Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano Faculty of Computer Science - POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Formal Languages and Compilers — BSc course

2020/21 - Second Semester

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

- Every programming language has rules that describe the syntactic structure of *well-formed* programs.
- Context-Free Grammars (or BNF) are used to describe the syntax of programs.
 - **Remark:** Regular Grammars/Expressions are not expressive enough to describe the structure of programs, e.g., a RE cannot recognize balanced open and closed parentheses (since they cannot arbitrary count).
- From certain classes of grammars we can automatically construct a Parser.
- Imposing a structure to a program is useful for the subsequent translation.
- New programming constructs can be easily added for languages based on grammars.

- The Parser stands to a CFG as an Automaton stands to a RE.
- The Parser obtains a sequence of Tokens from the lexical analyzer and verifies that the sequence can be generated by means of a *Derivation* in the CFG of the source program.
- As a result the parser output a (representation of a) Parse-Tree.
- Parsers are classified as Bottom-UP or Top-Down depending whether the parse-tree is built from the leaves or from the root, respectively.

- Many of the errors are syntactic in nature: much of the error detection and recovery is done during parsing.
- The techniques used to handle errors can vary depending from the compiler design.
- In general, the error handler in a Parser should:
 - Report the presence of errors clearly and accurately;
 - Try to "recover" to be able to detect further errors;
 - It should not slow down the processing of correct programs.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

- To characterize a Language starting from a Grammar we need to introduce the notion of **Derivation**.
- The notion of Derivation uses Productions to generate a string starting from another string.
- Direct Derivation (in symbols \Rightarrow). If $\alpha \rightarrow \beta \in \mathbf{P}$ and $\gamma, \delta \in \mathbf{V}^*$, then, $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$.
- Derivation (in symbols \Rightarrow^*).

If $\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, ..., \alpha_{n-1} \Rightarrow \alpha_n$, then, $\alpha_1 \Rightarrow^* \alpha_n$.

Generative Definition of a Language. We say that a Language L is generated by the Grammar $\mathbf{G} = (\mathbf{V}_T, \mathbf{V}_N, \mathbf{S}, \mathbf{P})$, in symbols L(G), if: L(G) = { $w \in \mathbf{V}_T^* | \mathbf{S} \Rightarrow^* w$ }.

Example. Consider the following CF Grammar for arithmetic expressions:

 $E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$

The sequence of Tokens -(id + id) is a well-formed sentence:

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

Note: Token is a synonym of Terminal Symbol when talking of Grammars for programming languages.

- Derivation Trees, called also **Parse Trees**, are a visual method of describing any derivation in a context-free grammar.
- Let $\mathbf{G} = (\mathbf{V}_T, \mathbf{V}_N, \mathbf{S}, \mathbf{P})$ be a CFG. A tree is a *derivation tree* for **G** if:
 - Every node has a label, which is a symbol of V;
 - The label of the root is S;
 - If a node, n, labeled with A has at least one descendant, then A must be in \mathbf{V}_N ;
 - Solution If nodes n_1, n_2, \ldots, n_k are direct descendants of node n, with labels A_1, A_2, \ldots, A_k , respectively, then:

$$A \rightarrow A_1, A_2, \ldots, A_k$$

must be a production in \mathbf{P} .

• At each step in a Derivation there are two choices to be made:

- Which non-terminal to replace;
- Which Production to use for that non-terminal.

• W.r.t. point (1), we have two derivations for -(id + id):

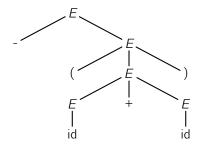
1.
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -(id + E) \Rightarrow -(id + id)$$

2.
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -(E + id) \Rightarrow -(id + id)$$

• A Parser will consider either *Leftmost* Derivations—the leftmost non-terminal is chosen—or *Rightmost* Derivations.

