
Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (1)

Databases 2
Lecture VII

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – First Semester



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (2)

Summary of Lecture VII

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (3)

Concurrent Execution

There are good reasons for allowing concurrency instead of serial processing:

1. Improved throughput and resource utilization.

(THROUGHPUT = Number of Transactions executed per unit of time.)

The CPU and the Disk can operate in parallel. When a Transaction

Read/Write the Disk another Transaction can be running in the CPU.

The CPU and Disk utilization also increases.

2. Reduced waiting time.

In a serial processing a short Transaction may have to wait for a long

Transaction to complete. Concurrent execution reduces the average response

time: The average time for a Transaction to be completed.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (4)

Concurrency Control

� Even when there is no “system failure” several transactions can interact to

turn a consistent DB state into an inconsistent state.

� The order in which the actions of the different transactions occur has to be

controlled.

� The Scheduler is the DBMS component for the concurrency control.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (5)

Scheduler

� The Scheduler manages read/write requests from transactions – either

executed directly or delayed – to maintain a consistent DB state.

� Read/Write requests are sent to main memory buffers in an order that is

Serializable i.e., the execution has the same effect of a serial execution

where Transactions executed one-at-a-time without interleaving.

Transaction Manager

Scheduler

Main Memory Buffer

Read/Write requests

Read/Write execution



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (6)

Serial Execution: An Example

In a banking system two Transactions

��� and

��� update two accounts –

��
�

�

.

� Current money in the accounts:

� � 	 �

 
 
 �

and

� � �
�


 
 
 �

;

� �� transfers


 
 �

from

�

to

�

, while

� � transfers

	 
 �

from

�

to

�

;

� The DB constraint is that the sum
� � �

must be preserved.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (7)

Serial Execution: An Example (cont.)

The following table shows the sequential execution of

� � followed by
� � together

with the main memory values for

�

and

�

.

��
�

��
� A B
READ(A,t) 1,000 2,000
t := t-50
WRITE(A,t) 950
READ(B,t)
t := t+50
WRITE(B,t) 2,050

READ(A,t)
s:= t*0.1
t:= t-s
WRITE(A,t) 855
READ(B,t)
t:= t+s
WRITE(B,t) 2,145



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (8)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (9)

Schedule

� A Schedule is a time-ordered sequence of actions belonging to one or more

transactions: They represent the chronological order in which instructions

are executed.

� A schedule is Serial if there is no interleaving – i.e., it consists of all the

actions of one transaction, then all the actions of another transaction, and so

on.

� Serial schedules are represented by the ordered list of the transactions

composing the schedule – e.g., in case of two transactions either

� �� �

���
�

or

� �
� �

�
�

�

are serial schedules.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (10)

Serial Schedules: An Example

The banking example is a case of the serial schedule

� � � �

���
�

.

��� ��� A B
READ(A,t) 1,000 2,000
t := t-50
WRITE(A,t) 950
READ(B,t)
t := t+50
WRITE(B,t) 2,050

READ(A,t)
s:= t*0.1
t:= t-s
WRITE(A,t) 855
READ(B,t)
t:= t+s
WRITE(B,t) 2,145



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (11)

Another Serial Schedule: An Example

��
�

��
� A B

READ(A,t) 1,000 2,000
s:= t*0.1
t:= t-s
WRITE(A,t) 900
READ(B,t)
t:= t+s
WRITE(B,t) 2,100

READ(A,t)
t := t-50
WRITE(A,t) 850
READ(B,t)
t := t+50
WRITE(B,t) 2,150

� Note. The final values for

��
�

�
are different in the two schedules:

1.

� �
� �

�
�

�

:

� � � 
 

�

� � �
�

	 � 


;

2.

� �
� �

�
�

�

:

� � � 
 

�

� � �
�

	 
 


.

� Concurrency control deals only with preserving consistent DB states, while

the DB state depends from the order of transactions.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (12)

Serializable Schedules

� The Consistency property of transactions guarantees that every serial

schedule will preserve consistency:

A transaction, if completed, will take the DB from a consistent state to

another consistent state.

