
Formal Languages and Compilers
Lecture II: Formal Language Theory

Alessandro Artale
Free University of Bozen-BolzanoFaculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it
http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester
A. Artale Formal Languages and Compilers

Summary of Lecture II

• Grammars.

• Generating Languages from Grammars.
• Chomsky Classification.
• Derivation Trees

A. Artale Formal Languages and Compilers

Formal Language Theory
• The Formal Language Theory considers a Language as amathematical object.
• A Language is just a set of strings. To formally define a Languagewe need to formally define what are the strings admitted by theLanguage.
• Formal Notions:1 Alphabet. A finite, non-empty set of symbols, indicated by V(e.g., V = {1, 2, 3, 4, 5, 6, 7, 8, 9}).2 String. A string over an alphabet, V, is a sequence (concatenation)of symbols belonging to the alphabet (e.g., “518” is a string over theabove V). The empty string is denoted by ε.3 Linguistic Universe. Indicated by V∗, denotes the set of all possiblefinite strings over V, included ε. The set V+ denotes the set V∗ \ ε.

A. Artale Formal Languages and Compilers

Formal Language Theory (cont.)
• Language L over V is any subset of V∗: L ⊆ V∗.

Note: L may be infinite!
• Examples. {

V = {a, b, . . . , z}
L = {all English words}

{
V = {0, 1}
L = {ε, 01, 0011, 000111, . . .}

• Formally characterize a Language means:
Find a finite representation of all admissible strings.

A. Artale Formal Languages and Compilers

Grammars
• The notion of Grammar is related to studies in natural languages.
• Linguists were concerned with:1 Defining the valid sentences of a Language;2 Providing a structural definition of such valid sentences.
• A Grammar is a formalism that gives a finite representation of aLanguage.
• A Grammar gives a Generative perspective: It defines the set ofrules by which all admissible strings can be generated.

A. Artale Formal Languages and Compilers

Formal Notion of Grammar
• Introduced by the linguist Noam Chomsky in the 1950s.
• A Grammar, G, is a tuple: G= (VT,VN,S,P), such that:

I VT is the finite set of Terminal Symbols.
I VN is the finite set of Non-Terminal Symbols.
I Terminal and Non-Terminal symbols give rise to the alphabet:
V = VT ∪ VN.

I Terminal and Non-Terminal symbols are disjoint sets: VT ∩ VN = ∅.
I S ∈ VN is the Scope of the Language.
I P is the finite set of Productions:
P = {α → β | α ∈ V∗ · VN · V∗, and β ∈ V∗}.

A. Artale Formal Languages and Compilers

Summary

• Grammars.
• Generating Languages from Grammars.

• Chomsky Classification.
• Derivation Trees.

A. Artale Formal Languages and Compilers

Notion of Derivation
• To characterize a Language starting from a Grammar we need tointroduce the notion of Derivation.
• The notion of Derivation uses Productions to generate a stringstarting from another string.
• Direct Derivation (in symbols ⇒).If α → β ∈ P and γ, δ ∈ V∗, then, γαδ ⇒ γβδ .
• Derivation (in symbols ⇒∗).If α1 ⇒ α2, α2 ⇒ α3, ..., αn−1 ⇒ αn, then, α1 ⇒∗ αn.

A. Artale Formal Languages and Compilers

Generating Languages from Grammars
Generative Definition of a Language. We say that a Language L is
generated by the Grammar G, in symbols L(G), if:

L(G) = {w ∈ VT
∗ | S⇒∗ w}.We say that two Languages are equivalent if L(G1) ≡ L(G2).

The above definition says that a string belongs to a Language (socalled, sentences) if and only if:
1 The string is made only of Terminal Symbols;
2 The string is Derived from the Scope, S, of the Language.

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples
Example 1. Let us consider the following Grammar, G= (VT,VN,S,P):
• VT = {0, 1};
• VN = {S};
• P = {S → 0S1,S → ε};Then:
• S ⇒∗ 0n1n;
• L(G) = {0n1n | n ≥ 0}.

