
Formal Languages and Compilers
Lecture VIII—Semantic Analysis:
Type Checking & Symbol Table

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it
http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Summary of Lecture VIII

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Type Checking: Intro

• A compiler must check that the program follows the Type Rules of
the language.

• Information about Data Types is maintained and computed by the
compiler.

• The Type Checker is a module of a compiler devoted to type
checking tasks.

• Examples of Tasks.
1 The operator mod is defined only if the operands are integers;
2 Indexing is allowed only on an array and the index must be an

integer;
3 A function must have a precise number of arguments and the

parameters must have a correct type;
4 etc...

Type Checking: Intro (Cont.)

• Type Checking may be either static or dynamic: The one done at
compile time is static.

• In languages like Java, C and Pascal type checking is primarily
static and is used to check the correctness of a program before its
execution.

• Static type checking is also useful to determine the amount of
memory needed to store variables.

• The design of a Type Checker depends on the syntactic structure
of language constructs, the Type Expressions of the language, and
the rules for assigning types to constructs.

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Type Expressions

• A Type Expression denotes the type of a language construct.
• A type expression is either a Basic Type or is built applying Type

Constructors to other types.
1 A Basic Type is a type expression (int, real, boolean, char). The basic

type void represents the empty set and allows statements to be
checked;

2 Type expressions can be associated with a name: Type Names are
type expressions;

Type Expressions (Cont.)

3 A Type Constructor applied to type expressions is a type
expression. Type constructors inlude:

1 Array. If T is a type expression, then array(I ,T) is a type
expression denoting an array with elements of type T and index
range in I—e.g., array[1..10] of int == array(1..10,int).

2 Product. If T1 and T2 are type expressions, then their Cartesian
Product T1 × T2 is a type expression.

3 Record. Similar to Product but with names for different fields (used
to access the components of a record). Example of a C record type:
struct
{ double real-field;

int integer-field; }
is of type expression

record((real-field × double)× (integer-field × int))

Type Expressions (Cont.)

4 Pointer. If T is a type expression, then pointer(T) is the type
expression “pointer to an object of type T ";

5 Function. If D is the domain and R the range of the function then
we denote its type by the type expression: D : R .
The mod operator has type, int × int : int . The Pascal function:

function f(a, b: char): int
has type:

char × char : int

Type System

• Type System: Collection of (semantic) rules for assigning type
expressions to the various part of a program.

• We will show how syntax directed definition can be used to specify
Type Systems.

• A type checker implements a type system.
• Definition. A language is strongly typed if its compiler can

guarantee that the program it accepts will execute without type
errors.

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Specification of a Type Checker

• We specify a type checker for a simple language where identifiers
have an associated type.

• Grammar for Declarations and Expressions:
P → D;E
D → D;D | id : T
T → char | int | array[num] of T | ↑T
E → num | id | E mod E | E [E] | E ↑

Specification of a Type Checker (Cont.)

• The syntax directed definition for associating a type to an
Identifier is:

Production Semantic Rule
D → id : T addtype(id.entry,T.type)
T → char T .type := char
T → int T .type := int
T →↑T1 T .type := pointer (T1.type)
T → array[num] of T1 T .type := array (1..num.val ,T1.type)
• All the attributes are synthesized.
• Since P → D;E , all the identifiers will have their types saved in

the symbol table before type checking an expression E .
• id.entry is the pointer to entry in the Symbol Table storing the

identifier.

Specification of a Type Checker (Cont.)

• The syntax directed definition for associating a type to an
Expression if num stands for an integer number, is:

Production Semantic Rule
E → num E .type := int
E → id E .type := lookup(id.entry)
E → E1 mod E2 E .type := if E1.type = int and E2.type = int

then int
else type_error

E → E1[E2] E .type := if E2.type = int and E1.type=array(i,t)
then t
else type_error

E → E1 ↑ E .type := if E1.type = pointer(t) then t
else type_error

Specification of a Type Checker (Cont.)
• The syntax directed definition for associating a type to a

Statement is:
Production Semantic Rule
S → id := E S .type := if id.type = E.type then void

else type_error
S → if E then S1 S .type := if E.type = boolean then S1.type

else type_error
S → while E do S1 S .type := if E.type = boolean then S1.type

else type_error
S → S1;S2 S .type := if S1.type=void and S2.type=void

then void
else type_error

• The type expression for a statement is either void or type_error.
• Final Remark. For languages with type names or (even worst)

allowing sub-typing we need to define when two types are
equivalent.

Type Checker for Functions

Production Semantic Rule
Fun → fun id(D) :T ;B addtype(id.entry,D.type:T.type)
D → id : T addtype(id.entry,T.type); D.type := T.type
D → D1;D2 D.type := D1.type ×D2.type
B → {S}
S → id(EList) S .type := if lookup(id.entry)=t1:t2 and

EList.type=t1
then t2
else type_error

EList → E EList.type := E .type
EList → EList,E EList.type := EList1.type × E .type

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Type Conversion

• Example. What’s the type of “x + y” if:
1 x is of type real;
2 y is of type int;
3 Different machine instructions are used for operations on reals and

integers.
• Depending on the language, specific conversion rules are adopted

by compilers to convert the type of one of the operand of +
I The type checker in a compiler can insert these conversion

operators into the intermediate code.
I Such an implicit type conversion is called Coercion.

