Formal Languages and Compilers
Lecture Il: Formal Language Theory

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science — POS Building, Room: 2.03
artale@inf.unibz.it
http://www.inf.unibz.it/~artale/

Formal Languages and Compilers — BSc course

2020/21 — Second Semester

A. Artale Formal Languages and Compilers

Summary of Lecture |l

Grammars.

Generating Languages from Grammars.

Chomsky Classification.

Derivation Trees

A. Artale Formal Languages and Compilers

Formal Language Theory

e The Formal Language Theory considers a Language as a
mathematical object.

e A Language is just a set of strings. To formally define a Language
we need to formally define what are the strings admitted by the
Language.

e Formal Notions:

@ Alphabet. A finite, non-empty set of symbols, indicated by V
(e.g., V ={1,2,3,4,5,6,7,8,9}).

@ String. A string over an alphabet, V, is a sequence (concatenation)
of symbols belonging to the alphabet (e.g.,, “518” is a string over the
above V). The empty string is denoted by e.

© Linguistic Universe. Indicated by V*, denotes the set of all possible
finite strings over V, included €. The set V' denotes the set V* \ €.

A. Artale Formal Languages and Compilers

Formal Language Theory (cont.)

e Lanquage L over V is any subset of V*: L C V*.
Note: L may be infinite!

e Examples.

{V ={ab, ..., z}

L = {all English words}

vV ={0,1}
L ={e01,0011,000111,...}
e Formally characterize a Language means:

Find a finite representation of all admissible strings.

A. Artale Formal Languages and Compilers

Grammars

The notion of Grammar is related to studies in natural languages.

Linguists were concerned with:

@ Defining the valid sentences of a Language;
® Providing a structural definition of such valid sentences.

A Grammar is a formalism that gives a finite representation of a
Language.

A Grammar gives a Generative perspective: It defines the set of
rules by which all admissible strings can be generated.

A. Artale Formal Languages and Compilers

Formal Notion of Grammar

e Introduced by the linguist Noam Chomsky in the 1950s.

e A Grammar, G, is a tuple: G= (VT,Vn,S,P), such that:

V7 is the finite set of Terminal Symbols.

Vn is the finite set of Non-Terminal Symbols.

Terminal and Non-Terminal symbols give rise to the alphabet:

V =Vt UVj\.

Terminal and Non-Terminal symbols are disjoint sets: V+ NVy = .
S € Vy is the Scope of the Language.

P is the finite set of Productions:

P={a—-B|laeV"-Vy-V* and B € V*}.

v

v

v

v

v

v

A. Artale Formal Languages and Compilers

Summary

Grammars.

Generating Languages from Grammars.

Chomsky Classification.

Derivation Trees.

A. Artale Formal Languages and Compilers

Notion of Derivation

e To characterize a Language starting from a Grammar we need to
introduce the notion of Derivation.

e The notion of Derivation uses Productions to generate a string
starting from another string.

e Direct Derivation (in symbols =).
If « - B e Pandy,od € V* then, yad = yf30.

e Derivation (in symbols =%).
f a1 = a, a0 = as, ..., an—1 = ap, then, a; =% a,.

A. Artale Formal Languages and Compilers

Generating Languages from Grammars

Generative Definition of a Language. We say that a Language L is
generated by the Grammar G, in symbols L(G), if:

L(G) ={weVTs"|S="w}
We say that two Languages are equivalent if L(G1) = L(Gy).

The above definition says that a string belongs to a Language (so
called, sentences) if and only if:

@ The string is made only of Terminal Symbols;

@® The string is Derived from the Scope, S, of the Language.

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples

Example 1. Let us consider the following Grammar, G= (V1,Vn,S,P):

e V1 = {0,1};

e Vy = {S}h

e P = {§-50S51,S5 — e}
Then:

e S =* 01"

e L(G) = {0"1"| n> 0}

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples
Example 2. Let us consider the following Grammar, G= (V1,Vn,S,P):

° VT = {a, b};
e Vy = {S,A B}
eS = S,
With Productions in P:
rl. S — AB
r2. A — aA
r3. A — €
ré. B — bB
r5. B — ¢
Then:

[]
S =" AB = aAB =2 2aAB =2 22aAB ='3 qaaB ="
aaabB =" aaabbB =" aaabb
e L(G) = {a"b"| m,n> 0}

A. Artale Formal Languages and Compilers

Generating Languages from Grammars: Examples

Example 3. Let us consider the following Grammar with more than one
symbol on the left side of Productions, G= (VT,Vn,S,P):

e V1 = {a}

e Vy = {S,N,Q R}

eS = S,
With Productions in P:

Then:

rl. S —> QNQ ° 5 :>r1 QNQ :>r2 QRQ :>r4
r2. Q/V — QR QNNQ :>r2 QRNQ :>r3
r3. RN — NNR Q/\//\/RQ :r4 Q/\//\/NNQ :>*
rd. RQ — NNQ 23233

rb. N — a o L(G) = {3(2”) | n >0}

ré. R — €

A. Artale Formal Languages and Compilers

Summary

Grammars.

Generating Languages from Grammars.

Chomsky Classification.

Derivation Trees.

A. Artale Formal Languages and Compilers

Chomsky Classification

e The concept of Grammar Classification was introduced by Noam
Chomsky in the 1950s as a way to describe the structural
complexity of particular sentences of natural language.

e Languages are classified w.r.t. the Grammar that generates them:
Different constraints on Productions define different classes of
Grammars/Languages.

A. Artale Formal Languages and Compilers

Type 0 Grammars

e The most general Grammars are the so called Type 0 Grammars.

e They are formal Grammars, G= (VT1,Vn,S,P), such that all
productions in P respect the following condition:

Type 0. a — 8
with a € V* - Vy - V* and B € V*.

e The Grammar of Example 3 is a Type 0 Grammar.

