
Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (1)

Database 2
Lecture I

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – First Semester

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (2)

Course Overview

� Techniques of record storage on disk;

� Indexing techniques for efficient records retrieval;

� Query processing and optimization;

� Transaction management

– Concurrency control

– Error recovery techniques

� Transaction management in Distributed Databases

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (3)

Readings

Database Systems: The Complete Book, Hector Garcia-Molina, Jeff Ullman, and

Jennifer Widom, Prentice-Hall, 2002.

Fundamentals of Database Systems, R. Elmasri and S. B. Navathe, Addison

Wesley,

� � �

Edition, 2003.

Database System Concepts, A.Silberschatz, H.F.Korth, S.Sudarshan,

� � �

edition,

Mc Graw Hill, 2002.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (4)

Summary of Lecture I

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (5)

What is a Database?

� A Database is a collection of data with a correlated meaning which are

stored and manipulated.

� A database represents some aspect of the real world called the mini-world or

Universe of Discourse (UoD).

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (6)

What is a Database Management System?

A Database Management System (DBMS) is a general-purpose software which

facilitates the process of creating, storing and manipulating databases in an

efficient way (both in space and time).

DBMS main features:

1. Data must persist over long period of time;

2. Supports efficient access to very large amounts of data (gigabytes or more);

3. Support for concurrent access to data: Many different processes (transac-

tions) can access the Database at once;

4. Recovery from system failures;

5. Security: Users must be authenticated.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (7)

A Database Management System

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (8)

Summary

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (9)

Storing a Database

Databases are generally stored on Disk rather than in main memory.

� Size. Databases for enterprise contain giga or tera-byte of data.

� Volatility. Data must be preserved and main memory is volatile.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (10)

Storing a Toy Database

� � � �� � � �

NAME ID DEPT

Smith 123 CS

Johnson 522 ES

� � � � � � � � �

�� � � �

NAME OFFICE

CS F10

ES L12

� � � � � �

� DB schema stored in a special file /usr/db/schema:

Students#name#STR#id#INT#dept#STR

Depts#name#STR#office#STR

� � �

� Relations stored in files, e.g., relation Students in /usr/db/Students:

Smith#123#CS

Johnson#522#ES

� � �

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (11)

Query Execution: Selection

SELECT * FROM R WHERE � Condition �

1. Read the schema file to determine attributes of R and their types;

2. Read the R file and for each line:

(a) Check the condition;

(b) Display the line if the condition is true.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (12)

Query Execution: Join

SELECT office

FROM Students, Depts

WHERE Students.name = ’Smith’ AND

Students.dept = Depts.name.

1. Read the schema file to determine attributes of Students and Depts and

their types;

2. Read in turn each line/tuple from files Students and Depts, and:

(a) Check whether the name of the student is ’Smith’, and if true

(b) Check whether the current pair of tuples represent the same department,

and if true

(c) Display the office.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (13)

What is Wrong

1. No flexibility for DB modifications: For each change the entire file has to

be rewritten.

2. Search Expensive:

� Selection: Always read entire relation;

� Join: It is not necessary to look at all pairs of tuples – more efficient join

operations.

3. No buffered data: Everything comes off the disk all the time.

4. No concurrency control: Several users can modify a file at the same time

with unpredictable results.

5. No reliability: We can lose data in a crash.

6. No security: File system protection too coarse.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (14)

Summary

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (15)

The Memory Hierarchy

��� � ���

���
	�
 ��

�� � ��� � �

� � �� � �
���	� ��� �
�
 ��

�� 	 �� �

� � � �
� � �� � � �

 � � � � � �

�� 	 �

	� ���
�
 ��

! � ��
�
 � � �

Database System Implementation, H. Garcia-Molina, J. Ullman, and J. Widom, Prentice-Hall, 2000.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (16)

The Memory Hierarchy (cont.)

� Cache: fastest. Access time: nanoseconds (

� � � �

), size: perhaps 1Mb (

� � �

).

� Main memory. Access time: under a microsecond (
� � � �

), size: perhaps

128Mb.

� Secondary storage: Typically magnetic disks. Access times in milliseconds

(unit of read/write = block or page, typically 4Kb). Capacities in gigabytes

(

� � �

).

� Tertiary storage. Access times in seconds, capacities in terabytes (

� � ��

).

Most common: racks of tapes, CD-ROMs.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (17)

Hard Disk Physical Structure

� � �� � ��� �
	 ��
 � � � �

���
 ��

� �
 �

� �
 � � �
 � �

Database System Implementation, H. Garcia-Molina, J. Ullman, and J. Widom, Prentice-Hall, 2000.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (18)

Hard Disk Logical Structure

� � �� ���
� � � �	� �

 ��

✦

✦

Database System Implementation, H. Garcia-Molina, J. Ullman, and J. Widom, Prentice-Hall, 2000.

