UMIST-CT213-Database Technology. Lecture I, 2001/2002 — A.Artale 1)

Database Technology
Tutorial | B-Trees

Alessando Artale
Depatmert of Computatio: —UMIST
Room MSS-E18
artal e@o. um st. ac. uk
http://ww. co.um st. ac. uk/ ~artal e/

2001/2002 — Second semester

Alessandro Artale

 B-Trees

Alessandro Artale

EXERCISE 1. Given the following B-Tree:

62
8 1829 44 75 82
:// \\ / // \
3[5|7 8|12 1§ 23 29 37 44 47 64 69 78 71 84 84

Answer the following questions by showing the resulting B+Tree. When a node
split, show the B+Tree before and after the splitting. All the questions modify the

B+Tree obtained in the previous question (e.g., question 2 modifies the B+Tree
resulting from question 1).

10/2/02

1. Insert the new key with value 9.

62
11
8 182944 79 83
/// \\\
3157 819 (14 1§ 23 29 371 44 41 64 64 73

10/2/02

2. Insert the new keys with the following values: 67, 69,71

B+Tree before the splitting: Insertion of keys 67, 69.

62
8 1812944 75 82
/:/ | \\ / |
5/ 7 8(9]|1pP 1§ 23 29 371 44 41 62, 67/64 69 78 71

10/2/02

UMIST-CT213-Database Technology. Lecture I, 2001/2002 — A.Artale (26)

B-Tree Insertion: Splitting Leaves

Let N be a leaf whose capacity iskeys, and we need to insert the 4 1) key-pointer
pair.

1. Create a new sibling nod¥, to the right ofV;
2. The first| 21 | key-pointer pairs remain withV, while the other move ta/.

3. The first key of the new nod¥ is also inserted at the parent node.

Note: At least| 2+ | key-pointer pairs for both of the splitted nodes.

B+Tree after the split: insertion of key 71. Splitting leaves.

14/2/02 4

3. Insert the new key with value 4. Splitting leaves and interior nodes.

14/2/02 S)

UMIST-CT213-Database Technology. Lecture I, 2001/2002 — A.Artale (27)

B-Tree Insertion: Splitting Interior Nodes

Let N be an interior node whose capacitynigeys and n + 1) pointers, andV has been
assigned the new pointérn + 2) because of a node splitting at the inferior level.

1. Create a new sibling nod¥, to the right ofV;
2. Leave atV the first| 222 pointers, and move the other 1d;

3. The first| 2 | keys stay withV, while the last| 2 | keys move taV/. Since there are
(n+ 1) keys there is one key in the middle (saykif) that doesn’t go with neitheW

nor M, but:
e K Is reachable via the first d¥/’s children;

e K Is used by the common parentdfandM to distinguish the search betweer
those two nodes.

Note: At least| 21| pointers for both of the splitted nodes.

4. Delete the key with value 5. Borrowing one sibling key.

10/2/02 6

UMIST-CT213-Database Technology. Lecture I, 2001/2002 — A.Artale (31)

B-Tree Deletion

e Start a search for the key being deleted,;

e Delete the record from the data file and the key-pointer pair from the leaf of th
B-tree;

e If the lower limit of keys and pointers on a leaf is violated then two cases are
possible:

1. Look for an adjacent sibling that is above lower limit and “steal” a key-pointe

pair from that leaf, keeping the order of keys intact. Make sure keys for the pa
are adjusted to reflect the new situation.

2. Hard case: no adjacent sibling can provide an extra key. Then there must
two adjacent siblings leaves, one at minimum, one below minimum capacit
Just enough to merge nodes deleting one of them. Keys at the parent shoul
adjusted, and then delete a key and a pointer. If the parent is below the minir
capacity then we recursively apply the deletion algorithm at the parent.

5. Delete the key with value 75. Coalescing leaves.

10/2/02 7

EXERCISE 2.

Given a relation, R, there is a need for building a B+Tree as a dense index on its primary key. You have the
following data:

1. The number of tuples in R, T(R) = 10,000,000
2. The primary key for R is made by a single attribute that requires 15 bytes to be stored.
3. Each B+Tree node is stored in a disk block with size 4KB (i.e., 4096 bytes). To store a pointer 8
bytes are needed.
Given the above data answer the following questions:
a. Compute the maximum number, N, of keys that can be allocated in a single B+Tree node.
N*15+(N+1)*8 = 4096; i.e., N=r ound- down(4088/23). Then Nmax=177

b. Compute the number of levels and the number of nodes of the B+Tree.

r ound- up(10,000,000/177) = 56,498 Leaves

round- up(56,498/178) = 318 Internal nodes

round- up(318/178) =2 Internal nodes (next level)
1+ 2+ 318 + 56,498 = 56,819 Total number of nodes

L =4 Number of Levels

11/2/02 8

