
1

Closure Properties of Regular
Languages

Union, Intersection, Difference,
Concatenation, Kleene Closure,

Pumping Lemma,
Minimal State DFA

2

Closure Properties

Recall a closure property is a statement
that a certain operation on languages,
when applied to languages in a class
(e.g., the regular languages), produces
a result that is also in that class.
For regular languages, we can use any

of its representations to prove a closure
property.

3

Closure Under Union

uIf L and M are regular languages, so is
LM.
uProof: Let L and M be the languages of

regular expressions R and S, respectively.
uThen R|S is a regular expression whose

language is LM.

4

Closure Under Concatenation
and Kleene Closure

uSame idea:
w RS is a regular expression whose language

is the concatenation LM.
w R* is a regular expression whose language

is L*.

30

Product Automata

uGiven languages L and M construct the

product DFA from DFA’s for L and M.

Let these DFA’s have sets of states Q
and R, respectively.
Product DFA has set of states Q  R.
 I.e., pairs [q, r] with q in Q, r in R.

31

Product DFA – Continued

Start state = [q0, r0] (the start states of
the DFA’s for L, M).
Transitions: δ([q,r], a) =

[δL(q,a), δM(r,a)]
 δL, δM are the transition functions for the

DFA’s of L, M.
 That is, we simulate the two DFA’s in the

two state components of the product DFA.

6

Example: Product DFA for
Intersection

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

5

Closure Under Intersection

If L and M are regular languages, then
so is L  M.
Proof: Let A and B be DFA’s whose

languages are L and M, respectively.
Construct C, the product automaton of A

and B.
Make the final states of C be the pairs

consisting of final states of both A and B.

6

Example: Product DFA for
Intersection

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

7

Closure Under Difference

If L and M are regular languages, then
so is L – M = strings in L but not M.
Proof: Let A and B be DFA’s whose

languages are L and M, respectively.
Construct C, the product automaton of A

and B.
Make the final states of C be the pairs

where A-state is final but B-state is not.

8

Example: Product DFA for
Difference

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

Notice: difference
is the empty language

9

Closure Under Complementation

The complement of a language L (with
respect to an alphabet Σ such that Σ*
contains L) is Σ* – L.
Since Σ* is surely regular, the

complement of a regular language is
always regular.

26

Closure Under Complementation

Let L be regular and AL=(S,V,δ,s0,F) its DFA

The DFA for the complent language, L, is:

 AL=(S,V,δ,s0,S-F)

1

Decision Properties of Regular
Languages

General Discussion of “Properties”
The Pumping Lemma

Membership, Emptiness, Etc.

4

Decision Properties

A decision property for a class of
languages is an algorithm that takes a
formal description of a language (e.g., a
DFA) and tells whether or not some
property holds.
Example: Is language L empty?

11

The Membership Question

Our first decision property is the
question: “is string w in regular
language L?”
Assume L is represented by a DFA A.
Simulate the action of A on the

sequence of input symbols forming w.

19

The Emptiness Problem

Given a regular language, does the
language contain any string at all.
Assume representation is DFA.
Construct the transition graph.
Compute the set of states reachable

from the start state.
If any final state is reachable, then yes,

else no.

20

The Infiniteness Problem

Is a given regular language infinite?
Start with a DFA for the language.
Key idea: if the DFA has n states, and

the language contains any string of
length n or more, then the language is
infinite.
Otherwise, the language is surely finite.
 Limited to strings of length n or less.

21

Proof of Key Idea

uIf a DFA with |S|=n accepts a string w of
length n or more, then there must be a state
that appears twice on the path labeled w
from the start state to a final state.
uBecause there are at least n+1 states along

the path.

22

Proof – (2)

w = xyz, with y≠ε

x
y

z

Then xyiz is in the language for all i > 0.

Since y is not ε, we see an infinite
number of strings in L.

24

Proof of Infiniteness

Remember:
We can choose y to be the first cycle

on the path.
So |xy| < n; in particular, 1 < |y| < n.
Thus, if w is of length n or more,

then w = xyz, but also xyiz is recognized.

x
y

z

27

The Pumping Lemma

We have, almost accidentally, proved a
statement that is quite useful for showing
certain languages are not regular.
Called the pumping lemma for regular

languages.