� There is a possibility to interleave different transactions and still maintaining

a consistent DB state.

� Serializable Schedule.

A schedule whose effect on the DB state is equivalent to that one of a

serial schedule.

� In the following we will try to characterize such Serializable Schedules.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (13)

Serializable Schedules: An Example

� We refer here to our running example. This is a case of a serializable – but

not serial – schedule.

�
�

�
� A B

READ(A,t) 1,000 2,000
t := t-50
WRITE(A,t) 950

READ(A,s)
v:= s*0.1
s:= s-v
WRITE(A,s) 855

READ(B,t)
t := t+50
WRITE(B,t) 2,050

READ(B,s)
s:= s+v
WRITE(B,s) 2,145

� This schedule is equivalent to the serial schedule

� � � �

��
�

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (14)

Interleaving: A Not Working Example

� Interleaving has to be controlled. The following schedule is not serializable:

��
�

��
� A B

READ(A,t) 1,000 2,000
t := t-50

READ(A,s)
v:= s*0.1
s:= s-v
WRITE(A,s) 900
READ(B,s)

WRITE(A,t) 950
READ(B,t)
t := t+50
WRITE(B,t) 2,050

s:= s+v
WRITE(B,s) 2,100

� The new DB state is not consistent with

� � � 
 


and

� � �
�

	 
 


– i.e.,

� � � � �
�


 
 
 � � �
�


 
 


.

The scheduler must avoid such situations.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (15)

Summing Up

� Transactions. Only the Read and Write matter. Thus a transaction is a

sequence of Read – ��� � � �

– and Write – �� � � �

– actions on database

elements.

– If transactions are

�
� �� � � �

��
� , then ��� and ��� are used instead of � �
	 � � �
	 .

� Schedule. Sequence of Read/Write events performed by a collection of

transactions.

� Serial Schedule. All actions for each transaction are consecutive.

– Example: � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

.

� Serializable Schedule. One whose effect is guaranteed to be equivalent to

that of some serial schedule.

– Example: � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (16)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (17)

Conflict

� Objective: introduce sufficient conditions to assure that a schedule is

serializable.

� Conflict: Pair of consecutive actions in a schedule such that if their order is

interchanged then the effects of one of the involved transactions may change.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (18)

Conflict (cont.)

� Pair of actions that do not conflict:

1. ��� ��� �

� ��� ��� �

is never a conflict even if the read element is the same since

these actions do not change any value.

2. ��� ��� �

� �� ��� �

– or �� ��� �

� ��� ��� �

– is not a conflict as far as

� � � 	

.

3. �� ��� �

� �� ��� �

is not a conflict as far as

� � � 	

.

� Pair of actions that do conflict:

1. Two actions of the same transaction. The order of actions of a single

transaction is fixed and cannot be changed by the DBMS.

2. �� ��� �

� �� ��� �

. Since the values written by

� � and

�� might be different,

the next reading of

�

will read different values depending on the order

of these two actions.

3. ��� ��� �

� �� ��� �

– and �� ��� �

� ��� ��� �

. Swapping the order of � � �� �

and �� ��� �

affects the value reads for

�

by

� � and could affect what

�
� does.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (19)

Conflict-Serializable Schedules

� Rule for swapping actions.

Any two actions of different transactions may be swapped unless:

– They involve the same DB element, and at least one is a Write.

� Two schedules are said Conflict-Equivalent if they can be turned one into

the other by a sequence of non-conflicting swaps of adjacent actions.

� A schedule is Conflict-Serializable if it is conflict-equivalent to a serial

schedule – i.e., we can turn the schedule into a serial schedule by a sequence

of non-conflicting swapping.