Surfaces covered with concentric Tracks.

� Tracks at a common radius = Cylinder. Important because all data of a

cylinder can be read quickly, without moving the heads.

� Floppy disk: 40 cylinders; typical magnetic disk: 10,000 cylinders (optical

disk: several times that).

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (19)

Hard Disk Logical Structure (cont.)

� Tracks divided into Sectors by unmagnetized gaps.

� Sector is indivisible unit for read/write and error detection.

Usually one sector =

� � �

Bytes.

� A bad sector is “cancelled” by the disk controller, so it is never used.

� Sectors are grouped into Blocks: logical units for read/write.

Typical one block � � �� � ��� � � �

Bytes, i.e.,

�

sectors.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (20)

Accessing Disk Blocks

The following events occur when an application requests a particular tuple

� � :

1. The DBMS determines which of the blocks contains
� � ;

2. The block is read into a cache buffer (if not already there);

3.

� � ready to be read from the application.

In particular, modifying a block requires:

1. Read the block into a cache buffer;

2. Modify the block there;

3. Write the block back to disk.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (21)

Efficient Use of Disk

Data in DBMS applications do not fit in main memory. Algorithms should limit

the number of disk accesses.

� Disk I/O. Read or write of a block is very expensive compared with what is

likely to be done with the block once it arrives in main memory.

– Perhaps 1,000,000 machine instructions in the same time a disk I/O is

performed.

� I/O Model of Computation. The number of block reads and writes is a

good approximation of the running time of the algorithm and should

be minimized.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (22)

I/O Strategies

Here are some techniques that make secondary-memory algorithms more

efficient.

Group related blocks by cylinder.

� If we are going to read or write blocks in a known order, place them by

cylinder, so once we reach that cylinder we can read block after block.

Prefetching.

� Load in cache buffers the blocks that are needed in advance. Similarly,

keep output blocks in cache buffers until it is convenient to write them to

disk. LRU (Least Recently Used) technique: The block that has not been

referenced for the longest time is written back to the disk.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (23)

Summary

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (24)

Physical Layout of Data

Tuples and relations are stored in secondary storages following the block model.

MOVIE

TITLE YEAR LENGTH FILMTYPE STUDIONAME

Star Wars 1977 124 color Fox

Mighty Ducks 1991 104 color Disney

Wayne’s World 1992 95 color Paramount

� Attribute. Sequence of bytes representing the value of an attribute in a tuple,

called Field.

� Tuple. Sequence of bytes divided into fields, called Record.

� Relation. A collection of records that form the extent of a relation is stored

in a File as a collection of blocks.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (25)

Physical Layout of Data (Cont.)

We need to discuss the following issues:

1. How do we represent datatypes as fields?

2. How do we represent tuples as records?

3. How do we represent collections of records in blocks of memory?

4. How do we cope with record sizes that maybe different for different tuples?

5. How do we represent relations as collections of blocks?

6. What happens if the size of a record changes because of an update?

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (26)

Attributes: How we Represent Datatypes as Fields (1)

The representation of an attribute depends by the associated SQL datatype. In

general, datatypes can be represented by a fixed length field made by a sequence

of bytes.

� Integers, Reals: 2-8 byte fields.

� Fixed-length Character Strings, CHAR(n): array of � bytes (possibly filled

with pad characters.) Ex. of a CHAR(10) and cat as a string:

cat

� � � � � � �

� Variable-length Character Strings, VARCHAR(n): array of � � �

bytes,

regardless of how effectively long the string is. Two methods:

– Lenght plus Content. Ex. of a CHAR(10) and cat as a string:

�

cat

– Null Terminated String. Ex. of a CHAR(10) and cat as a string:

cat

�

and the remaining positions are irrelevant.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (27)

Attributes (Cont.)

� Date: array of fixed length (SQL2 uses arrays of 10 bytes).

� Sequence of bits, BIT(n): each

�

bits are packed in

�

byte. Unused bits are

put to

�

.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (28)

Fixed-Length Records:
How we Represent Tuples as Records (2)

Tuples are represented by records. When all fields of the record have a fixed

length we simply concatenate the fields.

CREATE TABLE EMPLOYEE
(INITIAL CHAR,

LAST-NAME VARCHAR(15),
ADDRESS VARCHAR(255),
SSN CHAR(5),
BDATE DATE,
EMP-ID INT,
SALARY DECIMAL(10,2));

Each record of type Employee takes

� � �� � � �� � � � � � � � � � � � � �

bytes.

