Closure Properties of Regular
Languages

Union, Intersection, Difference,
Concatenation, Kleene Closure,
Pumping Lemma,
Minimal State DFA

Closure Properties

@ Recall a closure property is a statement
that a certain operation on languages,
when applied to languages in a class
(e.g., the reqgular languages), produces
a result that is also in that class.

@ For regular languages, we can use any
of Its representations to prove a closure

property.

Closure Under Union

€ If L and M are regular languages, so is
LUM.

€ Proof: Let L and M be the languages of
regular expressions R and S, respectively.

€ Then R|S is a regular expression whose
language is LUM.

Closure Under Concatenation
and Kleene Closure

& Same idea:

* RS Is a regular expression whose language
Is the concatenation LM.

¢+ R* Is a regular expression whose language
IS L*.

Product Automata

€ Given languages L and M construct the
proauct DFA from DFA’s for L and M.

@ Let these
and R, res

&®Product D

DFA’s have sets of states Q
pectively.

-A has set of states Q x R.

¢ l.e.,pars|[q, rlwithginQ,rinR.

30

Product DFA — Continued

& Start state = [q,, r,] (the start states of
the DFA’s for L, M).

& Transitions: o([q,r], a) =
[0,(0,a), Oy(r,a)]

* 0., Oy are the transition functions for the
DFA’s of L, M.

¢ That Is, we simulate the two DFA’s In the
two state components of the product DFA.

31

- Product DFA for
Intersection

e g

0,1 1 1 1

0
0

Y e (@S @o
O~

1

Closure Under Intersection

€ If L and M are regular languages, then
soisL m M.

@ Proof: Let A and B be DFA's whose
languages are L and M, respectively.

@ Construct C, the product automaton of A
and B.

& Make the final states of C be the pairs
consisting of final states of both A and B.

5

- Product DFA for
Intersection

0 N
Wt e dam
0, 1 AR 0

- 0
1 O 1 [B’C] @

Q@ —F

1

Closure Under Difference

€ If L and M are regular languages, then
sois L — M = strings In L but not M.

@ Proof: Let A and B be DFA's whose
languages are L and M, respectively.

@ Construct C, the product automaton of A
and B.

& Make the final states of C be the pairs
where A-state Is final but B-state Is not.

7

- Product DFA for
Difference

N

0, 1 1| |2 2 0
0
Yo e B (Eo)
©—f

1 Notice: difference
Is the empty language

8

Closure Under Complementation

® The complement of a language L (with
respect to an alphabet 2 such that 2*

contains L) Is 2* — L.
@ Since 2* is surely regular, the

complement of a regular language Is
always regular.

Closure Under Complementation

Let L be regular and A =(S,V,0,sq,F) its DFA

The DFA for the complent language, L, is:

Al;= (SlvlalSOlS-F)

26

Decision Properties of Regular
Languages

General Discussion of “Properties”
The Pumping Lemma
Membership, Emptiness, Etc.

Decision Properties

&® A decision property for a class of
languages Is an algorithm that takes a
formal description of a language (e.g., a
DFA) and tells whether or not some
property holds.

4 . Is language L empty?

The Membership Question

@ Our first decision property is the
guestion: “Is string w In regular
language L?”

@® Assume L is represented by a DFA A.

€ Simulate the action of A on the
seguence of input symbols forming w.

11

The Emptiness Problem

€ Given a regular language, does the
language contain any string at all.

€ Assume representation is DFA.
@ Construct the transition graph.

€ Compute the set of states reachable
from the start state.

@ If any final state is reachable, then yes,
else no.

19

The Infiniteness Problem

@ Is a given regular language infinite?
@ Start with a DFA for the language.

¢ . if the DFA has n states, and
the language contains any string of
length 7 or more, then the language Is
Infinite.

Otherwise, the language is surely finite.
* Limited to strings of length n7 or less.

20

Proof of

@ If a DFA with |S|=n accepts a string w of
length n or more, then there must be a state
that appears twice on the path labeled w
from the start state to a final state.

@ Because there are at least n+1 states along
the path.

21

Proof — (2)

w = Xyz, with y+¢

y

: —QO

Then xy'z is in the language for all i > 0.

Since y Is not €, we see an Iinfinite
number of strings in L.

22

Proof of

® Remember: (X :@ 2N

€ \We can choose y to be the first cycle
on the path.

€50 |xy| < n; in particular, 1 < |y|] < n.

& Thus, if w is of length n or more,
then w = xyz, but also xy'z is recognized.

24

The Pumping Lemma

€ We have, almost accidentally, proved a
statement that Is quite useful for showing
certain languages are not regular.

& Called the pumping lemma for reqular
/anguages.

27

Statement of the Pumping Lemma

Number of
For every regular language L states of

. . DFA for L
There Is an integer n, such that g
For every string w in L of length > n
We can write w = Xxyz such that:

L. Ixy] <n \

Labels along
2. |yl 21 first cycle on

3. Foralli>0, xy'zisinL. Pathlabeledw

28

. Use of Pumping Lemma

€ \We have claimed {01k | k > 1} is not a
regular language.

® Suppose it were. Then there would be
an associated n for the pumping lemma.