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples
Example 2. Let us consider the following Grammar, G= (VT,VN,S,P):
• VT = {a, b};
• VN = {S ,A,B};
• S = S .With Productions in P:

r1. S → AB
r2. A → aA
r3. A → ε
r4. B → bB
r5. B → εThen:
•
S ⇒r1 AB ⇒r2 aAB ⇒r2 aaAB ⇒r2 aaaAB ⇒r3 aaaB ⇒r4

aaabB ⇒r4 aaabbB ⇒r5 aaabb
• L(G) = {ambn | m, n ≥ 0}

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples
Example 3. Let us consider the following Grammar with more than onesymbol on the left side of Productions, G= (VT,VN,S,P):
• VT = {a};
• VN = {S ,N,Q,R};
• S = S .With Productions in P:

r1. S → QNQ
r2. QN → QR
r3. RN → NNR
r4. RQ → NNQ
r5. N → a
r6. Q → ε

Then:
• S ⇒r1 QNQ ⇒r2 QRQ ⇒r4

QNNQ ⇒r2 QRNQ ⇒r3

QNNRQ ⇒r4 QNNNNQ ⇒∗
aaaa

• L(G) = {a(2n) | n ≥ 0}

A. Artale Formal Languages and Compilers

Summary

• Grammars.
• Generating Languages from Grammars.
• Chomsky Classification.

• Derivation Trees.

A. Artale Formal Languages and Compilers

Chomsky Classification
• The concept of Grammar Classification was introduced by NoamChomsky in the 1950s as a way to describe the structuralcomplexity of particular sentences of natural language.
• Languages are classified w.r.t. the Grammar that generates them:
Different constraints on Productions define different classes of
Grammars/Languages.

A. Artale Formal Languages and Compilers

Type 0 Grammars
• The most general Grammars are the so called Type 0 Grammars.
• They are formal Grammars, G= (VT,VN,S,P), such that allproductions in P respect the following condition:

Type 0. α → βwith α ∈ V∗ · VN · V∗ and β ∈ V∗.
• The Grammar of Example 3 is a Type 0 Grammar.

A. Artale Formal Languages and Compilers

Type 1, Context-Sensitive Grammars
Context-Sensitive Grammars, also called Type 1 Grammars, are formalGrammars, G= (VT,VN,S,P), such that all productions in P respect thefollowing condition:

Type 1. αAγ → αβγwith α, γ ∈ V∗, β ∈ V+ and A ∈ VN.Furthermore, a rule of the following form is allowed:
S→ εif S does not appear on the right side of any rule.

• The meaning of “Context-Sensitive” is explained by the α and γthat form then context of A and determines whether A can bereplaced with β or not.
A. Artale Formal Languages and Compilers

Type 2, Context-Free Grammars
Context-Free Grammars, also called Type 2 Grammars, are formalGrammars, G= (VT,VN,S,P), such that all productions in P respect thefollowing condition:

Type 2. A→ βwith A ∈ VN and β ∈ V∗.
• The term “Context-Free" comes from the fact that the non-terminal
A can always be replaced by β, in no matter what context itoccurs.

• Context-Free Grammars are important because they are powerful
enough to describe the syntax of programming languages; in fact,
almost all programming languages are defined via Context-Free
Grammars.

A. Artale Formal Languages and Compilers

Type 2, Context-Free Grammars (Cont.)
• Context-Free Grammars are simple enough to allow theconstruction of efficient parsing algorithms which for a given stringdetermine whether and how it can be generated from the Grammar.
• The Syntactical Analysis of a Compiler is based on implementingParses based on Context-Free Grammars.
• The Grammar of Example 1 is a Context-Free Grammar. TheGrammar describing assignment is a Context-Free Grammar:
<assignment> → ID “ = ” <expr>

<expr> → ID | NUM |<expr><op ><expr>| (<expr>)
<op> → + | − | ∗ | /

• Exercise. What is the alphabet V of the above Grammar?
A. Artale Formal Languages and Compilers

Type 3, Regular Grammars
Regular Grammars, also called Type 3 Grammars, are formal Grammars,
G= (VT,VN,S,P), such that all productions in P respect the followingconditions, where A,B ∈ VN and a ∈ VT:

Type 3. A→ aB , or A→ aFurthermore, a rule of the following form is allowed:
S→ εif S does not appear on the right side of any rule.

