
UMIST-CT213-Database Technology. Lecture II, 2001/2002 – A.Artale (1)

Database Technology
Tutorial I

Alessandro Artale
Department of Computation –UMIST

Room: MSS-E18

artale@co.umist.ac.uk

http://www.co.umist.ac.uk/∼artale/

2001/2002 – Second semester

Alessandro Artale

 B-Trees

Alessandro Artale

10/2/02 1

62

1 3 5 7 8 12 18 23 29 37 44 47 62 68 75 77 82 85

8 18 29 44 75 82

EXERCISE 1. Given the following B-Tree:

Answer the following questions by showing the resulting B+Tree. When a node
split, show the B+Tree before and after the splitting. All the questions modify the
B+Tree obtained in the previous question (e.g., question 2 modifies the B+Tree
resulting from question 1).

10/2/02 2

1. Insert the new key with value 9.

62

1 3 5 7 8 9 12 18 23 29 37 44 47 62 68 75 77 82 85

8 18 29 44 75 82

10/2/02 3

2. Insert the new keys with the following values: 67, 69,71

B+Tree before the splitting: Insertion of keys 67, 69.

62

1 3 5 7 8 9 12 18 23 29 37 44 47 62 67 68 69 75 77 82 85

8 18 29 44 75 82

UMIST-CT213-Database Technology. Lecture II, 2001/2002 – A.Artale (26)

B-Tree Insertion: Splitting Leaves

Let N be a leaf whose capacity isn keys, and we need to insert the(n + 1) key-pointer

pair.

1. Create a new sibling nodeM , to the right ofN ;

2. The first
⌈

n+1
2

⌉
key-pointer pairs remain withN , while the other move toM .

3. The first key of the new nodeM is also inserted at the parent node.

Note: At least
⌊

n+1
2

⌋
key-pointer pairs for both of the splitted nodes.

14/2/02 4

B+Tree after the split: insertion of key 71. Splitting leaves.

62

1 3 5 7 8 9 12 18 23 29 37 44 47 62 67 68 82 85

8 18 29 44 69 75 82

75 7769 71

14/2/02 5

3. Insert the new key with value 4. Splitting leaves and interior nodes.

18 62

1 3 4 8 9 12

18 23 29 37 44 47 62 67 68 82 85

29 44 69 75 82

75 7769 71

5 8

5 7

UMIST-CT213-Database Technology. Lecture II, 2001/2002 – A.Artale (27)

B-Tree Insertion: Splitting Interior Nodes

Let N be an interior node whose capacity isn keys and(n + 1) pointers, andN has been

assigned the new pointer(n + 2) because of a node splitting at the inferior level.

1. Create a new sibling nodeM , to the right ofN ;

2. Leave atN the first
⌈

n+2
2

⌉
pointers, and move the other toM ;

3. The first
⌈

n
2

⌉
keys stay withN , while the last

⌊
n
2

⌋
keys move toM . Since there are

(n + 1) keys there is one key in the middle (say itKl) that doesn’t go with neitherN

norM , but:

• Kl is reachable via the first ofM ’s children;

• Kl is used by the common parent ofN andM to distinguish the search between

those two nodes.

Note: At least
⌈

n+1
2

⌉
pointers for both of the splitted nodes.

10/2/02 6

4. Delete the key with value 5. Borrowing one sibling key.

1 3 4

82 85

18 62

9 12

18 23 29 37 44 47 62 67 68

29 44 69 75 82

75 7769 71

7 8

7 8

UMIST-CT213-Database Technology. Lecture II, 2001/2002 – A.Artale (31)

B-Tree Deletion

• Start a search for the key being deleted;

• Delete the record from the data file and the key-pointer pair from the leaf of the

B-tree;

• If the lower limit of keys and pointers on a leaf is violated then two cases are

possible:

1. Look for an adjacent sibling that is above lower limit and “steal” a key-pointer

pair from that leaf, keeping the order of keys intact. Make sure keys for the parent

are adjusted to reflect the new situation.

2. Hard case: no adjacent sibling can provide an extra key. Then there must be

two adjacent siblings leaves, one at minimum, one below minimum capacity.

Just enough to merge nodes deleting one of them. Keys at the parent should be

adjusted, and then delete a key and a pointer. If the parent is below the minimum

capacity then we recursively apply the deletion algorithm at the parent.

10/2/02 7

5. Delete the key with value 75. Coalescing leaves.

18 62

1 3 4 9 12

18 23 29 37 44 47 62 67 68

29 44 69 77

77 82 8569 71

7 8

7 8

11/2/02 8

EXERCISE 2.

Given a relation, R, there is a need for building a B+Tree as a dense index on its primary key. You have the
following data:

1. The number of tuples in R, T(R) = 10,000,000
2. The primary key for R is made by a single attribute that requires 15 bytes to be stored.
3. Each B+Tree node is stored in a disk block with size 4KB (i.e., 4096 bytes). To store a pointer 8
bytes are needed.

Given the above data answer the following questions:

a. Compute the maximum number, N, of keys that can be allocated in a single B+Tree node.

N*15+(N+1)*8 = 4096; i.e., NÄÄÄÄround-down(4088/23). Then Nmax=177

b. Compute the number of levels and the number of nodes of the B+Tree.

 round-up(10,000,000/177) = 56,498 Leaves
 round-up(56,498/178) = 318 Internal nodes
 round-up(318/178) = 2 Internal nodes (next level)
1 + 2 + 318 + 56,498 = 56,819 Total number of nodes
L =4 Number of Levels