A. Artale Formal Languages and Compilers

Type 1, Context-Sensitive Grammars

Context-Sensitive Grammars, also called Type 1 Grammars, are formal
Grammars, G= (VT1,Vn,S,P), such that all productions in P respect the
following condition:

Type 1. cAy — aBy
with o,y € V¥, B € VT and A € Vj.
Furthermore, a rule of the following form is allowed:
S—e
if S does not appear on the right side of any rule.

e The meaning of “Context-Sensitive” is explained by the o and y
that form then context of A and determines whether A can be
replaced with 8 or not.

A. Artale Formal Languages and Compilers

Type 2, Context-Free Grammars

Context-Free Grammars, also called Type 2 Grammars, are formal
Grammars, G= (VT1,Vn,S,P), such that all productions in P respect the
following condition:

Type 2. A—=pB
with A € Vy and B € V*.

e The term “Context-Free" comes from the fact that the non-terminal
A can always be replaced by 3, in no matter what context it
occurs.

e Context-Free Grammars are important because they are powerful
enough to describe the syntax of programming languages; in fact,
almost all programming languages are defined via Context-Free
Grammars.

A. Artale Formal Languages and Compilers

Type 2, Context-Free Grammars (Cont.)

e Context-Free Grammars are simple enough to allow the
construction of efficient parsing algorithms which for a given string
determine whether and how it can be generated from the Grammar.

e The Syntactical Analysis of a Compiler is based on implementing
Parses based on Context-Free Grammars.

e The Grammar of Example 1 is a Context-Free Grammar. The
Grammar describing assignment is a Context-Free Grammar:

<assignment> — ID " =" <expr>
<expr> — ID|NUM |<expr><op ><expr>| (< expr>)
<op> - 4| —|x|/

e Exercise. What is the alphabet V of the above Grammar?

A. Artale Formal Languages and Compilers

Type 3, Reqgular Grammars

Regular Grammars, also called Type 3 Grammars, are formal Grammars,
G= (V1,Vn,5,P), such that all productions in P respect the following
conditions, where A, B € Vy and a € VT

Type 3. A—aB,or A—a

Furthermore, a rule of the following form is allowed:
S—e€

if S does not appear on the right side of any rule.

e The above define the Right-Regular Grammars. The following
Productions:
A— Ba or A— a
define Left-Regular Grammars.

e Right-Regular and Left-Regular Grammars define the same set of
Languages.

A. Artale Formal Languages and Compilers

Type 3, Reqgular Grammars (cont.)

e Regular Grammars are commonly used to define the lexical structure
of programming languages.

e Exercise. Even if the Grammar of Example 2 is a Context-Free
Grammar the generated Language can be expressed by an
equivalent Regular Grammar.

A. Artale Formal Languages and Compilers

Summing Up

e Grammar/Language Types form a hierarchy of languages, also
called the Chomsky Hierarchy.

e Every Reqgular Language is Context-Free, every Context-Free
Language is Context-Sensitive and every Context-Sensitive
Language is a Type 0 Language.

e These are all proper inclusions, meaning that there exist Type 0
Languages which are not Context-Sensitive, Context-Sensitive
Languages which are not Context-Free and Context-Free
Languages which are not Regular.

e Theorem. Let G be a Context-Sensitive-Grammar then G is
recursive: There is an algorithm such that for any string w
determines whether w € L(G).

A. Artale Formal Languages and Compilers

Summary

Grammars.

Generating Languages from Grammars.

Chomsky Classification.

Derivation Trees.

A. Artale Formal Languages and Compilers

Derivation Trees for Context-Free Grammars

Derivation Trees, called also Parse Trees, are a visual method of
describing any derivation in a context-free grammar.

e Let G= (V1,VN,S,P) be a CFG. A tree is a derivation tree for G if:

@ Every node has a label, which is a symbol of V;
® The label of the root is S;
® If a node, n, labeled with A has at least one descendant, then

Ae \/N;
O If nodes ny, no, ..., ng are direct descendants of node n, with labels
A1, Az, ..., Ak, respectively, then:

A— Al,AQ,...,Ak
must be a production in P.

A. Artale Formal Languages and Compilers

Derivation Trees: An Example
Example. Let G=({a, b}, {S, A}, S, P), where P is:
S—-aAS S—>a
A — SbA A — ba
A— SS

The following is an example of a derivation tree:

S
A

e
S/

a

(=l

N/

N\
AN

A. Artale Formal Languages and Compilers

Derivation Trees (Cont.)

e Derivation Trees are visual representation of Grammar’s
derivations.

e We indicate as Leaves nodes in derivation trees without
descendants.

e |f we read the leaves from Lleft to right we have a sentence, called
also the result of the derivation tree.

e Theorem. Let G= (V1,VN,S,P) be a context-free grammar, then, for
a # €, S =" aif and only if there is a derivation tree in grammar
G with result a.

A. Artale Formal Languages and Compilers

Derivation Trees: An Example (Cont.)

Example. Let G=({a, b}, {S, A}, S, P), where P is:
S$—a3AS S—a

A— SPA A — ba

A— SS S

e
e

a A

S

(=n

N/

AN
N

The result of the derivation tree is: aabbaa. Now, S =* aabbaa by:
S = aAS = aSbAS = aabAS = aabbaS = aabbaa.

a

A. Artale Formal Languages and Compilers

Summary of Lecture |l

Grammars.

Generating Languages from Grammars.

Chomsky Classification.

Derivation Trees.

A. Artale Formal Languages and Compilers