To locate a single record’s field the associated schema file is consulted.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (29)

Storing Collections of Fixed-Length Records:
How we Represent Collections of Records in Blocks of

Memory (3)

� Fixed-Length Records representing tuples of a relation are packed in blocks

following the block header.

� The Bloch Header contains the following information:

– Info about wich relation the records of this block belong to;

– Pointers to other blocks storing tuples of the same relation;

– Offset for each record in the block;

– Timestamp indicating the block’s last update;

– etc...

Block Header record 1 record 2 � � � record n

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (30)

Variable-Length Records

1. Fields that vary in length.

We can choose to allocate exact space for storing a VARCHAR string.

2. Very large fields.

Fields can contain pictures, movies or sounds: These fields are very large

and they do not fit within blocks.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (31)

Records with Variable-Length Fields

Put the Fixed-Length fields before the Variable-Length fields. The record header

contains additional information:

1. The length of the whole record;

2. Pointers (i.e., an offset table) to the beginning of each Variable-Length field

(excluding the first of them).

Example.
EMPLOYEE(INITIAL,LAST-NAME,ADDRESS,SSN,BDATE,EMP-ID,SALARY)

Record Header

� � � 42 J 12345 5/7/1964 543 2235.00 Smith Queen Rd.

Space allocated for this record with variable-length fields:

� � � � � � � � � � � � � � � � �

bytes (instead of

� � �

bytes).

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (32)

Records with Large Fields

Problem: The record does not fit in one block.

Solution: Spanned Records, records are split between two or more blocks.

Record Fragment: portion of the spanned record allocated in one block.

The record (fragment) header contains additional information:

1. A bit indicating if the record is a fragment;

2. If it is a fragment, then two pointers for the next and previous fragment for

the same record (the first fragment has a null previous pointer, while the last

fragment has a null successive pointer).

Spanned Records are also used for storing records slightly larger then half a block

for saving space.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (33)

Relations with Variable-Length Records:
How we Cope with Records with Different Sizes (4)

The header of the block contains an Offset Table holding the offset of the records

within the block.

The records are stored starting from the end of the block, while the offset table

grows from the front end.

� � � record 3record 2record 1

off. table

header

unused

Since we don’t know in advance how many records the block will hold this

solution allows to dynamically allocate space for the offset table.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (34)

Summary

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (35)

Storing DB Relations:
How we Represent Relations as Collections of Blocks (5)

� Each Relation is stored in a separate file of records.

� We use the term Data File to refer to the file of records which stores a given

Relation.

� Data files can have the following structures:

1. Heap File Organization. Records are stored anywhere in the file where

there is space.

2. Sequential File Organization. Records are stored in sequential order,

according to the value of some field(s).

NOTE: In the following we consider the Heap File Organization. The Sequential

File Organization will be discussed in the next Lecture on Indexing Techniques.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (36)

Update, Deletion and Insertion in Heap Files with
Fixed-Length Records

Updating an existing record is harmless for Fixed-Length Records.

We need to optimize both Time and Space for Deletion/Insertion into a heap file.

� Technique 1. When a record is deleted the last record is moved into the

space occupied by the deleted record.

� Technique 2. Usually, insertion is more frequent than deletion:

1. Wait for a new insertion to occupy the deleted space.

2. Maintain a list of pointers to the free space. Each block contains a

Block header with a pointer to the first free space, while this first record

contains the pointer to the next free space, and so on.

3. A new record is inserted in the free space pointed to by the header. The

header pointer is changed to point to the next free space.

4. If the header pointer is null the record is simply appended.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (37)

Deletion and Insertion in Heap Files.
An Example

header

record 0

record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

Account

�

Branch Balance

A-101 Downtown 500

A-110 Downtown 600

A-201 Perryridge 900

A-217 Brighton 750

A-222 Redwood 700

A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (38)

Deletion and Insertion in Heap Files with
Variable-Length Records

� Deletion: Free the space for both the record and its pointer, compact both

the remaining records andt the offset table so that there is always a unique

unused region in the center.

� Insertion: Find a block with enough space, or get a new block, and put the

record there introducing a new pointer in the offset table.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (39)

Updates in Heap Files with Variable-Length Records

We have problems similar to both insertion and deletion.

1. If the updated record is longer than the old version we require to either

sliding records around the block or moving the record into another block. In

both cases the offset table must be updated.

2. If the updated record shrinks we have the opportunity to free some space as

with the deletion case.

Free University of Bolzano–Database 2. Lecture I, 2003/2004 – A.Artale (40)

Summary of Lecture I

� Introduction to Databases.

� Storing a Database.

– Storing a toy database;

– An overview of secondary storage devices;

– Physical layout of data;

– Efficient techniques for storing DB Relations.

