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Problem 1 [10 points] Induction.

• Show that for any n ≥ 0, 5n − 1 is divisible by 4. [4 points]

• Loop Invariant. The following while loop is annotated with a pre- and a post-condition and
also a loop invariant. Furthermore, assume the integer m ≥ 1 in the guard of the while loop.
Use the loop invariant theorem to prove the correctness of the loop with respect to the pre- and
post-conditions. [6 points]

[Pre-condition: greatest = A[1] and i = 1]

while i 6= m do
i := i + 1
if(A[i] > greatest) then greatest := A[i]

end while

[Post-condition: greatest = maximum value of A[1], . . . , A[m]]

Loop Invariant I(n): greatest is the maximum value of A[1], A[2], . . . , A[n + 1] and i = n + 1.

Problem 2 [12 points] Sets.

• Given the following sets:

– A = {Alice, Paul,Mary},
– B = {CS110, CS111,MAT222,MAT221} and

– C = {CS110, CS112,MAT222, F IS333,MAT221}.

Show the following set: (B ∩ C)×A. [2 points]

• Powerset property: Show that P(A) ∪ P(B) ⊆ P(A ∪B). [5 points]

• Halting Problem. Discuss the Halting Problem. Formulate the Halting problem Theorem and
give an idea on how it can be proved. [5 points]

Problem 3 [4 points] Cardinality.

• Give the definition of 2 sets have the same cardinality and also the definition of a set being
countably infinite. [2 points]

• Determine whether the following set is finite, countably infinite or uncountable. In case the set
is countably infinite, show a one-to-one correspondence from the set of positive integers. [2 points]

– The set of positive integers multiple of 7.



Problem 4 [8 points] Relations and Trees.

• Let A = {0, 1, 2, 3, 4} and R the following equivalence relation over A:

R = {(0, 0), (3, 1), (1, 1), (1, 3), (2, 2), (0, 4), (4, 4), (3, 3), (4, 0)}

Show the equivalence class of each element in A with respect to R. [3 points]

• Say whether the following relation is a partial order relation. In case it is not, say what is the
missing property. [3 points]

– R = {(0, 0), (1, 1), (0, 3), (1, 2), (0, 2), (1, 3), (2, 2), (3, 3), (3, 2)};

• Find all non-isomorphic trees with 5 vertices. Provide an explanation with your answer. [2 points]