� Conflict-Serializability is a sufficient condition for serializability: A Conflict-

Serializable schedule is a serializable schedule – i.e., a schedule whose effect

on the DB state is equivalent to that one of a serial schedule. The vice-versa

is not always true.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (20)

Conflict-Serializable Schedules: An Example

� The following is an example of a conflict-serializable schedule:

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� We can turn the schedule into a serial schedule by the following swaps of

non-conflicting adjacent actions:

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� We obtain at the end the serial schedule

� �
� �

�
�

�

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (21)

Serializable Vs. Conflict-Serializable: An Example
Example. We show a Serializable schedule which is not Conflict-Serializable.

In our banking system we have now a transaction

��� that transfers

	 
 �
from

account

�

to

�

. ��� ��� A B
READ(A,t) 1,000 2,000
t := t-50
WRITE(A,t) 950

READ(B,s)
s:= s-10
WRITE(B,s) 1,990

READ(B,t)
t := t+50
WRITE(B,t) 2,040

READ(A,s)
s:= s+10
WRITE(A,s) 960

Since

�� � �	 � ��

� � �

conflicts with
� 	 
� � � 

�

� �

the schedule is not conflict-

equivalent to the serial schedule
� �� �

�� �

.

To realize that the schedule is equivalent to

� � � �

�� �

the computation performed

by

�� �

�� on

�

must be analyzed (rather that just READ and WRITE):

� � 	 
 � 
 
 � � � 
 
 � 	 


(since “

�

” & “ �” are commutative).



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (22)

Precedence Graph

Objective: Procedure to decide whether a schedule is or not conflict-serializable.

� Conflicting pairs of actions put constraints on the order of transactions:

– Let

�

be a schedule and

� � �
��� be two conflicting actions with

� � ��� ���

(i.e.,

� � is before

� � in

�

), then

– Transactions

�� �
�� performing those actions are such that

�� takes

precedence over

�� – written,
�� �� �� – meaning that

– They must appear in the same order in any conflict-equivalent serial

schedule.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (23)

Precedence Graph (cont.)

� A Precedence Graph depicts the constraints on the order of transactions:

1. Nodes are transactions;

2. If

�� �� �� there is an arch

�� � �� .

� Rule for checking conflict-serializability.

If

�� � �� then, in any serial schedule
� �

equivalent to

�

,

�� must appear

before

�� .

A schedule

�

is conflict-serializable if and only if there is an acyclic

precedence graph.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (24)

Precedence Graph: Examples

Example 1.

�

��
� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �
.

� Precedence Constraints:

– � � � � � �� � � � � �

, � � � � � �� � � � � �

, � � � � � �� � � � � �

, then

� � �� �
�;

– � � � � � �� � � � � �

, � � � � � �� � � � � �

, � � � � � �� � � � � �

, then

�
� �� �
� ;

� Precedence Graph:

��� ��� �
�

– The precedence graph is acyclic, then the schedule is conflict-serializable.

– The schedule
�

is equivalent to the serial schedule

� � � �

�� �

�� �

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (25)

Precedence Graph: Examples (cont.)

Example 2.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

.

� Precedence Constraints:

– � � � � � �� � � � � �

, then

�
� �� �
� ;

– � � � � � �� � � � � �

, then

��� �� ��� ;

– � � � � � �� � � � � �

, then

�
� �� �
� ;

� Precedence Graph:

�
�

�
�

�
�

– The precedence graph is cyclic, then the schedule is not conflict-

serializable.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (26)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (27)

Scheduler and Serializability

Transaction Manager

Scheduler

Main Memory Buffer

Read/Write requests

Read/Write execution

� Scheduler Job. Manage the Read/Write actions of various concurrent trans-

actions to prevent orders of actions that lead to not serializable schedules.

� The most common technique used by a scheduler is based on a Locking
mechanism.

– Transactions must posses a lock on a DB element to perform an operation

on it.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (28)

Locking Scheduler

� A Locking Scheduler enforces conflict-serializability – which is more

stringent than serializability.

� The locking scheduler requires that data is accessed in a mutually exclusive

manner.

