
Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (1)

Databases 2
Lecture VI

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – First Semester

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (2)

Summary of Lecture VI

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (3)

Recovery and Data Integrity

There are two fundamental issues in the way a DBMS controls access to data.

1. Data must be recovered from a system failure.

2. Data integrity must be preserved as a consequence of a concurrent access

(i.e., the DBMS should avoid the introduction of inconsistent data like

booking the same seat to two different users).

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (4)

Transactions

� A Transaction is a collection of DBMS operations that form a single logical

unit of execution—e.g., a query or a modification statement is a transaction.

� The Transaction Manager assures that Transactions are executed correctly.

Query Processor Transaction Manager Log Manager

Buffer Manager Recovery Manager

Disk

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (5)

Transactions: Basic Notions

� A DB is composed by elements: Unit of data accessed by transactions (e.g.,

tuples, disk blocks, etc.).

� A DB has a state: Values of all DB elements.

� A state is consistent if it meets all the DB constraints – e.g., a key identifies

exactly one tuple.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (6)

Correct Transactions

� Correctness Principle.

Atomicity. A transaction is atomic. If only part of its operations execute an

error is issued since the DBMS will (possibly) be in an inconsistent state.

Consistency. A transaction, if completed will take the DB from a consistent

state to another consistent state—transactions preserve data integrity.

Isolation. Even though many transactions may execute concurrently the

DBMS guarantees that the computation is equivalent to a sequential (i.e.,

not concurrent) processing. Thus, each transaction runs in isolation.

Durability. After a transaction completes successfully, the changes it has

made to the database persist.

These properties are called ACID properties – acronym from the first letters of

each of the above properties.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (7)

Address Spaces

There are three spaces that are of importance when dealing with transactions.

1. The Disk space storing he DB elements;

2. The Main Memory space managed by the Buffer Manager;

3. The Local Address space of the Transaction.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (8)

Primitive DB Operations of Transactions

Basic operations that move data between the different address spaces.

1.

� �� �� ��� �

. Copy the disk block containing database element
	

to a memory

buffer.

2.

� � ����� � � . If the block containing database element X is not in a memory

buffer then

� �� � � ��� �

. Next, assign the value of
	

to the transaction’s local

variable

�

.

3.

�
 � � � ����� � � . If the block containing database element

	

is not in a memory

buffer then

� �� � � �� �

. Next, copy the value of

�

to

	

in the buffer.

4.

� � � � � � ��� �

. Copy the buffer containing

	

to disk.

�
� �

and

�
 � � �

are issued by transactions;

� � �� � �

and

� � � � � �
are issued by the buffer manager.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (9)

Transaction Example

�

�
�

�

are database elements with the constraint

� � �

.

� Transaction

� � � � � ��� ��� 	 � � 	 � �

.

� Execution of

�

involves reading

�
�

�

from disk, performing the arithmetic

operations in main memory, and writing new values for
�
�

�
back to disk.

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

� � � ��

16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

� � � ��

16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (10)

System Failure: An Example

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

� � � ��

16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

� � � ��

16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

� If a system failure happens before

� � � � �� � � �

is executed there is no effect

to the DB: It is as if T never ran.

Problem: If a system failure happens just after

� � � � � � � � �

but before

� � � � � � � 	 �

. The DB is left in an inconsistent state where

� � � 	

.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (11)

Summary

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for Failure System Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (12)

Failure Classification

� Erroneous data entry (mistyping)

– Database Constraints: key constraints, value constraints that associate

a type to each attribute, etc. Triggers can check that constraints are

satisfied.

� Media failures

– Local failure of a disk that changes few bits: parity checks on sectors.

– Disk crash: handled by RAID (Redundant Array of Independent disks)

techniques that automatically “mirror” data on separate disks.

– Catastrophic Events: Maintain an external archive stored at a safe

distance from the DB itself.

� System failures

– Power loss and Software errors: The content of main memory is lost

while DB Transactions already made some modifications to the DB.

Solution: Maintain a Log File that records the changes—Logging

Techniques.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (13)

Logging Techniques

� A Log is a file containing a sequence of Log Records describing what

transactions have done.

� In case of a system failure the log is consulted to re-create a consistent state

of the database.

� The Log can also be used together with an archive in case of a Media failure.

� Two possibilities to recover from system failure:

1. Un-Do the work done by some transactions: It appears like they never

executed.