Parse-Trees and Derivations

- A Parse-Tree is a visualization of a Derivation that ignores variations in the order in which non-terminal are replaced—point (1) above.
- The Parse-Tree associated to the two Derivations in the previous slide is



- Every Parse-Tree is associated with a *unique* leftmost and a *unique* rightmost derivation, and viceversa.
- Problem of Ambiguity: A sentence can have more than one Parse-Tree. Related to point (2) above: Which Production to use for a given non-terminal

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

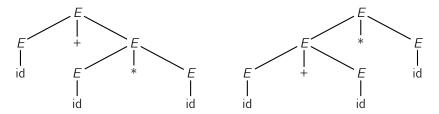
- A grammar is ambiguous if it has more than one Parse-Tree for some string.
 - Equivalently, there is more than one right-most or left-most derivation for some string.
- Ambiguity is bad: Leaves meaning of some programs ill-defined since we cannot decide its syntactical structure uniquely.
- Ambiguity is a property of Grammars, not of Languages.
- Two alternative solutions:
 - Disambiguate the grammar
 - Use extra-grammatical mechanisms, like *disambiguating rules*, to discard alternative Parse-Trees.

Ambiguity: Arithmetic Expressions

Consider the Grammar for arithmetic expressions:

 $E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$

The sequence of Tokens id + id * id has two Parse-Trees



The first Parse-Tree reflects the usual assumption that * takes precedence on +.

- Sometime it is possible to eliminate ambiguity by rewriting the Grammar.
- Example. Let us rewrite the Grammar for arithmetic expressions:

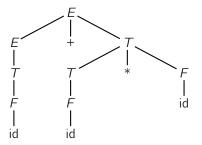
$$\begin{array}{rcl} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- Enforces precedence of * over +;
- Enforces left-associativity of + and *

Eliminating Ambiguity: Example

$$\begin{array}{rcl} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

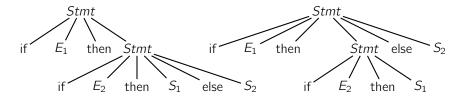
The sequence of Tokens id + id * id has now only one Parse-Tree



- Consider the Grammar for if-then-else statements:
 - $Stmt \rightarrow$ if Expr then Stmt| if Expr then Stmt else Stmt| other
- This Grammar is ambiguous.
- **Example.** Consider the statement:

if E_1 then if E_2 then S_1 else S_2 .

The statement: if E_1 then if E_2 then S_1 else S_2 , has two Parse-Trees



- Typically, the first Parse-Tree is preferred.
- Disambiguating Rule: Match each else with the closest unmatched then.

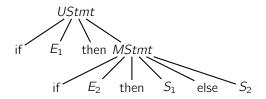
Disambiguating Dangling Else

- Disambiguating Rule: Match each else with the closest unmatched then.
- The rule can be incorporated into the Grammar if we distinguish between *matched* and *unmatched* statements.
- A statement between a then-else must be *matched*.

	\mathtt{Stmt}	\rightarrow	Matched_stmt Unmatched_stmt
Matched_	stmt	\rightarrow	if Expr then Matched_stmt else Matched_stmt
			Other-Stmt
Unmatched_	stmt	\rightarrow	if Expr then Stmt
			if Expr then Matched_stmt else Unmatched_stmt

• This Grammar generates the same set of strings as the previous one but gives just one Parse-Tree for if-then-else statements.

The statement: if E_1 then if E_2 then S_1 else S_2 , has now a unique Parse-Tree.



Disambiguating Rules: Precedence and Associativity Declarations

- Instead of rewriting the Grammar:
 - Use the more natural (ambiguous) Grammar;
 - Along with disambiguating declarations.
- Most tools (e.g. YACC) allow *precedence* and *associativity* declarations for terminals (e.g, "*" takes precedence over "+") to disambiguate grammars (see the Book, Sections 4.8-4.9, for more details).

