
Formal Languages and Compilers
Lecture VI—Part 3: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it
http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Summary of Lecture VI—Part 3

• LR Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

Intro to LR Parsers

• LR(k) Grammars are the most general Non-Backtracking
Grammars that can be used in bottom-up parsers.
I “L”: Left-to-right scanning of the input;
I “R”: Rightmost derivations;
I “k”: number of lookahead symbols to take a decision.

• Predictive Grammars, i.e., LL Grammars, are a proper subset of LR
Grammars (e.g., if-then-else is not LL but it is LR).

• An LR parser can detect a syntactic error as soon as possible.
• Disadvantage. Is difficult to build an LR parser by hand. We need

specialized tools like YACC.

LR Parser Architecture
An LR parser has: An input buffer (Tokens returned from the Lexical
Analyzer); A stack containing Grammar symbols and States; A parsing
table with two parts, Action and Goto, implementing a DFA to decide
between shift and reduce.

LR Parser Architecture

An LR parser has: An input buffer (Tokens returned from the Lexical Analyzer); A
stack containing Grammar symbols and States; A parsing table with two parts,
Action and Goto, implementing a DFA to decide between shift and reduce.

Input id + id $

Stack

sm

Xm

sm−1

. . .

X1

s0

OutputLR Parser
Program

Action | Goto

Alessandro Artale Formal Languages and Compilers Lecture VII—Part 3: Syntactic Analysis

LR Parsing Algorithm

• The stack stores a string of the form s0X1s1 . . . sm−1Xmsm, where:
I Xi is a Grammar Symbol;
I si is a state summarizing the information contained in the stack

below it.
• The combination 〈State on top of the stack, Lookahead symbol〉 is

used to index the Action-Goto table.
• Configuration of an LR Parser. Is a pair made by the content of the

stack (sm on top) and the right-part of the input (starting with the
Lookahead):

〈s0X1s1 . . . sm−1Xmsm, aiai+1 . . . an$〉

LR Parsing Algorithm (Cont.)

The next move of the parser is based on the pair (sm, ai) and on what
specified in the Action table:

1 action[sm, ai] = shift sj . The parser executes a shift entering the
configuration: 〈s0X1s1 . . .Xmsmaisj , ai+1 . . . an$〉.

2 action[sm, ai] = reduce A→ β. The parser executes a reduce
entering the configuration: 〈s0X1s1 . . .Xm−r sm−rAs, aiai+1 . . . an$〉;
where s = goto(sm−r ,A) and r =| β |. The parser pops 2r symbols
from the stack (r states and the r Grammar symbols β) and then
pushes both A and s . The production A→ β is in the output.

3 action[sm, ai] = error .
4 action[sm,$] = accept . The parser stops successfully.

Example: LR Parser on “id*id+id”

Grammar
r1. E → E + T

r2. E → T

r3. T → T ∗ F

r4. T → F

r5. F → (E)
r6. F → id

Example: LR Parser on “id*id+id”

Summary

• Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

Automata and LR Parsing

• Definition 1. Right-Sentential Form: A string α derived from the
scope of the language, S ⇒∗rm α , by means of right-most
derivations.

• Definition 2. Handle: Substring of a right-sentential form that
matches a right hand side of a production.

• The Handle will always appear on top of the stack, never inside.

Automata and LR Parsing (Cont.)

• The Action and Goto tables define the transition function of an
Automaton that recognizes handles on top of the stack.

• The automaton does not need to read the stack every time: The
state on top of the stack is the state the automaton would be after
reading the symbols of the stack.

• This is why an LR parser has full control on the content of the
stack just knowing the state on top of the stack.

Summary

• Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

SLR Parsers
• Simple LR (SLR) is the simplest LR parsing Grammar.
• Definition. An LR(0) Item of a Grammar, G, is a production with a

dot at some position in the right side.
• Example. The production A→ XYZ gives rise to four items:

A→. XYZ

A→ X . YZ

A→ XY . Z
A→ XYZ .

The production A→ ε generates the item A→.
• Intuition. An item indicates how much of a production we have

seen in the parsing process, and can be represented by a pair of
integers:

〈 Number of Production, Dot Position 〉

Constructing SLR Parsing Tables

• Items are useful to build the transition function of the Automaton
recognizing handles.

• Items representing the same situation are grouped together into
sets.

• Each of these sets represents a state of the DFA recognizing
handles.

• The Canonical Collection of LR(0) Items provides the basis to
construct the SLR parsing tables (implementing the DFA).

• The canonical collection is defined in terms of two operations,
Closure and Goto, and an Augmented Grammar, i.e., a Grammar
with a new scope S ′ and a new production S ′ → S .
I The production S ′ → S indicates acceptance, i.e., the parser accepts

iff it is about to reduce by S ′ → S .

Summary

• Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

The Closure Operation

• Algorithm. Closure(I).
If I is a set of items for an augmented Grammar G′, then closure(I)
is the set of items such that:

1 Initially every item in I is added to closure(I);
2 If A→ α . Bβ ∈ closure(I) and B → γ, then we add the item B →. γ

to closure(I). Go to step 1 until no more items can be added to
closure(I).