2. Re-Do the work done by some transactions: The new values they wrote

to the DB are written again.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (14)

Summary

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (15)

Undo Logging

� The Undo Logging technique restores a DB state by undoing any database

change made by pending transactions.

� The log manager records in the log file each important event of a transaction

execution.

� There are various types of log records:

1. � � � �
� � � . Transaction

�

started.

2. � � �� � � � � � . Transaction

�

has completed, and all its changes have

been output to the disk.

3. � � 	 �
� � � . Transaction
�

could not complete successfully, it does not

write any of its DB modifications to disk.

4. � �� ��� � � – called update record. Database element

�

has been modified

by Transaction
�

; it former value was �.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (16)

The Undo-Logging Rules

� Main Idea. If there is a crash before a transaction commits, the log will tell

us how to restore old values for any DB elements changed on disk by the

transaction.

� The Undo-Logging Rules control the data flow from Main Memory to Disk.

� Undo-Logging Rules:

1. Log records � �� ��� � � for DB element
�

must be written to disk—i.e.,

the log file should be updated on disk—before the new value for

�

is

written to disk.

2. Before writing the commit record on the log file on disk, all DB

modifications made by the transaction must appear on disk.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (17)

The Undo-Logging Rules (cont.)

Given a transaction then under the undo-logging policy illustrated before the

following disk writing occur in this order:

1. The log update records indicating changed elements;

2. The changed elements themselves;

3. The

� �� � � �

log record.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (18)

Transaction Example

Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

� �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

� �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16 � � �� � � � � �

FLUSH LOG

Note:

�� � �� � ��

is an action that writes any log record currently in Main

Memory to disk – this command updates the Log file.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (19)

Recovery With Undo Logging

In case of a system failure such that only part of the changes made by a transaction

have been written to disk, then the recovery manager uses the log file (stored

on Disk) to restore the DB – in our example a system failure occurs just before

� � � � � � � 	 �

.

� To recover a crash using a Undo-Logging do:

1. Examine the log to identify all transactions
�

such that � � � �
� � �

appears in the log, but neither � � �� � � � � � nor � � 	 �
� � � does. In

this case,

�

is an incomplete transaction and must be undone.

2. Examine each log entry � �� ��� � � from most recent to earliest log

records and:

(a) If

�

is not an incomplete transaction, do nothing.

(b) If T is incomplete, do:
�
 � � � ����� � � � � � � � �� ��� �

.

3. For each incomplete transaction

�

add � � 	 �
� � � to the log, and flush

the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (20)

System Failure Example
Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

� �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

� �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

� Our hypothetical crash before
� � � � � � � 	 �

would result in

�

being identified

as incomplete and the DB in an inconsistent state.

– We would find in the log both � �� 	�

� � and � �� �
�

� � , and write both

� � �� 	 � �

to the DB: The DB is now in a consistent state.

� Problem: What happens if there is a system error during recovery?

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (21)

Checkpointing

� Problem: In principle recovery requires looking at entire log.

� Log cannot be truncated after a transaction commits since many inter-

living transactions may execute, and log records pertaining to other active

transactions might be lost.

� Simple solution: occasional checkpoint operation:

1. Stop accepting new transactions;

2. Wait until all current transactions commit or abort;

3. Flush the log to disk;

4. Enter a � �� � � � record in the log, and flush again the log to disk;

5. Resume accepting transactions.

� If recovery is necessary, we know that all transactions prior to a recorded

checkpoint have committed and they do not need be undone.

� The log before a � �� � � � record can deleted safely.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (22)

Nonquiescent Checkpointing

� Problem: we may not want to stop transactions from entering the system,

since this means the system must shut down.

� The steps in a nonquiescent checkpointing are:

1. Write � � � �
� �� � � � � � � � � � � � �
� � record to log, where

��
� are all the

active (uncommitted) transactions;

2. Wait until all transactions

��
� � � � � �

��� commit or abort, but do not prohibit

new transactions;

3. Write � � � �� � � � record to log, and flush the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (23)

Recovery With Nonquiescent Checkpoints

Rules to recover a crash using Undo Nonquiescent Checkpoints.

Scanning the log from the end do:

� If we first meet � � � �� � � � then we can restrict to transactions

that began after the � � � �
� �� � � � � � � � � � � � �
� � . The log before

� � � �
� �� � � � � � � � � � � � �
� � is useless and can be deleted.