- It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity.
- Unfortunately, certain CFLs are inherently ambiguous, meaning that every grammar for the language is ambiguous.

- The language $\{0^{i}1^{j}2^{k} \mid i = j \text{ or } j = k, i, j, k \ge 1\}$ is inherently ambiguous.
- Intuitively, at least the strings of the form 0ⁿ1ⁿ2ⁿ can be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

$S \rightarrow AB \mid CD$	
$A \rightarrow 0A1 \mid 01$	A generates equal 0's and 1's
$B \rightarrow 2B \mid 2$	B generates any sequence of 2's
$C \rightarrow 0C \mid 0$	C generates any sequence of 0's
$D \rightarrow 1D2 \mid 12$	D generates equal 1's and 2's

There are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.:

 $S \Rightarrow AB \Rightarrow 01B \Rightarrow 012$ $S \Rightarrow CD \Rightarrow 0D \Rightarrow 012$

- No general techniques for handling ambiguity.
- Impossible to convert automatically an ambiguous Grammar to an unambiguous one.
- Used with care, ambiguity can simplify the Grammar
 - Sometimes ambiguous Grammars allow for more natural definitions
 - But then we need extra-grammatical disambiguation mechanisms.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

- The **Top-Down Parsing**—also called *Recursive-Descent Parsing*—builds the Parse-Tree by starting with the root, labeled with the scope, and performing the following two steps:
 - Select a node labeled with a Non-Terminal, say A;
 - Select one production for A and generate as many children of A as symbols on the right-hand side of the production;
- This procedure ends either when all the leaves are labeled with Tokens or we can not apply any production.
- Note. To solve point (1), top-down parsers proceed by left-most derivations.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

- In general, the selection of a production for a Non-Terminal can involve Backtrack: We may need to select another production if the first fails.
- Note 1: A production *fails* if the Parse-Tree can not be completed to match the input string.
- Note 2: Backtrack can happen even if the Grammar is not ambiguous.
- Note 3: Backtracking is rarely needed to parse programming languages.

Backtrack in Top-Down Parsing: An Example

• Consider the (non ambiguous) Grammar for arithmetic expressions:

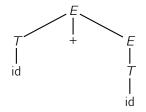
```
\begin{array}{rrrr} E & \rightarrow & T+E \mid T \\ T & \rightarrow & id*T \mid id \mid (E) \end{array}
```

and the input Tokens sequence: "id + id".

- Start with the Non-Terminal E as the root of the Parse-Tree.
- 2 Use the production $E \rightarrow T+E$;
- Output States State
- Backtrack: Use the production T → id: The Token id does match! Also the Token + matches!!

Backtrack in Top-Down Parsing: An Example (Cont.)

- So We need now to choose a production for the second *E*: if we still choose $E \rightarrow T+E$ we fail; then we **Backtrack** and choose $E \rightarrow T$.
- Follow the same step as before (Step 4.) for T and we succeed with $T \rightarrow id$: The last Token matches!!!
- The successful Parse-Tree is:



Loops in Top-Down Parsing — Left-Recursive Grammars

- It is possible for a Recursive-Descent Parser to loop forever!
- Since top-down parsers proceed along left-most derivations, looping arises with Left-Recursive Grammars.
- Definition. A Grammar is said *Left-Recursive* if for a Non-Terminal, A, there is a Derivation, A ⇒* Aα, for some α ∈ V*.
- **Example.** The Grammar with production $E \rightarrow E+T$ is left-recursive.
- Eliminating Immediate Left Recursion. If we have a production of the form, $A \rightarrow A\alpha_1 \mid \ldots \mid A\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$, where β_1, \ldots, β_m do not begin with A, then an equivalent right-recursive Grammar is:

$$A \rightarrow \beta_1 R | \dots | \beta_m R$$

 $R \rightarrow \alpha_1 R \mid \ldots \mid \alpha_n R \mid \epsilon$

• In general, even non-immediate left-recursion can be eliminated (see the Book, Section 4.3.3, for more details).