� Lock Actions:

1. A transaction

�� requests a lock on a DB element X from the scheduler;

2. The scheduler, using a Lock Table containing a list of the current locks,

can either grant the lock to

�� or make
�� wait for the lock;

3. If granted,

�� should eventually unlock (release) the lock on the DB

element

�

.

� Notation for locking and unlocking actions:

1.

� � � � �

: Transaction
�� requests a lock on

�

;

2. � � � � �

:

�� releases the lock (“unlock”) on

�

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (29)

Proper Use of Locks

The use of locks must be proper both w.r.t. the structure of transactions, and w.r.t.

the structure of schedules.

� Legal Conditions for Transactions

1. A transaction can Read or Write a DB element
�

only when it holds a

lock on

�

;

– �� � � �

or �� � � �

must be preceded by a
� � � � �

with no occurrences of

� � � � �

in between.

2. If a transaction locks an element, it must eventually unlock that element.

– Every

� � � � �

must be followed by � � � � �

.

� Legal Schedule

Two transactions cannot hold a lock simultaneously on the same DB

element

�

.

– A schedule with
� � � � �

cannot have another

� � � � �

until � � � � �

appears.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (30)

Serial Schedule: An Example

In a banking system two transactions

�� and

�� update two accounts –
��
�

�
.

� Current money in the accounts:

� � � � 	 �

 
 
 �

;

� �� transfers

	 
 
 �

to both

�

and

�

.

� � increments by

	 
 �

both

�

and

�

;

� The DB constraint is that

� � �

.

��� ��� A B
READ(A,t) 1,000 1,000
t := t+100
WRITE(A,t) 1,100
READ(B,t)
t := t+100
WRITE(B,t) 1,100

READ(A,s)
s:= s+s*0.1
WRITE(A,s) 1,210
READ(B,s)
s:= s+s*0.1
WRITE(B,s) 1,210



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (31)

A Not Serializable Example

We consider now the case where

�� and

� � are executed concurrently and we

show that having both Legal Transactions and a Legal Schedule is not sufficient.

� The following are Legal Transactions of the previous example:

�� � � �
� 
 �

� �� � 
 �

�


 � � 
 � � � �
� �� � 
 �

� ��
� 
 �

�

� �
� 
 �

� �� � 
 �

�

 � � 
 � � � �

� �� ��
 �

� ��
��
 �

�� � � �
� 
 �

� � � � 
 �

�


 � � 
 � 
 � �
�

�
� �� � 
 �

� ��
� 
 �

�

� �
� 
 �

� � � � 
 �

�

 � � 
 � 
 � �
�

�
� �� ��
 �

� ��
��
 �



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (32)

A Not Serializable Example (cont.)

� A possible Legal Schedule is:

�
�

�
� A B

�
�

� � �

� � � � � �

� 1,000 1,000


 � � 
 � � � �
�

� � � � �

� � �
� � �

� 1,100

�
�

� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� � �
� � �

� 1,210

�
�

� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� � �
� � �

1,100

�
�

� � �

� � � � � �

�


 � � 
 � � � �
�

� � � � �

� � �
� � �

1,200

� The schedule is legal (the two transactions never hold a lock on the same

element), BUT the schedule is NOT Serializable (in blue there are the

confliciting actions).

Then we need additional conditions.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (33)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (34)

2PL: Two-Phase Locking

� Two-Phase Locking. Condition on the structure of transactions that

guarantees conflict-serializability.

– A transaction is Two-Phase Locked, or 2PL if ALL lock requests precede

ALL unlock requests.

� The “two phases” are thus the first where locks are requested, and the second

where locks are released.

� Sufficient conditions for Conflict-Serializability.

