Formal Languages and Compilers
Lecture VI—Part 4: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science — POS Building, Room: 2.03
artale@inf.unibz.it
http://www.inf.unibz.it/~artale/

Formal Languages and Compilers — BSc course

2020/21 — Second Semester

Summary of Lecture VI—Part 4

e |nadequacy of SLR Parsing

e Dealing with Ambiguous Grammars - How to interact with YACC

When SLR is not Adequate

Example. Consider the following Grammar and the Canonical
Collection:

Augmented Grammar

Sl

T~~~ 0 0

Ll

—

S
L=R
R

*R
id

L

/1Z

/32

/42

~

VAN

I~ 0Onn

0

l

~—X~ 0 W0

LLLlod

V)

»w Xy ~ ~exyn o~

R R A

When SLR is not Adequate (Cont.)

Consider now the set of items in b:
@ If we consider the first item, then, action[2, =] = shift 6.

@ If we consider the second item, since “="€ FoLLow(R), then,
action]2, =] = reduce R — L.

e Shift/Reduce Conflict. There is both a shift and a reduce action
thus the entry for action]2, =] is multiply defined!

e The Grammar is not ambiguos, thus:
The SLR parsing technique is not powerful enough!

Towards LR(1) Parsing: A Solution to SLR failure

e Add more information in the state to rule out invalid reductions.

e Each state of an LR(1) Parser indicates what symbol can follow a
handle for which there is a possible reduction.

e Definition. An LR(1) Item is then a pair [A — a.B, a], where ae V1
is called the Lookahead of the Item. Furthermore, a € FoLLow(A).

LALR Parsers

LALR stands for LookAhead-LR Parser.
It is often used in practice since the parsing tables are
considerably smaller than the canonical LR tables.
YACC is an LALR Parser;
Main ldea: Merge the states (Item sets) whose items differ only in
the lookahead.

» We say that such states have the same core.
(SLR and LALR) Vs. LR(1). The comparison is in term of size. For
a language like Pascal we go from hundreds of states to thousand
of states.

Summary of Lecture IV—Part 4

¢ Inadequacy of SLR Parsing

e Dealing with Ambiguous Grammars - How to interact with YACC

Ambiguous Grammars and LR Conflicts

Ambiguous Grammars provide a shorter and more natural
specification.

This is reflected by a parser requiring fewer number of states.

Ambiguous Grammars are not LR neither LL.

A parsing table will have multiply-defined entries called conflicts.
It will contain REDUCE/REDUCE and/or SHIFT/REDUCE conflicts.

To deal with ambiguous grammars we use disambiguating rules
that eliminate all the conflicts allowing for only one Parse-Tree.

Precedence and Associativity Rules

e The following ambiguous Grammar for arithmetic expressions does
not specify the associativity and the precedence of +, *:

E—>E+E|ExE|(E)|id

e The unambiguous Grammar:
E —- E+T|T
T — TxF|F
F — (E)]|id
Enforces precedence of x over +, and left-associativity of + and .
e Note. The parser for the unambiguous Grammar is less efficient:

» The time spent for reducing the unit productions E — T and T — F
has the sole function to enforce precedence.

Precedence and Associativity Rules (Cont.)

Let us consider the following LR(0) item set for the ambiguous
augmented Grammar (see the Book, Sect. 4.8, for the complete set

of states):
l: E — E+E. ls: E — E=xE.
E —- E.+E E —- E.+E
E — E.xE E — E.xE

FoLLow(E) = {$, +, *}
State /7 generates a conflict between “reduce with E — E + E,
and “shift with input + and *".
State /s generates a conflict between “reduce with E — E x E”,
and “shift with input + and *".
Both Conflicts can be solved using the Precedence and
Associativity for the operations + and .

Precedence and Associativity Rules (Cont.)

e Consider the input id + id * id and the following configuration:
STACK INPUT
0E1+4E7 xid $
e Assuming that * takes precedence over +, the parser should shift
onto the stack instead of reducing with £ — E + E.

Precedence and Associativity Rules (Cont.)

e Consider the input id + id + id and the following configuration:
STACK INPUT
O0E1+4E7 +1id $
e Assuming that + is left-associative, the parser should reduce with
E — E + E instead of shift + onto the stack.

Precedence and Associativity Rules (Cont.)

e Summary. Precedence and Associativity uniquely determine the
actions of the parser eliminating the ambiguity:
@ Left-Associativity of +: action(7, +) = reduce with E - E + E
@ Left-Associativity of *: action(8, *) = reduce with E — E x E
® Precedence of x over +: action(7,) = shift *
® Precedence of x over +: action(8, +) = reduce with E — E x £

Interacting with YACC

e YACC has built-in disambiguation rules, so it can parse grammars
even in the presence of conflicts!!!
@ sHiFT/ReDUCE conflicts will be solved by giving preference to SHIFT.
@® repuce/rRepuck conflicts will be solved by giving preference to the
first grammar rule listed in the YACC file.
e YACC also provides way to overrule the above default rules and
defines both precedence and associativity rules for the operators
(see YACC Tutorial in the LAB).

Dangling-Else Ambiquity

Consider the following Grammar for IF-THEN-ELSE statements:

S - S

S — iSeS|iS|a
Where, i stands for “if expr then”, e stands for else, and a stands for
“all other productions”.

Let us consider the following LR(0) item set for this ambiguous

Grammar (see the Book for the complete set of states):

la : g ~ g es FoLLow(S) = {$, else}
Assuming that the stack contains: “if expr then stmt” (iS) with state
4 on top, and the next input is else there is a sHIFT/REDUCE conflict.

Solution. else must match the last if: action(4, else) = “shift else”.
Since YACC solves shift/reduce conflicts in favor of shift the
dangling-else is handled correctly.

Summary of Lecture VI—Part 4

¢ Inadequacy of SLR Parsing

e Dealing with Ambiguous Grammars - How to interact with YACC

