
Formal Languages and Compilers
Lecture I: Introduction to Compilers

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it
http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

A. Artale Formal Languages and Compilers

Course Overview
• Introduction to the Notion of Compiler.
• Formal Language Theory: Chomsky Classification and notion of

Formal Grammar.
• Theory of regular languages: deterministic and non-deterministic

finite automata, Regular expressions and Regular grammars.
• Context-free languages and their grammars.
• Lexical Analysis and Automata.
• Syntax Analysis and Parsers:

I Top-Down Parser
I Bottom-Up Parser

• Syntax-Directed Translation to Translate Programming Language
Constructs.

• Semantic Analysis: Type Checking.
• Intermediate Code Generation.

A. Artale Formal Languages and Compilers

Final Exam

• Final Written Exam: 70% of the total mark
• Mid-Term Exam: Grants the possibility to skip the Formal

Language part of the final exam.
• Compiler Project: 30% of the total mark

I Form teams of two/tree persons
I Decide and implement your little language developing a compiler

for it.
I Two weeks after the end of the course you will present a demo of

your project.
I You are free to develop your project either in C or Java.

A. Artale Formal Languages and Compilers

Reading List
• Introduction to Automata Theory, Languages, and Computation

(3rd edition), J.E. Hopcroft, R. Motwani, J.D. Ullman. Addison
Wesley, 2007.

• Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Ravi
Sethi and Jeff Ullman. Publisher: Prentice Hall, 2003.

Further reading material:

• Compiler Construction: Principles and Practice, Kenneth C.
Louden. Publisher: Brooks Cole, 1997.

• Programming Language Processors in Java: Compilers and
Interpreters, David Watt and Deryck Brown. Publisher: Prentice
Hall, 2000.

• Advanced Compiler Design and Implementation, Steven Muchnick.
Publisher: Morgan Kaufmann, 1997.

A. Artale Formal Languages and Compilers

Summary of Lecture I

• Motivations and Brief History.
• The Architecture of a Compiler.
• The Analysis Phase.
• The Synthesis Phase.
• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

How are Languages Implemented?

• Two major strategies:
1 Compilers. Translate programs to a machine executable code. They

do extensive preprocessing.
2 Interpreters. Run programs “as is” without preliminary translation:

Successive phases of translation (to machine/intermediate code) and
execution.

A. Artale Formal Languages and Compilers

History of High-Level Languages

• 1953 IBM develops the 701: All programming done in assembly.
I Problem: Software costs exceeded hardware costs!

• John Backus: Speedcoding: An interpreted language that ran
10-20 times slower than hand-written assembly!

• John Backus: Translate high-level code to assembly
I Many thought this impossible. Had already failed in other projects.
I 1954-7 FORTRAN I project: By 1958, > 50% of all software is in

FORTRAN. Cut the development time dramatically (from weeks to
hours).

A. Artale Formal Languages and Compilers

Summary

• Motivations and Brief History.
• The Architecture of a Compiler.

• The Analysis Phase.
• The Synthesis Phase.
• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

The Context of a Compiler
A compiler is a program that reads a program written in one language–the
source language–and translates it into an equivalent program in another
language–the target language.
In addition to a compiler, other programs are needed to generate an
executable code.

Source Program

Absolute Machine Code

COMPILER

ASSEMBLER

LOADER/LINKER

Target Assembly Program

Relocatable Machine Code

A. Artale Formal Languages and Compilers

The Architecture of a Compiler
Compilation can be divided in two parts: Analysis and Synthesis.

1 Analysis. Breaks the source program into constituent pieces and
creates intermediate representation.

2 Synthesis. Generates the target program from the intermediate
representation.

The analysis part can be divided along the following phases:

1 Lexical Analysis;
2 Syntax Analysis;
3 Semantic Analysis.

The synthesis part can be divided along the following phases:

1 Intermediate Code Generator;
2 Code Optimizer;
3 Code Generator.

A. Artale Formal Languages and Compilers

The Architecture of a Compiler (Cont.)
Source Program

Target Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Code Optimizer

Code Generator

A. Artale Formal Languages and Compilers

Summary

• Motivations and Brief History.
• The Architecture of a Compiler.
• The Analysis Phase.

• The Synthesis Phase.
• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

Lexical Analysis

• The program is considered as a unique sequence of characters.
• The Lexical Analyzer reads the program from left-to-right and

sequence of characters are grouped into tokens–lexical units with a
collective meaning.

• The sequence of characters that gives rise to a token is called
lexeme.

A. Artale Formal Languages and Compilers

Lexical Analysis: An Example

Let us consider the following assignment statement:
position = initial + rate ∗ 60

Then, the lexical analyzer will group the characters in the following
tokens:

Lexeme Token
position ID
= =
initial ID
+ +
rate ID
∗ ∗
60 NUM

A. Artale Formal Languages and Compilers

Symbol Table

• An essential function of a compiler is to build the Symbol Table
where the identifiers used in the program are recorded along with
various properties:
I Storage allocated for the ID; its type; its scope (where in the

program is valid); number and types of its arguments (in case the ID
is a procedure name); etc.