– Given a set of 2PL and legal transactions, and a legal schedule, then the

schedule is also conflict-serializable.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (35)

Two-Phase Locking: An Example

The two transactions in our banking example are legal but not 2PL:

�� � � �
� 
 �

� �� � 
 �

�


 � � 
 � � � �
� �� � 
 �

� ��
� 
 �

�

� �
� 
 �

� �� � 
 �

�

 � � 
 � � � �

� �� ��
 �

� ��
��
 �

�� � � �
� 
 �

� � � � 
 �

�


 � � 
 � 
 � �
�

�
� �� � 
 �

� ��
� 
 �

�

� �
� 
 �

� � � � 
 �

�

 � � 
 � 
 � �
�

�
� �� � 
 �

� ��
� 
 �

We modify the banking example in such a way that

� � and

�� are now 2PL:

�� � � �
� 
 �

� �� � 
 �

�


 � � 
 � � � �
� �� � 
 �

�

� �
� 
 �

�

��
� 
 �

� �� � 
 �

�

 � � 
 � � � �

� �� � 
 �

� ��
� 
 �

��� � � �
� 
 �

� � � � 
 �

�


 � � 
 � 
 � �
�

�
� �� � 
 �

�

� �
� 
 �

�

��
� 
 �

� � � � 
 �

�

 � � 
 � 
 � �
�

�
� �� � 
 �

� ��
� 
 �



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (36)

Two-Phase Locking: An Example (cont.)

� A possible Legal Schedule is:

��
�

��
� A B

�
�

� � �

� � � � � �

� 1,000 1,000


 � � 
 � � � �
�

� � � � �

� 1,100

�
�

� � �

� � �
� � �

�

�
�

� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� 1,210

�
�

� � �

�
� � � � � �

� � � � �

�


 � � 
 � � � �
�

� � � � �

� � �
� � �

1,100

�
�

� � �

� � �
� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� � �
� � �

1,210

� Now the schedule is also Serializable and indeed equivalent to the serial

schedule

� � � �

���
�

(as you can see from the blue conflicting actions).



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (37)

Deadlock
Problem. Transactions can be forced by the scheduler to wait forever for a lock

held by another transaction.

� Example.

�
� is changed to work on

�

first:

��� � � � ��� �
	 � � ��� �
	 � � � � 
 �� � 	 �� ��� �	 � � ��� � 	 �� ��� �
	 � � � � �
	 � � � � 
 �� � 	 �� � � �
	 �� � � �

��� � � � � � �
	 � � � � �
	 � � � � 
 � � ���

�	 �� � � �
	 � � ��� � 	 �� � � �
	 � � ��� �
	 � � � � 
 � � ���

�	 �� ��� �
	 ��

� A possible schedule is:

��� ��� A B

�
�

� � �

� � � � � �

� 1,000 1,000

�
�

� � �

� � � � � �

�


 � � 
 � � � �
�


 � � 
 � 
 � �
�

�
�

� � � � �

� 1,100
� � � � �

� 1,100

�
�

� � �

�
� � � � � �

�
�

� � �

�
� � � � � �

� DBMS should deal with deadlocks: the system must abort and restart one or

more transactions.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (38)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (39)

Locking with Several Lock Modes

� Problem. A transaction must take a lock on a DB element
�

even if it reads

�

but does not write

�

. There is no reason why several transactions could

not read

�

at the same time, as long as they don’t write

�

.

� Solution. Introduce two kinds of locks: Read Lock (or Shared Lock), and

Write Lock (or Exclusive Lock).

� We also examine the improved versions:

1. Upgrade Locks: A transaction can “upgrade” a shared lock to an exclusive

lock.

2. Update Locks: Only “update” locks can be upgraded to exclusive locks.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (40)

Shared and Exclusive Locks

� Multiple readers is not a problem for conflict-serializability since read

actions—of different transactions—can commute.

� A scheduler operating under the Shared and Exclusive Locks policy is such

that: for any DB element

�

there can be either an exclusive lock, or no

exclusive locks but any number of shared locks.

1. Shared lock (read lock) � � � ��� �

: allows

�� to read, but not to write

�

. It

also prevents other transactions from writing

�

, but without preventing

them from reading

�

.

2. Exclusive lock (write lock) � � � ��� �

: allows

�� to read and/or write

�

; no

other transactions may either read or write

�

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (41)

Proper Use of Shared and Exclusive Locks

The use of locks must be proper both w.r.t. the structure of transactions, and w.r.t.

the structure of schedules.