� If we first meet � � � �
� �� � � � � �� � � �� � �
� � , then the crash occurred during

the checkpoint. We need to undo:

1. All those transactions

�

with � � � �
� � � after the � � � �
� �� � � �

but no � � �� � � � � � ;

2. All transactions

�
� on the list associated with � � � �
� �� � � � with

no � � �� � � � �
�

� . The log before the start of the earliest of these

incomplete transactions can be deleted.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (24)

Nonquiescent Checkpoints: An Example

Suppose we start with the following log:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� �
�� 	�

� � �
Now we decide to do a Nonquiescent Checkpoint:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� �
�� 	�

� � �

� � � �
� �� � � � � � � �
�

� �

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (25)

Nonquiescent Checkpoints: An Example (cont.)

Suppose another transaction,

�
� starts while waiting for

� � and

�
� to complete.

After a crash we have the following log:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� �
�� 	�

� � �

� � � �
� �� � � � � �� �
�

� �

� �
��

�
�

� � �

� � � �
� �
�

�

� � �� �

� � �

� � �� � � � � � �

� �
�� ��

� � �

� � �� � � � �
�

�

� � � �� � � �

� �
�� ��

� � �

�
� is the only uncompleted transaction that has to be undone:

�
 � � � � ��

� � � � �
 � � � � ��

� � � � � � � � � � � � �� � � � � � � � � � � � 	 �
� � �
�

�

.

The log before � � � �
� �� � � � � � � �
�

� � can be deleted.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (26)

Nonquiescent Checkpoints: An Example (cont.)

Suppose the crash happens during the Checkpoint and the log is:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� �
�� 	�

� � �

� � � �
� �� � � � � �� �
�

� �

� �
��

�
�

� � �

� � � �
� �
�

�

� � �� �

� � �

� � �� � � � � � �

� �
�� ��

� � �

� Scanning backwards, we identify

�
� and

�
� as incomplete transactions;

� When we reach � � � �
� �� � � � � �� �
�

� � we know that the only other

possible incomplete transaction is
� � , but

� � committed;

� When we reach � � � �
� �
�

� we undo both

�
� and

�
� :

�
 � � � � ��

� � � � �
 � � � � �
�

� � � � �
 � � � � 	�

� � � �

� � � � �� � � � � � �� � � � � � � � � � � � � � � 	 � � � 	 �
� � �
�

� � � 	 �
� � �
�

�

.

The DB is now in a consistent state, and the log before � � � �
� �
�

� can be

deleted.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (27)

Summary

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (28)

The Undo-Logging Rules

� Main Idea. If there is a crash before a transaction commits, the log will tell

us how to restore old values for any DB elements changed on disk by the

transaction.

1. Log records � �� �� � � for DB element

�

must be written to disk—i.e., the

log file should be updated on disk—before the new value for

�

is written to

disk.

2. Before writing the commit record on the log file on disk, all DB modifications

made by the transaction must appear on disk.

Given a transaction then under the undo-logging policy the following disk writing

occur in this order:

1. The log update records indicating changed elements;

2. The changed elements themselves;

3. The

� �� � � �

log record.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (29)

Problem of the Undo Logging

� Problem. Undo Logging forbids to commit a transaction without first writing

all its changed data to disk.

� There is an increase in the number of Disk I/O due to the immediate backup

of DB elements required by the Undo Logging technique. It’s desirable to

output multiple log records at once.

� We can save disk I/O if DB changes reside in main memory for a while.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (30)

Redo-Logging Vs. Undo-Logging

1. While Undo-Logging cancels the effect of incomplete transactions and

ignores committed ones, Redo-Logging ignores incomplete transactions and

repeats the changes made by committed transactions.

2. While Undo-Logging writes changed DB elements to the Disk before

Commit, Redo-Logging Commit before writing data to disk.

3. Redo-log record entries contain new values (instead of old values):

� �� ��� � � = “transaction

�

modified

	

and the new value is �”.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (31)

Redo-Logging Rules

1. Before modifying the DB element

	

on disk, the transaction
�

must be

committed, and the � � �� � � � � � record written to the log in main memory.

2. Before modifying DB element

	

on disk, write to disk all the log records

involving

	

, including both the update records � �� ��� � � and the

� � �� � � � � � records.

