: If ¢ and () are equivalent, and x’ results
from replacing ¢ in x by ¢, then x and x’ are equivalent.
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Entailment

e Extension of the interpretation relationship to sets of
formulas ©

IO iff TE¢ forall p€©

Ok ¢ if T ¢ forall modelsZ of ©

Note: we want the formula ¢ to be implied by a set ©, if ¢
is true in all models of © (symbolically, © = ¢)
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Propositional inference: Truth Table method

let a = AV B and KB={(AVv (), (BV-(C)}

Check all possible models — a must be true wherever KB is true

A B C AvC | Bv-C KB a
False | False | False
False | False | True
False | True | False
False | True True
True | False | False
True | False | True
True True | False
True True True
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Propositional inference: Truth Table method

let a = AV B and KB={(AVv (), (BV-(C)}

Check all possible models — a must be true wherever KB is true

A B C AvC | Bv-C KB a
False | False | False False
False | False | True True
False | True | False False
False | True True True
True | False | False True
True | False | True True
True True | False True
True True True True
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Propositional inference: Truth Table method

let a = AV B and KB={(AVv (), (BV-(C)}

Check all possible models — a must be true wherever KB is true

A B C AvC | Bv-C KB a
False | False | False False True
False | False | True True False
False | True | False False True
False | True True True True
True | False | False True True
True | False | True True False
True True | False True True
True True True True True
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Propositional inference: Truth Table method

let a = AV B and KB={(AVv (), (BV-(C)}

Check all possible models — a must be true wherever KB is true

A B C AvC | Bv-C KB a
False | False | False False True False
False | False | True True False False
False | True | False False True False
False | True True True True True
True | False | False True True True
True | False | True True False False
True True | False True True True
True True True True True True
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Propositional inference: Truth Table method

let a = AV B and KB={(AVv (), (BV-(C)}

Check all possible models — a must be true wherever KB is true

A B C AvC | Bv-C KB a
False | False | False False True False False
False | False | True True False False False
False | True | False False True False True
False | True True True True True True
True | False | False True True True True
True | False | True True False False True
True True | False True True True True
True True True True True True True

Thus KB |= «a

Note. The method of truth tables is a very inefficient since we
need to evaluate a formula for each of 2”7 possible interpretations,
where n is the number of distinct atoms in the formula.
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Equivalences (l)

Commutativity oVY = YV
PNY = YA
po = Yoo
Associativity (OVY)VY = oV (YVy)
(@AP) A X = dN (P AX)
(Ppeod)ox = ooy
Idempotence oV = ¢
PN = ¢
Absorption OV(PpANY) = ¢
dA(PV YY) = ¢
Distributivity OAN(WVX) = (GANY)V(PAX)
PVI(PAX) = (@VYA(PVX)
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Equivalences (ll)

Implication
Tautology

Unsatisfiability
Constants

Neutrality

Negation
Double Negation
De Morgan

De Morgan

¢ — P
oV T
o—T
1L -9
¢—¢
oA L
ORVERTO)
ONART0)
ONT
oV L
T—-9
¢o— L
it}
(P V )
“(eNY)

AR
-
-
T
T
1
T
1
o}
o}
o}
¢
¢
A 4
AR
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Minimal set of Logical Operators

From the above presented equivalences the following follows.

Theorem. The logical operators =, A, V, —, <> can be defined
from negation, =, and one of A, V, —.
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Properties of Entailment

e OU{plEyYHfOEG— Y
(Deduction Theorem)

e OU{p}l E-yiffou{y}E-¢
(Contraposition Theorem)

e OU {¢} is unsatisfiable iff © = -¢
(Contradiction Theorem)
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Normal Forms

Inference procedures use syntactic operations on sentences, often
expressed in standardized forms.

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals: /\7:1(\/1'11 ij)

clauses
Eg, (AV-B)A(BV-CV D)

Disjunctive Normal Form (DNF)

disjunction of conjunctions of literals: Vs (AL 1))

terms
Eg, (AAB)V(AA-C)V(AA=D)V (-BA-C)V(-BA-D)
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Normal Forms, cont.

Horn Form (restricted)

conjunction of Horn clauses (clauses with < 1 positive
literal)

Eg, (AV-B)A(BV-CV-D)

Often written as set of implications:

B — Aand (CAD) = B

Theorem For every formula, there exists an equivalent formula in
CNF and one in DNF.
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Why Normal Forms?

@ We can transform propositional formulas, in particular, we
can construct their CNF and DNF.

@ DNF tells us something as to whether a formula is
satisfiable. If all disjuncts contain L or complementary
literals, then no model exists. Otherwise, the formula is
satisfiable.

@ CNF tells us something as to whether a formula is a
tautology. If all clauses (= conjuncts) contain T or
complementary literals, then the formula is a tautology.
Otherwise, the formula is falsifiable.

But:

e the transformation into DNF or CNF is expensive (in
time/space)
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Summary: important notions

Syntax: formula, atomic formula, literal, clause
Semantics: truth value, assignment, interpretation
Formula satisfied by an interpretation

Logical implication, entailment

Satisfiability, validity, tautology, logical equivalence

Deduction theorem, Contraposition Theorem

Conjunctive normal form, Disjunctive Normal form, Horn form
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