� Legal Conditions for Transactions

1. A transaction can write a DB element

�

only when it holds an exclusive

lock on

�

, while it can read

�

when holding some lock:

(a) �� � � �

must be preceded by a �
� � � � �

or �
� � � � �

with no occurrences of

� � � � �

in between;

(b) �� � � �

must be preceded by an �
� � � � �

with no occurrences of � � � � �

in between;

2. If a transaction locks an element, it must eventually unlock that element.

� 2PL for Transactions

Locking must precede unlocking: A transaction must not have a �
� � � � �

or

�
� � � � �

after any � � � 	 �

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (42)

Proper Use of Shared and Exclusive Locks (cont.)

� Legal Schedule

A DB element may be either locked exclusively by one transaction, or by

several in shared mode.

1. If �
� � � � �

appears in a schedule, then there cannot be a following �
� � � � �

or �
� � � � �

until after an � � � � �

appears;

2. If �
� � � � �

appears, then there cannot be a following �
� � � � �

until after

� � � � �

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (43)

Shared and Exclusive Locks: An Example

� Let

�
� �

�
� be two legal transactions such that both

�
� and

�
� read

�

and
�

,

but only

� � writes

�

:

�
� � �

�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � � � � �

� � �
� � �

� � �
� � �

��
� � �

�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � �
� � �

� � �
� � �

� A possible Legal Schedule is:

�
�

�
�

�
�
�

� � �

� � � � � �

�

�
�
�

� � �

� � � � � �

�

�
�
�

� � �

� � � � � �

�

�
�
�

� � �

�
� � � � � �

� �
� � �

� � �
� � �

�
�
�

� � �

� � � � � �

�

� � � � �

�

� �
� � �

� � �
� � �

� Note. The schedule is conflict-serializable: the conflict-equivalent serial

schedule is

� �
� �

�
�

�

. This is true in general for every legal schedule of legal
and 2PL transactions with shared and exclusive locks.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (44)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (45)

Upgrading Locks

� Main Idea. Instead of taking an exclusive lock immediately, a transaction

can take a shared lock, read, and when ready to write upgrade to exclusive:

– Request an exclusive lock on

�

in addition to an already held shared lock

on

�

.

� Upgrading locks allows more concurrent operation – see the next example.

� Note. Upgrading conforms to the legal conditions for both transactions and

schedules as formulated for shared and exclusive locks apart from the second

rule for legal schedules:

Legal Schedule: New Second Rule

2. If �
� � � � �

appears, then there cannot be a following �
� � � � �

, for

� � � �

,

until after � � � � �

.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (46)

Upgrading Locks: An Example
Let

�� �

�� be two legal transactions – as given in the example on shared and

exclusive locks – such that

�� and

�� read both

�

and

�

, but only

�� writes

�

.

� We change

�� in a way that it first takes a shared lock on

�

, and later, after

its computation on

�

and

�

is finished,

� � requests an exclusive lock on

�

.

�� � �
�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � �
� � �

� � �
� � �

�� � �
�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � �
� � �

� � �
� � �

� A possible Legal Schedule is:��
�

�
�

� �
�

� � �
	 � � � � �	

� �
�

� � �
	 � � � � �
	

� �
�

�� �
	 � � �� �
	

� �
�

�� �
	 � � �� � 	

� �
�

�� �
	 ��� 	 
 � �
� � � � �
	 � � �� �

� �
�

�� � 	 
 � �� �
	

� � � � �	 � � �� �

� Note. The part in red shows the concurrent computation that was not possible

if

�
� asked for an exclusive lock on

�

initially – see the previous example.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (47)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (48)

Update Locks
Problem. When we allow upgrades, it is easy to get into a deadlock situation.

� Example.

�
� and

�
� each read

�

and later write

�

.