Given a transaction then under the redo-logging policy the following disk writing

occur in this order:

1. The log update records indicating changed elements;

2. The

� �� � � �

log record.

3. The changed elements themselves;

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (32)

Undo Vs. Redo Logging Rules

Disk writing sequence:

Undo

1. LOG

2. X

3. COMMIT

Redo

1. LOG

2. COMMIT

3. X

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (33)

Transactions under the Redo-Logging Policy: An Example
Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

� � �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

� � �

� � �� � � � � �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Note 1. The � � �� � � � � � comes now before the DB elements get updated.

Note 2. OUTPUT(A) and OUTPUT(B) can be delayed until necessary (waiting

for other DB elements to be written to the Disk).

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (34)

Recovery for Redo Logging

� While incomplete transactions did not change the DB, committed transac-

tions cause problems since we don’t know which of their changes have been

written to disk.

� To recover a crash using a Redo-Logging we do:

1. Find the set of committed transactions from the log;

2. Scan the log forward from the beginning and for each � �� ��� � � do:

– If

�

is committed, write value � for

	

to disk, i.e., do:

�
 � � � ���� � � � � � � � � � ��� �

;

– Otherwise, do nothing.

3. For each incomplete transaction

�

add � � 	 �
� � � to the log, and flush

the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (35)

System Failure: An Example

Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

� � �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

� � �

� � �� � � � � �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
If a system failure happens after � � �� � � � � � then

�

is recognized as a

committed transaction and will be redone:

�
 � � � � �
�

� � � � �
 � � � � 	�

� � � � � � � � �� � � � � � �� � � � � 	 �
�

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (36)

Nonquiescent Checkpointing a Redo Log

� Key Action 1: Since changes by committed transactions can be written to

disk much later than the time the transactions commit, then we need to write

to disk all those changes before ending the checkpoint.

� Key Action 2: Checkpoint can now end without waiting for active transac-

tions to either commit or abort.

� Steps in a nonquiescent checkpointing under a redo-logging policy:

1. Write � � � �
� �� � � � � � � � � � � � �
� � record to log, where

�
� are all the

active (uncommitted) transactions;

2. Write to disk DB elements written to buffers, but not yet to disk, by

transactions that committed before

� � �
� �� � �

;

3. Write � � � �� � � � record to log, and flush the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (37)

Nonquiescent Checkpointing a Redo Log: A Log Example

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� � �� � � � � � �

� �
�� 	�

� � �

� � � �
� �� � � � �
�

� �

� �
��

�
�

� � �

� � � �
� �
�

�

� �
�� �

� � �

� � � �� � � �

� � �� � � � �
�

�

� � �� � � � �
�

�

� When we start checkpointing:

– Only

�
� is active;

– Only

� � committed.

Then, before writing � � � �� � � � into the log we must be sure that the

new value for the element
�

(changed by the committed

� �) has been written

to disk.

� Note that � � � �� � � � is before � � �� � � � �
�

� .

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (38)

Recovery with a Nonquiescent Checkpointed Redo Log

The strategy depends on whether the last checkpoint record is

� � �
�

or

� �
:

� If we first meet � � � �� � � � , then we can restrict to transactions that

committed after the � � � �
� �� � � � � � � � � � � � �
� � (since transactions that

committed before have their value written to disk).

– We need to redo all the committed transactions that are either among the

�
� or started after the

� � �
� �� � �

with the redo-logging strategy. Log

previous to the earliest of the � � � �
� �
�

� is useless and can be deleted.

� If we first meet � � � �
� �� � � � � �� � � �� � �
� � , then the crash occurred

during the checkpoint. Committed transactions before this start could have

not written their changes to the disk.

– Search back to the previous � � � �� � � � together with its matching

� � � �
� �� � � � � �� � � ��

��
�

� � , and redo all the committed transactions

that are either among the

�
� or started after that � � � �
� �� � � � � �� � � ��

��
�

� �

record;

– The log before the earliest of the � � � �
� �
�

� and can be deleted.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (39)

Recovery with a Nonquiescent Checkpointed Redo Log:
An Example

Suppose there is a crash and the log is:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� � �� � � � � � �

� �
�� 	�

� � �

� � � �
� �� � � � �
�

� �

� �
��

�
�

� � �

� � � �
� �
�

�

� �
�� �

� � �

� � � �� � � �

� � �� � � � �
�

�

� � �� � � � �
�

�

Since we meet � � � �� � � � we need to check only

�
� (present in the checkpoint

list) and

�
� (started after checkpoint). Since both committed they are redone:

�
 � � � � 	�

� � � � �
 � � � � �
�

� � � � �
 � � � � �

� � � � � � � � � � � 	 � � � � � � � � � � � � � �� � � � � �

The log before � � � �
� �
�

� can be deleted.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (40)

Recovery with a Nonquiescent Checkpointed Redo Log:
An Example (Cont.)