• The above define the Right-Regular Grammars. The followingProductions:
A→ Ba, or A→ adefine Left-Regular Grammars.

• Right-Regular and Left-Regular Grammars define the same set ofLanguages.
A. Artale Formal Languages and Compilers

Type 3, Regular Grammars (cont.)

• Regular Grammars are commonly used to define the lexical structure
of programming languages.

• Exercise. Even if the Grammar of Example 2 is a Context-FreeGrammar the generated Language can be expressed by anequivalent Regular Grammar.

A. Artale Formal Languages and Compilers

Summing Up
• Grammar/Language Types form a hierarchy of languages, alsocalled the Chomsky Hierarchy.
• Every Regular Language is Context-Free, every Context-FreeLanguage is Context-Sensitive and every Context-SensitiveLanguage is a Type 0 Language.
• These are all proper inclusions, meaning that there exist Type 0Languages which are not Context-Sensitive, Context-SensitiveLanguages which are not Context-Free and Context-FreeLanguages which are not Regular.
• Theorem. Let G be a Context-Sensitive-Grammar then G is

recursive: There is an algorithm such that for any string wdetermines whether w ∈ L(G).
A. Artale Formal Languages and Compilers

Summary

• Grammars.
• Generating Languages from Grammars.
• Chomsky Classification.
• Derivation Trees.

A. Artale Formal Languages and Compilers

Derivation Trees for Context-Free Grammars
Derivation Trees, called also Parse Trees, are a visual method ofdescribing any derivation in a context-free grammar.
• Let G= (VT,VN,S,P) be a CFG. A tree is a derivation tree for G if:1 Every node has a label, which is a symbol of V;2 The label of the root is S;3 If a node, n, labeled with A has at least one descendant, then

A ∈ VN;4 If nodes n1, n2, . . . , nk are direct descendants of node n, with labels
A1,A2, . . . ,Ak , respectively, then:

A→ A1,A2, . . . ,Akmust be a production in P.

A. Artale Formal Languages and Compilers

Derivation Trees: An Example
Example. Let G=({a, b}, {S ,A},S ,P), where P is:
S → aAS S → a
A→ SbA A→ ba
A→ SS

The following is an example of a derivation tree:
S

A Sa

S Ab a

a b a

A. Artale Formal Languages and Compilers

Derivation Trees (Cont.)
• Derivation Trees are visual representation of Grammar’sderivations.
• We indicate as Leaves nodes in derivation trees withoutdescendants.
• If we read the leaves from left to right we have a sentence, calledalso the result of the derivation tree.
• Theorem. Let G= (VT,VN,S,P) be a context-free grammar, then, for
α 6= ε, S⇒∗ α if and only if there is a derivation tree in grammar
G with result α .

A. Artale Formal Languages and Compilers

Derivation Trees: An Example (Cont.)
Example. Let G=({a, b}, {S ,A},S ,P), where P is:
S → aAS S → a
A→ SbA A→ ba
A→ SS S

A Sa

S Ab a

a b a

The result of the derivation tree is: aabbaa. Now, S ⇒∗ aabbaa by:
S ⇒ aAS ⇒ aSbAS ⇒ aabAS ⇒ aabbaS ⇒ aabbaa.

A. Artale Formal Languages and Compilers

Summary of Lecture II

• Grammars.
• Generating Languages from Grammars.
• Chomsky Classification.
• Derivation Trees.

A. Artale Formal Languages and Compilers