• When an identifier is detected an ID token is generated, the
corresponding lexeme is entered in the Symbol Table, and a
pointer to the position in the Symbol Table is associated to the ID
token.

A. Artale Formal Languages and Compilers

Syntactic Analysis

• The Syntactic Analysis is also called Parsing.
• Tokens are grouped into grammatical phrases represented by a
Parse Tree which gives a hierarchical structure to the source
program.

• The hierarchical structure is expressed by recursive rules, called
Grammar’s Productions.

• Example. Grammar’s Productions for assignment statements are:

<assignment > → ID “ = ” <expr >
<expr > → ID | NUM |<expr ><op ><expr >| (<expr >)

<op> → + | − | ∗ | /

A. Artale Formal Languages and Compilers

Parse Tree: An Example
assignment

expr=ID1

expr + exprposition

exprexprID2 *

NUMID3initial

60rate

A. Artale Formal Languages and Compilers

Grammars and Formal Language Theory

• The notion of Grammar is related to studies in natural languages.
• Linguists were concerned with:

1 Defining the valid sentences of a Language;
2 Providing a structural definition of such valid sentences.

• The Formal Language Theory considers a Language as a
mathematical object.

• A Language is just a set of strings. To formally define a Language
we need to formally define what are the strings admitted by the
Language:
I A Grammar is a formalism that gives a finite representation of a

Language and allows to generate the set of strings belonging to a
given Language.

A. Artale Formal Languages and Compilers

Semantic Analysis

• The Semantic Analysis phase checks the program for semantic
errors (Type Checking) and gathers type information for the
successive phases.

• Type Checking. Check types of operands (possibly imposing type
coercions); No real number as index for array; etc.

A. Artale Formal Languages and Compilers

Summary

• Motivations and Brief History.
• The Architecture of a Compiler.
• The Analysis Phase.
• The Synthesis Phase.

• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

Intermediate Code Generation
• An intermediate code is generated as a program for an abstract

machine.
• The intermediate code should be easy to translate into the target

program.
• As intermediate code we consider the three-address code, similar

to assembly, is a sequence of instructions with at most three
operands:

1 There is at most one operator, in addition to the assignment. Thus,
we make explicit the operators precedence.

2 Temporary names must be generated to compute intermediate
operations.

Example. The intermediate code for the assignment statement is:
temp1 = inttoreal(60)
temp2 = id3 ∗ temp1
temp3 = id2 + temp2

id1 = temp3
A. Artale Formal Languages and Compilers

Code Optimization

• This phase attempts to improve the intermediate code so that
faster-running machine code can be obtained.

• Different compilers adopt different optimization techniques.

Example. A simple optimization of the intermediate code for the
assignment statement could be:

temp1 = inttoreal(60)
temp2 = id3 ∗ temp1
temp3 = id2 + temp2

id1 = temp3

—->
temp1 = id3 ∗ 60.0
id1 = id2 + temp1

A. Artale Formal Languages and Compilers

Code Generation

• This phase generates the target code consisting of assembly code.
1 Memory locations are selected for each variable;
2 Instructions are translated into a sequence of assembly instructions;
3 Variables and intermediate results are assigned to memory

registers.

Example. A target code generated from the optimized code of the
assignment statement could be:

MOVF id3, R2 The F stands for floating-point instruction
MULF #60.0, R2 The # means that 60.0 is a constant
MOVF id2, R1 The first and second operand of each instruction
ADDF R2, R1 specify a source and a destination
MOVF R1, id1

A. Artale Formal Languages and Compilers

Summing Up

A. Artale Formal Languages and Compilers

Summary

• Motivations and Brief History.
• The Architecture of a Compiler.
• The Analysis Phase.
• The Synthesis Phase.
• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

Assembler

• The Assembler is responsible for translating the target
code–usually assembly code–into an executable machine code.

• The assembly code is a mnemonic version of machine code in
which:

1 Names are used instead of binary codes for operations (Code Table).
2 Names are used for operands instead of memory locations (Symbol

Tables).

A. Artale Formal Languages and Compilers

Loader and Linker

• The machine code generated by the Assembler can be executed
only if allocated in Main Memory starting from the address “0”.

• Since this is not possible the Loader will alter the relocatable
addresses of the code to place both instructions and data in the
right place in Main Memory.

• The starting free address, L, in Main Memory to allocate the
program is called the Relocation Factor. The Loader must:

1 Add to each relocatable address the relocation factor L;
2 Leave unaltered each absolute address–e.g., address of I/O devices.

• The Linker links together the different files/modules of a single
program and, possibly, adds library files.

A. Artale Formal Languages and Compilers

Summary of Lecture I

• Motivations and Brief History.
• The Architecture of a Compiler.
• The Analysis Phase.
• The Synthesis Phase.
• Towards Executable Code: Assembler, Loader and Linker.

A. Artale Formal Languages and Compilers