®Let w = 0"1". We can write w = xyz,
where x and y consist of O’'s, and y = €.

€ But then xyyz would be in L, and this
string has more O’s than 1’s.

29

. Use of Closure Property

€ \We proved with Pumping Lemma that
L, = {0"1" | n > O} Is not a regular.
@ L, = the set of strings with an equal

number of 0's and 1’s isn’t either, but
that fact is trickier to prove.

® Regular languages are closed under .

@ If L, were regular, then L, NL(0*1*) =
L, would be, but it isn’t.

10

Decision Property: Equivalence

€ Given regular languages L and M, is
L = M?

@ Algorithm involves constructing the
oroauct DFA from DFA’s for L and M.

30

Equivalence Algorithm

€ Make the final states of the product
DFA be those states [q, r] such that
exactly one of g and r is a final state of
Its own DFA.

@ Thus, the product accepts w iff w is in
exactly one of L and M.

33

. Equivalence

0 ‘ 0
9 WA O @

0,1 1 1

1
0
0
o B @

34

Equivalence Algorithm — (2)

€ The product DFA’s language is empty
iff L = M.
€ But we already have an algorithm to

test whether the language of a DFA Is
empty.

35

Decision Property: Containment

€ Given regular languages L and M, is
L < M?

@ Algorithm also uses the product
automaton.

€ How do you define the final states [q, r]
of the product so Its language Is empty
Iff L M?

. g Is final; r Is not.

36

The Minimum-State DFA for a
Regular Language

@ In principle, since we can test for
equivalence of DFA’s we can, given a
DFA A find the DFA with the fewest
states accepting L(A).

& Test all smaller DFA’s for equivalence
with A.

€ But that's a terrible algorithm.

38

Efficient State Minimization

Construct a table with all pairs of
states.

@ If you find a string that aistinguishes
two states (takes exactly one to an
accepting state), mark that pair.

@ Algorithm is a recursion on the length
of the shortest distinguishing string.

39

State Minimization — (2)

& Basis: Mark a pair if exactly one is a final
state.

@ Induction: mark [q, r] if there is some
input symbol a such that [0(q,a), o(r,a)]
IS marked.

@ After no more marks are possible, the
unmarked pairs are equivalent and can
be merged into one state.

40

Constructing the Minimum-
State DFA

@ Suppose q,,...,q, are indistinguishable
states.

@ Replace them by one state q.

€ Then 9o(q,, a),..., 0(q,, a) are all
Indistinguishable states.

. . otherwise, we should have
marked at least one more pair.

& Let 0(q, a) = the representative state
for that group.

42

- State Minimization

r b r b

— {1} | {24 | {5 e C

2,4y |{2,4,6,8} {1,3,5,7} BID |E

(5} |{2,4,6,8} {1,3,7,9} CIDIF

{2,4,6,8} |{2,4,6,8} {1,3,5,7,9} DDIG

{1.3,5,7} | {2,4.6,8}/{1,3,5,7,9} EDI|G

x 11,370} {2468} {5} *E%%
* {1,3,5,7,9} {2,4,6,8}/{1,3,5,7,9} &

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction.

Here it Is
with more
convenient
state names

43

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO TmOoc

— Continued

MmO W™ >

E D C B

X X X X x@©
X X X X X T

Start with marks for
the pairs with one of
the final states F or G.

44

* %

O MmO @ X

OO 0O gUOO0Oom-

OO TmOoc

— Continued

MmO W™ >

E D C B

X X X X x@©
X X X X X T

Input r gives no help,
because the pair [B, D]
IS not marked. e

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO0 TmOoT

— Continued

MmO m >
X X X X x x@®
X X X X X7
X X m
x x U
X X O

But input b distinguishes {A,B,F}

from {C,D,E,G}. For example, [A, C]

gets marked because [C, F] is marked.
4

6

*

O MmO @ X

OO0 gO0OQ0gOom-—=

OO0 TmOoT

— Continued

MmO m >
X X X X x x@®
X X X X X7
X X XM
< x xU
X X O

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

47

— Continued

r |b G FEDTCB

ABIC A X X X X X X

BID |E B X X X X X

CID|F C X X X X

DD|G D X X

EID |G E X X
+FD |C F X
+xGD|G

[A, B] Is marked [D, E] can never be marked,

because of transitions on r because on both inputs they

to marked pair [B, D]. go to the same state. |,

— Concluded

49

o X

O X X

L X X X

LL X X X X X

< m OO W L

<

LL

()

()

o

@©

o

i

£

B E

w <

o0 I uwO 0O - £

c

w0 T I L T L nakn_Hb

<< m QO I i O A +

H X X %nb

8 5

ocoww Oo O w%

N YaYalaNaWala o o
<< moOAOQOwWwwao
; X X

Eliminating Unreachable States

€ Unfortunately, combining
Indistinguishable states could leave us
with unreachable states in the
“minimum-state” DFA.

® Thus, before or after, remove states
that are not reachable from the start
state.

50

Clincher

€ \We have combined states of the given
DFA wherever possible.

@ Could there be another, completely
unrelated DFA with fewer states?

®No. The proof involves minimizing the
DFA we derived with the hypothetical
better DFA.

51

	Untitled
	Blank Page