28

Statement of the Pumping Lemma

For every regular language L
There is an integer n, such that

For every string w in L of length > n
We can write w = xyz such that:

1. |xy| < n
2. |y| ≥ 1
3. For all i > 0, xyiz is in L.

Number of
states of
DFA for L

Labels along
first cycle on
path labeled w

29

Example: Use of Pumping Lemma

We have claimed {0k1k | k > 1} is not a
regular language.
Suppose it were. Then there would be

an associated n for the pumping lemma.
Let w = 0n1n. We can write w = xyz,

where x and y consist of 0’s, and y  ε.
But then xyyz would be in L, and this

string has more 0’s than 1’s.

10

Example: Use of Closure Property

We proved with Pumping Lemma that
 L1 = {0n1n | n > 0} is not a regular.

L2 = the set of strings with an equal
number of 0’s and 1’s isn’t either, but
that fact is trickier to prove.
Regular languages are closed under .
If L2 were regular, then L2 L(0*1*) =

L1 would be, but it isn’t.

30

Decision Property: Equivalence

Given regular languages L and M, is
L = M?
Algorithm involves constructing the

product DFA from DFA’s for L and M.

33

Equivalence Algorithm

Make the final states of the product
DFA be those states [q, r] such that
exactly one of q and r is a final state of
its own DFA.
Thus, the product accepts w iff w is in

exactly one of L and M.

34

Example: Equivalence

A

C

B

D

0
1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0
1

[B,D]

0

1

35

Equivalence Algorithm – (2)

The product DFA’s language is empty
iff L = M.
But we already have an algorithm to

test whether the language of a DFA is
empty.

36

Decision Property: Containment

Given regular languages L and M, is
L  M?
Algorithm also uses the product

automaton.
How do you define the final states [q, r]

of the product so its language is empty
iff L  M?

Answer: q is final; r is not.

38

The Minimum-State DFA for a
Regular Language

In principle, since we can test for
equivalence of DFA’s we can, given a
DFA A find the DFA with the fewest
states accepting L(A).
Test all smaller DFA’s for equivalence

with A.
But that’s a terrible algorithm.

39

Efficient State Minimization

Construct a table with all pairs of
states.
If you find a string that distinguishes

two states (takes exactly one to an
accepting state), mark that pair.
Algorithm is a recursion on the length

of the shortest distinguishing string.

40

State Minimization – (2)

Basis: Mark a pair if exactly one is a final
state.
Induction: mark [q, r] if there is some

input symbol a such that [δ(q,a), δ(r,a)]
is marked.
After no more marks are possible, the

unmarked pairs are equivalent and can
be merged into one state.

42

Constructing the Minimum-
State DFA

Suppose q1,…,qk are indistinguishable
states.
Replace them by one state q.
Then δ(q1, a),…, δ(qk, a) are all

indistinguishable states.
 Key point: otherwise, we should have

marked at least one more pair.
Let δ(q, a) = the representative state

for that group.

43

Example: State Minimization
r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}
* {1,3,7,9} {2,4,6,8} {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

{2,4,6,8} {1,3,5,7,9}

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction.

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

Here it is
with more
convenient
state names

44

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

Start with marks for
the pairs with one of
the final states F or G.

45

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

Input r gives no help,
because the pair [B, D]
is not marked.

46

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

But input b distinguishes {A,B,F}
from {C,D,E,G}. For example, [A, C]
gets marked because [C, F] is marked.

x

x x
x

x
x x

47

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

x

x x
x

x
x x
x x

48

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x

[A, B] is marked
because of transitions on r
to marked pair [B, D].

x

x x
x

x
x x
x x

x

[D, E] can never be marked,
because on both inputs they
go to the same state.

49

Example – Concluded

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*
*

G F E D C B
A
B
C
D
E
F

x

x
x

x
x

x

x
x

x
x
x

x x
x

x
x x
x x

x
r b

A B C
B H H
C H F
H H G

F H C
G H G

*
*

Replace D and E by H.
Result is the minimum-state DFA.

50

Eliminating Unreachable States

Unfortunately, combining
indistinguishable states could leave us
with unreachable states in the
“minimum-state” DFA.
Thus, before or after, remove states

that are not reachable from the start
state.

51

Clincher

We have combined states of the given
DFA wherever possible.
Could there be another, completely

unrelated DFA with fewer states?
No. The proof involves minimizing the

DFA we derived with the hypothetical
better DFA.

	Untitled
	Blank Page

