
Formal Languages and Compilers
Lecture VI—Part 4: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it
http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Summary of Lecture VI—Part 4

• Inadequacy of SLR Parsing
• Dealing with Ambiguous Grammars - How to interact with YACC

When SLR is not Adequate
Example. Consider the following Grammar and the Canonical
Collection:

Augmented Grammar
S ′ → S

S → L = R

S → R

L → ∗R
L → id

R → L

I0 : S ′ → . S
S → . L = R
S → . R
L → . ∗R
L → . id
R → . L

I1 : S ′ → S .

I2 : S → L. = R
R → L.

I3 : S → R .

I4 : L → ∗. R
R → . L
L → . ∗R
L → . id

I5 : L → id.

I6 : S → L =. R
R → . L
L → . ∗R
L → . id

I7 : L → ∗R .

I8 : R → L.

I9 : S → L = R .

When SLR is not Adequate (Cont.)

Consider now the set of items in I2:
1 If we consider the first item, then, action[2,=] = shift 6.
2 If we consider the second item, since “=”∈ Follow(R), then,

action[2,=] = reduce R → L.

• Shift/Reduce Conflict. There is both a shift and a reduce action
thus the entry for action[2,=] is multiply defined!

• The Grammar is not ambiguos, thus:
The SLR parsing technique is not powerful enough!

Towards LR(1) Parsing: A Solution to SLR failure

• Add more information in the state to rule out invalid reductions.
• Each state of an LR(1) Parser indicates what symbol can follow a

handle for which there is a possible reduction.
• Definition. An LR(1) Item is then a pair [A→ α .β, a], where a∈ VT

is called the Lookahead of the Item. Furthermore, a ∈ Follow(A).

LALR Parsers

• LALR stands for LookAhead-LR Parser.
• It is often used in practice since the parsing tables are

considerably smaller than the canonical LR tables.
• YACC is an LALR Parser;
• Main Idea: Merge the states (Item sets) whose items differ only in

the lookahead.
I We say that such states have the same core.

• (SLR and LALR) Vs. LR(1). The comparison is in term of size. For
a language like Pascal we go from hundreds of states to thousand
of states.

Summary of Lecture IV—Part 4

• Inadequacy of SLR Parsing
• Dealing with Ambiguous Grammars - How to interact with YACC

Ambiguous Grammars and LR Conflicts

• Ambiguous Grammars provide a shorter and more natural
specification.

• This is reflected by a parser requiring fewer number of states.
• Ambiguous Grammars are not LR neither LL.
• A parsing table will have multiply-defined entries called conflicts.

It will contain reduce/reduce and/or shift/reduce conflicts.
• To deal with ambiguous grammars we use disambiguating rules

that eliminate all the conflicts allowing for only one Parse-Tree.

Precedence and Associativity Rules

• The following ambiguous Grammar for arithmetic expressions does
not specify the associativity and the precedence of +, ∗:

E → E + E | E ∗ E | (E) | id

• The unambiguous Grammar:
E → E+T | T
T → T∗F | F
F → (E) | id

Enforces precedence of ∗ over +, and left-associativity of + and ∗.
• Note. The parser for the unambiguous Grammar is less efficient:

I The time spent for reducing the unit productions E → T and T → F
has the sole function to enforce precedence.

Precedence and Associativity Rules (Cont.)

• Let us consider the following LR(0) item set for the ambiguous
augmented Grammar (see the Book, Sect. 4.8, for the complete set
of states):

I7 : E → E + E .
E → E . +E
E → E . ∗E

I8 : E → E ∗ E .
E → E . +E
E → E . ∗E

Follow(E) = {$,+, ∗}
• State I7 generates a conflict between “reduce with E → E + E ”,

and “shift with input + and ∗”.
• State I8 generates a conflict between “reduce with E → E ∗ E ”,

and “shift with input + and ∗”.
• Both Conflicts can be solved using the Precedence and

Associativity for the operations + and ∗.

Precedence and Associativity Rules (Cont.)
• Consider the input id + id ∗ id and the following configuration:

Stack Input
0E1+4E7 ∗ id $

• Assuming that ∗ takes precedence over +, the parser should shift ∗
onto the stack instead of reducing with E → E + E .

Precedence and Associativity Rules (Cont.)
• Consider the input id + id + id and the following configuration:

Stack Input
0E1+4E7 + id $

• Assuming that + is left-associative, the parser should reduce with
E → E + E instead of shift + onto the stack.

Precedence and Associativity Rules (Cont.)

• Summary. Precedence and Associativity uniquely determine the
actions of the parser eliminating the ambiguity:

1 Left-Associativity of +: action(7,+) = reduce with E → E + E
2 Left-Associativity of ∗: action(8, ∗) = reduce with E → E ∗ E
3 Precedence of ∗ over +: action(7, ∗) = shift ∗
4 Precedence of ∗ over +: action(8,+) = reduce with E → E ∗ E

Interacting with YACC

• YACC has built-in disambiguation rules, so it can parse grammars
even in the presence of conflicts!!!

1 shift/reduce conflicts will be solved by giving preference to shift.
2 reduce/reduce conflicts will be solved by giving preference to the

first grammar rule listed in the YACC file.
• YACC also provides way to overrule the above default rules and

defines both precedence and associativity rules for the operators
(see YACC Tutorial in the LAB).

Dangling-Else Ambiguity

• Consider the following Grammar for IF-THEN-ELSE statements:
S ′ → S
S → iSeS | iS | a

Where, i stands for “if expr then”, e stands for else, and a stands for
“all other productions”.

• Let us consider the following LR(0) item set for this ambiguous
Grammar (see the Book for the complete set of states):

I4 : S → iS . eS
S → iS . Follow(S) = {$, else}

• Assuming that the stack contains: “if expr then stmt” (iS) with state
4 on top, and the next input is else there is a shift/reduce conflict.

• Solution. else must match the last if: action(4, else) = “shift else”.
Since YACC solves shift/reduce conflicts in favor of shift the
dangling-else is handled correctly.

Summary of Lecture VI—Part 4

• Inadequacy of SLR Parsing
• Dealing with Ambiguous Grammars - How to interact with YACC