Suppose there is a crash and the log is:

� � � �
� � � �

� � ��

�
� � �

� � � �
� �
�

�

� � �� � � � � � �

� �
�� 	�

� � �

� � � �
� �� � � � �
�

� �

� �
��

�
�

� � �

� � � �
� �
�

�

� �
�� �

� � �

Since we meet � � � �
� �� � � � �
�

� � and there is no previous � � � �
� �� � � � a

normal Redo policy is applied.

� � is the only committed transaction:

�
 � � � � �
� � � � � � � � � � � � � � � 	 �
� � �

�
� � � 	 �
� � �

�
�

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (41)

Summary

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (42)

Undo/Redo Logging

Problems.

� Undo Logging forbids to commit a transaction without first writing all its

changed data to disk, perhaps increasing the number of disk I/O required.

� Redo Logging requires keeping all modified blocks buffered until commit,

perhaps increasing the number of buffers required.

The Undo/Redo Logging technique provides an increased flexibility to order

the actions at the expense of more information in the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (43)

The Undo/Redo Logging Rule

� The update record has a new form: � �� �� �� � � , i.e., transaction

�

updated

DB element

	

from old value � to new value �.

The rule for the Undo/Redo Logging is:

1. Before writing a DB element

	

to the Disk because of changes made by

�
�

every update record � �
�� ��� �� � � must appear on Disk.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (44)

The Undo/Redo Logging Rule (cont.)

� The Undo/Redo rule enforces ONLY the common constraints between Undo

and Redo techniques.

� In particular, there is no constraint about whether DB elements are written to

disk before or after the � � �� � � � � point.

Undo

1. LOG

2. X

3. COMMIT

Redo

1. LOG

2. COMMIT

3. X

Undo/Redo

1. LOG

2. X

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (45)

Transactions under the Undo/Redo Logging Policy: An
Example

Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

�
�

� � �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

�
�

� � �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

� � �� � � � � �

OUTPUT(B) 16 16 16 16 16

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (46)

Recovery with Undo/Redo Logging

� In the log we have the information either to Undo a transaction (by restoring

the old values), or to Redo a transaction (by writing the new values).

� The Undo/Redo recovery policy is:

1. Redo all the committed transactions from the first to the most recent;

2. Undo all the incomplete transactions from the most recent back to the

first.

� Note: With the Undo/Redo technique all the transactions have to be either

undone or redone.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (47)

Recovery with Undo/Redo Logging: An Example
Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

�
�

� � �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

�
�

� � �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

� � �� � � � � �

OUTPUT(B) 16 16 16 16 16

If the crash occurs just after the flush of � � �� � � � � � , then

�

is recognized as

a committed transaction: We redo the changes writing the new value

� �

for both

�
�

�

to the disk:
�
 � � � � �
�

� � � � �
 � � � � �
�

� � � � � � � � � � � � � � � � � � �� � 	 �

.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (48)

Recovery with Undo/Redo Logging: An Example (Cont.)
Action t Mem A Mem B Disk A Disk B Log

READ(A,t) 8 8 8 8 � � � �
� � �

t := t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 � �� �
�

�
�

� � �

READ(B,t) 8 16 8 8 8

t := t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 � �� 	�

�
�

� � �

FLUSH LOG

OUTPUT(A) 16 16 16 16 8

� � �� � � � � �

OUTPUT(B) 16 16 16 16 16

If the crash occurs before � � �� � � � � � , then

�

is recognized as an incomplete

transaction: We undo the changes writing the old value 8 for both

�
�

�

to the

disk:

�
 � � � � �
�

� � � �
 � � � � �
�

� � � � � � � � � � � � � � � � � �� � 	 � � � 	 �
� � � �

.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (49)

Nonquiescent Checkpointing with Undo/Redo Logging

� The steps in a Nonquiescent Checkpointing under the Undo/Redo logging

policy are:

1. Write a � � � �
� �� � � � � � � � � � � � �
� � record to log, where

�
� are all the

active (uncommitted) transactions, and flush the log;

2. Write to disk all the DB elements written to buffers, but not yet to disk

– unlike redo logging, we flush all buffers, not just the ones written by

committed transactions;

3. Write � � � �� � � � record to log, and flush the log.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (50)

Summary

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (51)

Recovery from Media Failure: Archiving + Logging

� Using just the Log is not sufficient:

– Also if the Log is still available we would need the full Redo Log;

– The log would tell us the history of the DB since he was populated (no

deletions after checkpoints);

– This is not practicable: the size of such a log would exceed that one of

the DB.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (52)

Recovery from Media Failure: Archiving + Logging

� Archiving: Assumes that there is a backup copy (possibly made with an

automatic RAID procedure).

� Main Idea: Use backup copies of the DB + the Log that records the full

history since the backup archive was created.

� There are two levels of Archiving:

1. Full Dump: The whole DB is copied;

2. Incremental Dump: Only the DB elements changed since the previous

dump are copied (such incremental dumps can be created faster than full

dumps).

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (53)

Nonquiescent Archiving

� Problem. A DB cannot shut down during the creation of the backup copy.

� Solution. Allowing transactions to execute during backup: DB elements can

change (and possibly written back to disk) during the backup.

– Use the Log entries generated during the backup time to restore a

consistent DB state.

� Steps in Nonquiescent Archiving:

1. A Nonquiescent archive tries to make a backup copy of the DB when the

dump began;

2. Transactions can modify the DB state;

3. The Log entries recorded during the time spent for the backup will help

to restore a consistent DB state.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (54)

Nonquiescent Archiving: An Example

� Example. Suppose we have a DB made by 4 elements

�
�

�
�

�
�

�
whose

values are

�
�

�

�
�

�

and we have the following events during a backup:

Disk Archive

Copy A

A := 5

Copy B

C := 6

Copy C

Copy D

Then, while at the beginning the DB had values

� �
�

�

�
�

� �

, and at the end of

the dump has values
��
�

�

�
�

� �

, the dump copy has values

� �
�

�

�
�

� �

: The

value for

�

is wrong!

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (55)

Recovery a Consistent Dump with Nonquiescent Archiving

To restore a consistent dump using a nonquiescent archiving under a redo-logging

technique we do:

1. Write a � � � �
� �� � � record to the Log;

2. Perform a checkpoint in the redo style;

3. Start a full/incremental dump;

4. If the dump completed successfully, including a copy of the Log, write

� � � �� � � record to the Log;

5. Use a REDO policy to restore a consistent dump.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (56)

Recovery a Consistent Dump: An Example

Suppose the changes to the simple DB in the previous example were caused by

transactions

� �� �
� active when the dump began. We have the following log:

� � � �
� � � �

� � �

� � � �
� �
�

�

� � �

� � � �
� �� � �

� � � �
� �� � � � � � � �
�

� �

� �
��

�
�

�
� � �

� �
��

�
�

�
�

� �

� � �� � � � �
�

�

� � �� 	�

�
�

� �

� � � �� � � �

� � � �� � �

Since we are in a REDO policy and we first meet � � � �� � � � we need to redo

only the committed transactions that are in the � � � �
� �� � � � list and that

started after the checkpoint. In this case only

�
� has to be redone.

While before the REDO the backup had the values

� �
�

�

�
�

� �

, after the REDO

the backup has the values
��

�

�

�
�

� �

.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (57)

Recovery the DB with Nonquiescent Archiving + Logging

Suppose we have a full dump, then the steps are:

1. Find the most recent full dump and restore it to a consistent state using the

nonquiescent archiving technique;

2. Find possibly later incremental dumps and restore them;

3. Modify the (restored) full dump using the (restored) incremental dump,

starting from the earliest to the most recent;

4. Use the log associated to the more recent dump to advance to a more recent

state.

Free University of Bolzano–Database 2. Lecture VI, 2003/2004 – A.Artale (58)

Summary of Lecture VI

� Notion of Transaction

� Failure Recovery

– Failure Classification

� Logging Techniques for System Failure Recovery

1. Undo Logging

2. Redo Logging

3. Undo/Redo Logging

� Recovery from Media Failure: Archiving.