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

- Predictive Parsers: avoid backtracking since they can **predict** which production to use by looking at the *current Token* being scanned in the input—called Lookahead symbol.
- The Lookahead symbol unambiguously determines which production to use.
- Example. Given the following productions:

Then, depending whether the Lookahead is *if*, *while* or *begin* the Parser will be forced to use just one of the above productions.

• Criterion for the selection of a production.

- If the right side of a production **starts with a token** then it will be used if such token matches the Lookahead symbol;
- If the right side of a production starts with a non-terminal then it will be used if the Lookahead symbol can be generated from the non-terminal.
- Predictive Parsing relies on information about what **first** symbol can be generated by the right side of a production.
- Definition (first). Let α be the right side of a production for non-terminal A. Then, first(α) is the set of Tokens that start a string generated by α:

 $\forall a \in \mathbf{V}_T . a \in \text{first}(\alpha) \text{ iff } \alpha \Rightarrow^* a\beta, \text{ with } \alpha, \beta \in \mathbf{V}^*.$

Furthermore, if $\alpha = \epsilon$ or $\alpha \Rightarrow^* \epsilon$, then $\epsilon \in \text{first}(\alpha)$.

- A Predictive Parser decides between two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ by considering the Lookahead symbol;
- If the Lookahead symbol is in first(α) then $A \rightarrow \alpha$ is used.
- Important! To use a predictive parser it is necessary that

 $first(\alpha) \cap first(\beta) = \emptyset$

for all α, β right side of *alternative* productions—i.e., productions associated to the same non-terminal.

• Note. As will be clear in the following slides, the above condition is necessary but not sufficient.

- A Grammar must be Left-Factored before use for predictive parsing.
- Main Idea: If it is not clear which alternative production to use we rewrite the productions to defer the decision until we see enough input to be able to decide.
- Example. Consider the following productions: Stmt → if Expr then Stmt else Stmt | if Expr then Stmt

Then, on seeing the Token if we cannot decide between the two productions above. Left-Factored, this Grammar becomes:

 $Stmt \rightarrow$ if Expr then Stmt Stmt'

 $Stmt' \rightarrow$ else $Stmt \mid \epsilon$

• **Remark.** The left-factored Grammar is still ambiguous: on input else it is not clear what production to use for *Stmt'*.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

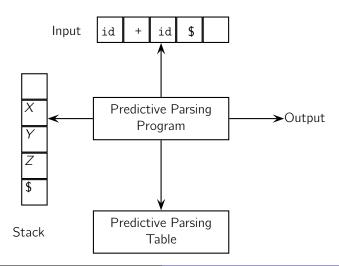
- Predictive parsers accept LL(k) Grammars.
 - The first L means "left-to-right" scanning of the input;
 - The second L stands for producing a "leftmost derivation";
 - k means "predict" based on k tokens of lookahead.
- In practice, LL(1) Grammars are used.

- Given an LL(1) Grammar, then for each non-terminal and Token (Lookahead) there is only one production that could lead to success.
- Predictive parsers built on top of LL(1) Grammars can be specified as a two-dimensional table—called the *Parsing Table*, with:
 - One dimension for current non-terminal to expand;
 - One dimension for next Token;
 - Each table entry contains one production or denotes a syntactic error.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

Predictive Parser Architecture

• A table-driven predictive parser has: an input buffer (Tokens returned from the Lexical Analyzer), a stack (containing Grammar symbols), and a parsing table.



- We use a stack to keep track of pending non-terminals.
- Initially the stack contains \$\$ with \$\$, the scope of the Grammar, on top, and \$ the input right-end marker.
- Now, let X the symbol on top of the Stack and a the current Token in the input. There are three possibilities:
 - If X = a =\$, the parser halts successfully;
 - **2** If $X = a \neq \$$, the parser pops X from the stack and advances the input pointer;
 - If X is a non-terminal, the parser checks the parser table M[X, a]:
 - If M[X, a] = error, then an error recovery is done;
 - If M[X, a] = {X → UVW}, then the parser replaces X on top of the stack by UVW (with U on top for leftmost derivations).

