
Formal Languages and Compilers
Lecture XI—Principles of Code Optimization

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2017/18 – First Semester

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary of Lecture XI

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Code Optimization: Intro

Intermediate Code undergoes various transformations—called
Optimizations—to make the resulting code running faster and taking less
space.

Optimization never guarantees that the resulting code is the best possible.

We will consider only Machine-Independent Optimizations—i.e., they don’t
take into consideration any property of the target machine.
The techniques used are a combination of Control-Flow and Data-Flow
analysis.

Control-Flow Analysis. Identifies loops in the flow graph of a program since
such loops are usually good candidates for improvement.
Data-Flow Analysis. Collects information about the way variables are used in a
program.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Criteria for Code-Improving Transformations

The best transformations are those that yield the most benefit for the least
effort.

1 A transformation must preserve the meaning of a program. It’s better to miss
an opportunity to apply a transformation rather than risk changing what the
program does.

2 A transformation must, on the average, speed up a program by a measurable
amount.

3 Avoid code-optimization for programs that run occasionally or during debugging.
4 Remember! Dramatic improvements are usually obtained by improving the

source code: The programmer is always responsible in finding the best possible
data structures and algorithms for solving a problem.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Quicksort: An Example Program

We will use the sorting program Quicksort to illustrate the effects of the
various optimization techniques.

void quicksort(m,n)

int m,n;

{

int i,j,v,x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /* fragment begins here */

while (1) {

do i = i+1; while (a[i]<v);

do j = j-1; while (a[j]>v);

if (i>=j) break;

x = a[i]; a[i] = a[j]; a[j] =x;

}

x = a[i]; a[i] = a[n]; a[n] =x; /* fragment ends here */

quicksort(m,j); quicksort(i+1,n);

}

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Quicksort: An Example Program (Cont.)

The following is the three-address code for a fragment of Quicksort.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Basic Blocks and Flow Graphs

The Machine-Independent Code-Optimization phase consists of control-flow
and data-flow analysis followed by the application of transformations.
During control-flow analysis, a program is represented as a Flow Graph where:

Nodes represent Basic Blocks: Sequence of consecutive statements in which
flow-of-control enters at the beginning and leaves at the end without halt or
branches;
Edges represent the flow of control.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Flow Graph: An Example

Flow graph for the three-address code fragment for quicksort. Each Bi is a
basic block.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



The Principal Sources of Optimization

After the control-flow analysis we can individuate the basic transformations as
the result of data-flow analysis.

We distinguish local transformations—involving only statements in a single
basic block—from global transformations.
A basic block computes a set of expressions: A number of transformations can
be applied to a basic block without changing the expressions computed by the
block.

1 Common Subexpressions elimination;
2 Copy Propagation;
3 Dead-Code elimination;
4 Constant Folding.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Common Subexpressions Elimination

Frequently a program will include calculations of the same value.

Definition. An occurrence of an expression E is called a Common
Subexpression if E was previously computed, and the values of variables in E
did not change since the previous computation.

Common Subexpression Elimination: Assignments to temporary variables
involving common subexpressions can be eliminated.

Example. Assignments to both t7 and t10 in block B5 have common
subexpressions and can be eliminated. B5 is transformed as:

t6 := 4 ∗ i

x := a[t6]

t8 := 4 ∗ j

t9 := a[t8]

a[t6] := t9
a[t8] := x

goto B2

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Common Subexpressions Elimination (Cont.)

Example (Cont.) After local elimination, B5 still evaluates 4 ∗ i and 4 ∗ j
which are global common subexpressions.

4 ∗ j is evaluated in B3 by t4. Then, the statements
t8 := 4 ∗ j ; t9 := a[t8]; a[t8] := x

can be replaced by
t9 := a[t4]; a[t4] := x

Now, a[t4] is also a common subexpression, computed in B3 by t5. Then, the
statements

t9 := a[t4]; a[t6] := t9
can be replaced by

a[t6] := t5.

Analogously, t6 can be eliminated and replaced by t2; while the value of a[t2] is
the same as the value assigned to t3 in block B2.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Common Subexpressions Elimination (Cont.)