Type Coercion in Expressions
• The syntax directed definition for coercion from integer to real for

a generic arithmetic operation op is:

Production Semantic Rule
E → num E .type := int
E → realnum E .type := real
E → id E .type := lookup(id.entry)
E → E1 op E2 E .type := if E1.type= int and E2.type= int

then int
else if E1.type= int and E2.type= real

then real
else if E1.type= real and E2.type= int

then real
else if E1.type= real and E2.type= real

then real
else type_error

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Symbol Table

• The Symbol Table is the major inherited attribute and the major
data structure as well.

• Symbol Tables store information about the name, type, scope and
allocation size.

• Symbol Table must maintain efficiency against insertion and
lookup.

• Dynamic data structures must be used to implement a symbol
table: Linked Lists and Hash Tables are the most used.
I Each entry has the form of a record with a field for each peace of

information.

Relative Address in the Symbol Table
• Relative Address. Is a storage allocation information consisting of

an offset from a base (usually zero) address: The Loader will be
responsible for the run-time storage.

• The following translation scheme computes such address using a
global variable called offset.

• The function enter adds into the Symbol Table: name, type and
offset for each identifier.

P → {offset := 0} D
D → D;D
D → id : T {enter(id.name, T.type, offset);

offset := offset + T.width}
T → int {T.type := int; T.width := 4}
T → real {T.type := real; T.width := 8}
T → array[num] of T1 {T.type := array(num.val,T1.type);

T.width := num.val * T1.width}
T →↑T1 {T.type := pointer(T1.type); T.width := 4}

Relative Address (Cont.)

• The global variable offset keeps track of the next available
address.
I Before the first declaration, offset is set to 0;
I As each new identifier is seen it is entered in the symbol table and

offset is incremented.
• type and width are synthesized attributes for non-terminal T .

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Symbol Tables and Scope Rules
• A Block in a programming language is any set of language

constructs that can contain declarations.
• A language is Block Structured if

1 Blocks can be nested inside other blocks, and
2 The Scope of declarations in a block is limited to that block and the

blocks contained in that block.
• Most Closely Nested Rule. Given several different declarations

for the same identifier, the declaration that applies is the one in
the most closely nested block.

Symbol Tables and Scope Rules (Cont.)

• To implement symbol tables complying with nested scopes
1 The insert operation into the symbol table must not overwrite

previous declarations;
2 The lookup operation into the symbol table must always refer to the

most close block rule;
3 The delete operation must delete only the most recent declarations.

• The symbol table behaves in a stack-like manner.

Symbol Tables and Scope Rules (Cont.)
• One possible solution to implement a symbol table under nested

scope is to maintain separate symbol tables for each scope.
• Tables must be linked both from inner to outer scope, and from

outer to inner scope.

Summary

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

Lexical- Vs. Syntactic-Time Construction

1 Information is first entered into a symbol table by the lexical
analyzer only if the programming language does not allow for
different declarations for the same identifier (scope).

2 If scoping is allowed, the lexical analyzer will only return the name
of the identifier together with the token:
I The identifier is inserted into the symbol table when the syntactic

role played by the identifier is discovered.

Keeping Track of Scope Information

• Let’s consider the case of Nested Procedures: When a nested
procedure is seen processing of declarations in the enclosing
procedure is suspended.

• To keep track of nesting a stack is maintained.
• We associate a new symbol table for each procedure:

I When we need to enter a new identifier into a symbol table we
need to specify which symbol table to use.

Keeping Track of Scope Information (Cont.)
• We are now able to provide the translation scheme for processing

declarations in nested procedure.
I We use markers non-terminals, M,N , to rewrite productions with

embedded rules.

P → M D {addwidth(top(tblptr), top(offset));
pop(tblptr); pop(offset)}

M → ε {t := mktable(nil);
push(t, tblptr); push(0 , offset)}

D → Ds ;D | Ds
Ds → proc id;ND;S {t := top(tblptr); addwidth(t, top(offset));

pop(tblptr); pop(offset);
enterproc(top(tblptr), id.name, t)}

Ds → id : T {enter(top(tblptr), id.name,T .type, top(offset));
top(offset) := top(offset) + T .width}

N → ε {t := mktable(top(tblptr));
push(t, tblptr); push(0 , offset)}

Keeping Track of Scope Information (Cont.)
The semantic rules make use of the following procedures and stack
variables:

1 mktable(previous) creates a new symbol table and returns its
pointer. The argument previous is the pointer to the enclosing
procedure.

2 The stack tblptr holds pointers to symbol tables of the enclosing
procedures.

3 The stack offset keeps track of the relative address w.r.t. a given
nesting level.

4 enter(table,name,type,offset) creates a new entry for the identifier
name in the symbol table pointed to by table, specifying its type
and offset.

5 addwidth(table,width) records the cumulative width of all the
entries in table in the header of the symbol table.

6 enterproc(table,name,newtable) creates a new entry for procedure
name in the symbol table pointed to by table. The argument
newtable points to the symbol table for this procedure name.

Summary of Lecture VIII

• Type Checking
I Type System
I Specifying a Type Checker
I Type Conversion

• Symbol Table
I Scope Rules and Symbol Tables
I Translation Schemes for building Symbol Tables