• Consider the following LL(1) Grammar, obtained by eliminating the left recursion from the non-ambiguos Grammar for arithmetic expressions:

$$\begin{array}{rcl} E & \rightarrow & TE' \\ E' & \rightarrow & +TE' \mid \epsilon \\ T & \rightarrow & FT' \\ T' & \rightarrow & *FT' \mid \epsilon \\ F & \rightarrow & \mathrm{id} \mid (E) \end{array}$$

Predictive Parser Program: An Example (Cont.)

A predictive table for the Grammar is:

	id	+	*	()	\$
Ε	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' ightarrow \epsilon$	$E' ightarrow \epsilon$
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' ightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' ightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Where empty entries indicate an error situation.

Predictive Parser Program: An Example (Cont.)

The moves with input "id + id * id" are:

Stack	Input	Output	Stack	Input	Output
\$ <i>E</i>	id + id * id\$		\$ <i>E' T'</i> id	id * id\$	$F \rightarrow id$
\$E'T	id + id * id	$E \rightarrow TE'$	\$E'T'	*id\$	
\$E'T'F	id + id * id	$T \to FT'$	\$E'T'F*	*id\$	$T' \rightarrow *FT'$
\$ <i>E' ⊤'</i> id	id + id * id	$F \rightarrow id$	\$E'T'F	id\$	
\$E'T'	+id * id\$		\$ <i>E' T</i> ′id	id\$	$F \rightarrow id$
\$E'	+id * id\$	$T' ightarrow \epsilon$	\$E'T'	\$	
E'T+	+id * id\$	$E' \rightarrow + TE'$	\$E'	\$	$T' ightarrow \epsilon$
\$E'T	id * id\$		\$	\$	$E' ightarrow \epsilon$
\$E'T'F	id * id\$	$T \to FT'$	\$	\$	ACCEPT

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables

Constructing Predictive Parsing Tables

- To build parsing tables we make use of two functions: first and follow.
 Definition (first). Let α be the right side of a production for non-terminal A. Then, first(α) is the set of Tokens that start a string generated by α: ∀a ∈ V_T.a ∈ first(α) iff α ⇒* aβ, with α, β ∈ V*.
 Furthermore, if α = ε or α ⇒* ε, then ε ∈ first(α).
- Given a non-terminal A, follow(A) is the set of Tokens, a, that can appear immediately to the right of A in some sentential form.
 Definition (follow).

follow(A) = {a $\in \mathbf{V}_T \mid S \Rightarrow^* \alpha A a \beta$, with $\alpha, \beta \in \mathbf{V}^*$ }.

• **Note.** There may have been symbols between *A* and a, but they derived *ε* and disappeared.

first(X), with $X \in \mathbf{V}$: Apply the following rules until no more terminals (or ϵ) can be added:

- If $X \in \mathbf{V}_T$, then first $(X) = \{X\}$.
- **2** If $X \to \epsilon$ is a production, then add ϵ to first(X).
- If $X \to Y_1 Y_2 \dots Y_k$ is a production then:
 - Add a to first(X) if for some *i* we have:
 - $a \in first(Y_i)$, and $\epsilon \in first(Y_1) \cap \ldots \cap first(Y_{i-1})$.
 - If $\epsilon \in \text{first}(Y_j)$, for all j = 1, ..., k, then add ϵ to first(X).
- **Note 1.** first(Y_1) \ { ϵ } \subseteq first(X).
- **Note 2.** If $\epsilon \notin \text{first}(Y_1)$, then we add nothing more to first(X).