Example. The following flow graph shows the result of eliminating both local
and global common subexpressions from basic blocks B5 and B6.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



DAGs for Determining Common Subexpressions

To individuate common subexpressions we represent a basic block as a DAG
showing how expressions are re-used in a block.
A DAG for a Basic Block has the following labels and nodes:

1 Leaves contain unique identifiers, either variable names or constants.
2 Interior nodes contain an operator symbol.
3 Nodes can optionally be associated to a list of variables representing those

variables having the value computed at the node.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



DAGs for Blocks: An Example

The following shows both a three-address code of a basic block and its
associated DAG.

(1) t1 := 4 ∗ i
(2) t2 := a[t1]
(3) t3 := 4 ∗ i
(4) t4 := b[t3]
(5) t5 := t2 ∗ t4
(6) t6 := prod + t5
(7) prod := t6
(8) t7 := i + 1
(9) i := t7
(10) if i <= 20 goto (1)

+ t6,prod

prod * t5

[] t2 [] t4 <= (1)

* t1, t3 + t7, i 20

1i4

ba

When a node contains more temporary variables we can eliminate all but one.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Copy Propagation

Copy Propagation Rule: Given the copy statement, x := y, use y for x
whenever possible after the copy statement.

Copy Propagation applied to Block B5 yields:

x := t3
a[t2] := t5
a[t4] := t3
goto B2

This transformation together with Dead-Code Elimination (see next slide) will
give us the opportunity to eliminate the assignment x := t3 altogether.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Dead-Code Elimination

Intuition: A variable is live at a point in a program if its value can be used
subsequently, otherwise it is dead.

Dead Code. A piece of code is dead if data computed is never used elsewhere
and can be eliminated.

Dead-Code may appear as the result of previous transformation. Dead-Code
works well together with Copy Propagation.

Example. Considering the Block B5 after Copy Propagation we can see that
x is never reused all over the code. Thus, x is a dead variable and we can
eliminate the assignment x := t3 from B5.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Constant Folding

Intuition: Based on deducing at compile-time that the value of an expression
(and in particular of a variable) is a constant.

Constant Folding is the transformation that substitutes an expression with a
constant.

Constant Folding is useful to discover Dead-Code.

Example. Consider the conditional statement: if (x) goto L.
If, by Constant Folding, we discover that x is always false we can eliminate
both the if-test and the jump to L.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Loop Optimization

The running time of a program can be improved if we decrease the amount of
instructions in an inner loop.
Three techniques are useful:

1 Code Motion
2 Reduction in Strength
3 Induction-Variable elimination

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Code Motion

If the computation of an expression is loop-invariant this transformation places
such computation before the loop.

Example. Consider the following while statement:
while (i <= limit - 2) do

The expression limit - 2 is loop invariant. Code motion transformation will
result in:

t := limit -2;
while (i <= t) do

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Reduction in Strength

It is based on the replacement of a computation with a less expensive one.

Example. Consider the assignment t4 := 4 ∗ j in Block B3.
j is decremented by 1 each time, then t4 := 4 ∗ j− 4.
Thus, we may replace t4 := 4 ∗ j by t4 := t4 − 4.
Problem: We need to initialize t4 to t4 := 4 ∗ j before entering the Block B3.

Result. The substitution of a multiplication by a subtraction will speed up the
resulting code.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Induction Variables

A variable x is an Induction Variable of a loop if every time the variable x
changes values, it is incremented or decremented by some constant.
A common situation is the one in which an induction variable, say i, indexes an
array, and some other induction variable, say t, is the actual offset to access
the array:

Often we can get rid of i.
In general, when there are two or more Induction Variables it is possible to get
rid of all but one.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Induction Variables Elimination: An Example

Example. Consider the loop of Block B3. The variables j and t4 are Induction
Variables. The same applies for variables i and t2 in Block B2.

After Reduction in Strength is applied to both t2 and t4, the only use of i and
j is to determine the test in B4.

Since t2 := 4 ∗ i and t4 := 4 ∗ j, the test i > j is equivalent to t2 > t4.

After this replacement in the test, both i (in Block B2) and j (in Block B3)
become dead-variables and can be eliminated! (see next slide for the new
optimized code).

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Induction Variables Elimination: An Example (Cont.)

Flow Graph after Reduction in Strength and Induction-Variables elimination.

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization



Summary of Lecture XI

Code Optimization

Basic Blocks and Flow Graphs
Sources of Optimization

1 Common Subexpression Elimination
2 Copy Propagation
3 Dead-Code Elimination
4 Constant Folding
5 Loop Optimization

Alessandro Artale Formal Languages and Compilers Lecture XI—Principles of Code Optimization