�
�

�
�

�
�
�

� � �

� � � � � �

�

�
�
�

� � �

� � � � � �

�

�
�
�

� � �

�
� � � � � �

�
�
�

� � �

�
� � � � � �

� Solution. Update Locks � � � � � �

:

– An update lock gives only the permission to read, but not to write,

�

;

– Only an update lock – no more a shared lock – can be upgraded to an

exclusive lock;

– An update lock on

�

can be granted while there is a shared lock on

�

,

but the scheduler will not grant any kind of lock on

�

when there is an

update lock on

�

(apart from upgrading it to an exclusive lock).

– The update lock looks like a shared lock when it is requested, and looks

like an exclusive lock when it is already held.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (49)

Update Locks: An Example

� Update locks would have no effect on the upgrading lock example –
�
�

would take an update, rather than a shared, lock on

�

.

� Update locks solves the deadlock example: Now both

�
� and

�
� request an

update lock on

�

:

��� � �
�
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � �
� � �

�
� � � �
�

� � �

� � � � � �

� �
�
�

� � �

� � � � � �

� � �
� � �

�
�

�
�

� �
�

� � �

� � � � � �

�

� �
�

� � �

�
� � � � � �

�
�
�

� � �

� � � � � �

� � �
� � �

� �
�

� � �

� � � � � �

�

�
�
�

� � �

� � � � � �

� � �
� � �

� Note. The update locks technique has eliminated the concurrent execution,

but in this example, any significant amount of concurrency would result in

either a deadlock or an inconsistent state.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (50)

Summary

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (51)

The “Dirty” Data Problem

A data is Dirty if it has been written by an uncommitted transaction.

� A transaction can write a DB element

�

and then abort, while a successive

transaction can use the “dirty” value for
�

, resulting in an inconsistent state.

� Note: The problem we are considering here is dirty data stored in main

memory buffers.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (52)

The “Dirty” Data Problem: An Example

Example. We consider our running example and the following schedule:

�
�

�
� A B

�
�

� � �

� � � � � �

� 1,000 1,000
 � � 
 � � � �
�

� � � � �

� 1,100

�
�

� � �

� � �
� � �

�

�
�

� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� 1,210

�
�

� � �

�
� � � � � �

� � � � �

�


� � � � � ��
�

� � �
� � �

�
�

� � �

� � �
� � �

� � � � � �

�


 � � 
 � 
 � �
�

�
�

� � � � �

� � �
� � �

1,100

� The value

� � 	
�

	 
 


written by the aborted transaction

�
� is a dirty data.

� We introduce two methods to prevent reading dirty data: Cascading Rollback

and Recoverable Schedule.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (53)

Cascading Rollbacks

� Rules for applying the Cascading Rollback method.

1. When a transaction

�

aborts, determine which transactions read data

written by

�

, abort them, and iteratively abort all transactions that read

data written by an aborted transaction.

2. To cancel the effect of aborted transactions and fix main memory buffers

containing dirty values an UNDO or UNDO/REDO logging technique is

used. Indeed, old values are always needed.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (54)

Recoverable Schedule

Recoverable Schedule is a simple method that eliminates the need for Cascading

Rollbacks:

1. A transaction must not release any write lock until the transaction has either

committed or aborted.

2. If a transaction aborts and writes dirty data in buffers then the buffers must

be fixed before releasing the locks – generally using the log.

Notes.

1. The first rule is such that a transaction cannot read a dirty data, since data

written by a transaction remains locked until either the transaction commits

or the dirty buffers are recovered.

2. There is a disadvantage: Exclusive locks cannot be released as soon as

possible but we need to unlock written data only at the end of a transaction.

This can inhibit concurrency severely.



Free University of Bolzano–Database 2. Lecture VII, 2003/2004 – A.Artale (55)

Summary of Lecture VII

� Concurrency Control

– Schedule

1. Serial and Serializable Schedules;

2. Conflict-Serializable Schedules;

– Locking Techniques

1. Two-Phase Locking;

2. Shared and Exclusive Locks;

3. Upgrading Locks;

4. Update Locks

� The “Dirty” Data Problem.