Given any sequence $X_1X_2...X_n \in \mathbf{V}^*$, we compute $first(X_1X_2...X_n)$:

- Add first $(X_1) \{\epsilon\}$ to first $(X_1X_2...X_n)$.
- If ε ∈ first(X₁), then:
 Add first(X₂) {ε} to first(X₁X₂...X_n); otherwise Stop.
- If $\epsilon \in \text{first}(X_2)$, then: Add first $(X_3) - \{\epsilon\}$ to first $(X_1X_2...X_n)$; otherwise Stop.
- 🍯 . . .
- If $\epsilon \in \text{first}(X_j)$, for all j = 1, ..., n, then add ϵ to $\text{first}(X_1X_2...X_n)$.

Computing follow

Definition. follow(A) = {a $\in \mathbf{V}_T | S \Rightarrow^* \alpha Aa\beta$, with $\alpha, \beta \in \mathbf{V}^*$ }.

follow(*A*): For each non-terminal, *A*, apply the following rules until nothing more can be added:

- Add \$ to follow(S) (if S is the scope, and \$ is the input right endmarker);
- Solution For all productions $Y \to \alpha A Y_1 \dots Y_n$ (where, $\alpha \in \mathbf{V}^*$ and $Y_i \in \mathbf{V}$):
 - Add first $(Y_1) \{\epsilon\}$ to follow(A).
 - If ε ∈ first(Y₁), then:
 Add first(Y₂) {ε} to follow(A); otherwise Stop.
 - 3 . . .
 - If ε ∈ first(Y_{n-1}), then:
 Add first(Y_n) {ε} to follow(A); otherwise Stop.
 - If $\epsilon \in \text{first}(Y_n)$, then: Add follow(Y) to follow(A).

Important: ϵ never belongs to follow!

Consider the Grammar for arithmetic expression:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

$$first(E) = first(T) = first(F) = \{(, id\}.$$

$$first(E') = \{+, \epsilon\}.$$

$$first(T') = \{*, \epsilon\}.$$

follow(
$$E$$
) =follow(E') = {), \$}
follow(T) =follow(T') = {+, }, \$}
follow(F) = {+, *, }, \$}.

Constructing Predictive Parsing Tables (Cont.)

- The production $A \rightarrow \alpha$, with a in first(α), is used if a is the lookahead symbol.
- Problem. When ε ∈ first(α). Then, the production A → α is used if the lookahead is in follow(A).

Algorithm. Input: Grammar, G. Output: Parsing Table, M.

() For each production $A \rightarrow \alpha$ in **G** do:

- For each terminal a in first(α), add $A \rightarrow \alpha$ to M[A, a].
- **2** If $\epsilon \in \text{first}(\alpha)$, then for each terminal a in follow(A), add $A \to \alpha$ to M[A, a].
- If $\epsilon \in \text{first}(\alpha)$ and \$ is in follow(A), add $A \rightarrow \alpha$ to M[A, \$].

Make each undefined entry an error.

LL(1) Grammars: Final Remarks

- While a parsing table, *M*, can be constructed for every Grammar, for some Grammar *M* may have *multiple entries*.
- **Definition.** A Grammar whose predictive parsing table has no multiple entries is said to be LL(1).
- The Grammar for arithmetic expressions (once factored) is LL(1).
- The left-factored Grammar for if-then-else is not LL(1): Ambiguous Grammars are never LL(1).
- Even the non ambiguous Grammar for if-then-else (the one with Matched Vs. Unmatched statements) is not LL(1).
- **General Remark:** There are no universal rules by which a Grammar can be reduced to be LL(1)!!!
- We need more powerful parsing techniques than predictive parsers.

- Intro to Syntactic Analysis
- Generating Languages from Grammars
- Ambiguous Grammars
- Top-Down Parsers
 - Problems: Backtrack and Infinite Loops
 - Predictive Parsers
 - LL(k) Grammars
 - Predictive Parser Program
 - Constructing Predictive Parsing Tables