• Intuition. A→ α . Bβ ∈ closure(I) indicates that:
1 We expect to see something derivable from A, and
2 α is already on top of the stack, thus
3 we expect to see something derivable from Bβ, and then
4 if B → γ we could also expect something derivable from γ.

The Closure Operation: An Example

• Example. Consider the augmented grammar on the left, then,
closure({E ′ →. E}) contains the items shown on the right:

Augmented Grammar
E ′ → E

E → E + T

E → T

T → T ∗ F

T → F

F → (E)
F → id

closure({E ′ →. E})
E ′ → . E
E → . E + T

E → . T
T → . T ∗ F

T → . F
F → . (E)
F → . id

The Goto Operation

• Definition. If I is a set of items and X ∈ VN ∪ VT, then, goto(I ,X)
is the closure of the set of all items A→ αX .β such that
A→ α . Xβ is in I .

• Intuition 1. goto(I ,X) represents the transition of the automaton
from state I and input X .

• Intuition 2. If I is a set of items valid for a prefix α of a
right-sentential form, then, goto(I ,X) is valid for the prefix αX .

The Goto Operation: An example

Example. If I = {E ′ → E . , E → E . +T}, then:
goto(I, +) = closure({E → E+. T}), is the set:

E → E+. T
T → . T ∗ F

T → . F
F → . (E)
F → . id

Canonical Collection

Algorithm. Canonical Collection for an Augmented Grammar G′

1 Initially, C = {closure({S ′ →. S})};
2 For each set of items I in C and each Grammar symbol X

If goto(I ,X) 6= ∅ and goto(I ,X) 6∈ C , then
add goto(I ,X) to C ;

3 Go to step 2 if new items have been added, otherwise stop.

Example: Canonical Collection for Arithmetic
Expressions

I0 : E ′ → . E
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I1 : E ′ → E .
E → E . +T

I2 : E → T .
T → T . ∗F

I3 : T → F .

I4 : F → (. E)
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I5 : F → id.

I6 : E → E+. T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I7 : T → T∗. F
F → . (E)
F → . id

I8 : F → (E .)
E → E . +T

I9 : E → E + T .
T → T . ∗F

I10 : T → T ∗ F .

I11 : F → (E).

Example: Canonical Collection for Arithmetic
Expressions

Augmented Grammar

r0. E ′ → E

r1. E → E + T

r2. E → T

r3. T → T ∗ F

r4. T → F

r5. F → (E)
r6. F → id

Example: Canonical Collection for Arithmetic
Expressions

•

I0 : E ′ → . E
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I1 : E ′ → E .
E → E . +T

I2 : E → T .
T → T . ∗F

I3 : T → F .

I4 : F → (. E)
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I5 : F → id.

I6 : E → E+. T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I7 : T → T∗. F
F → . (E)
F → . id

I8 : F → (E .)
E → E . +T

I9 : E → E + T .
T → T . ∗F

I10 : T → T ∗ F .

I11 : F → (E).

Example: Canonical Collection for Arithmetic
Expressions

•

I0 : E ′ → . E
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I1 : E ′ → E .
E → E . +T

I2 : E → T .
T → T . ∗F

I3 : T → F .

I4 : F → (. E)
E → . E + T
E → . T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I5 : F → id.

I6 : E → E+. T
T → . T ∗ F
T → . F
F → . (E)
F → . id

I7 : T → T∗. F
F → . (E)
F → . id

I8 : F → (E .)
E → E . +T

I9 : E → E + T .
T → T . ∗F

I10 : T → T ∗ F .

I11 : F → (E).

Example: Goto Function for Arithmetic Expressions

• The above figure represents the transition function of the DFA
recognizing viable prefixes of the Grammar for Arithmetic
Expressions.

• Viable Prefix: Prefix of right-sentential form that could be on top
of the stack of an SLR Parser.

Summary

• LR Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

SLR Parsing Tables
Algorithm. SLR Parsing Tables Action and Goto.

1 Construct C = {I0, I1, . . . , In}, the canonical collection for the
augmented grammar G ′.

2 To each item set Ik we create a new state sk . Then the action
table is:
I action[sk , a] = “shift sj ", if A→ α . aβ ∈ Ik , and goto(Ik , a) = Ij .
I action[sk , a] = “reduce A→ α ", for all A→ α .∈ Ik , and for all a in

FOLLOW(A). Here A 6= S ′.
I action[sk ,$] = “accept", if S ′ → S .∈ Ik .

3 goto[sk ,A] = sj , if goto(Ik ,A) = Ij .
4 All the entries not defined by rules (2) and (3) are made “error”.
5 The initial state, I0, is the one constructed from the closure of

S ′ →. S
Note. The Parsing table does not contains multiple entries if and only
if the Grammar is SLR.

Summary of Lecture VI—Part 3

• LR Parsing Algorithm: An Intro
• Automata and Bottom-up Parsing
• SLR Parsing

I Closure and Goto Operations, Canonical Collection;
I SLR Parsing Tables

