Free University of Bozen-Bolzano - Faculty of Computer Science
Bachelor in Computer Science and Engineering
Formal Languages and Compilers - A.Y. 2016/2017
MidTerm Exam - Formal Languages part - 12.December. 2016
Prof. Alessandro Artale - Time: $1^{h} 50$ minutes

This is a closed book exam: the only resources allowed are blank paper, pens, and your head. Explain your reasoning. Write clearly, in the sense of logic, language and legibility. The clarity of your explanations affects your grade.

Problem 1 [9 points] Decide which of the following statements is TRUE and which is FALSE. You must give an explanation of your answer to receive marks.
(a) For all languages L_{1} and L_{2}, if $L_{1}^{*}=L_{2}^{*}$, then $L_{1}=L_{2}$.
(b) Let L_{1}, L_{2} be two Regular Languages over the same alphabet Σ, then the language $L=\left\{w \in \Sigma^{*} \mid\right.$ $w \notin L_{1}$ and $\left.w \in L_{2}\right\}$ is regular.
(c) The language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ is not regular (use the Pumping Lemma).

$$
\text { le) } \begin{aligned}
& L_{1}= L-\{\varepsilon\} \\
& L_{1}^{*}=L_{2}^{*} \\
& \text { db) } L=\bar{L}, \cap \cap L_{2} \text { Ry Land on closed under } \\
& \text { corpulent } \& \text { I itorrection }
\end{aligned}
$$

Problem 2 [9 points]
(a) Construct a Context Free Grammar for the language L over the alphabet $\{a, b, c\}$ such that $L=$ $\left\{a^{n} b^{m} c^{k} \mid k=n+m\right.$ with $\left.n, m, k \geq 0\right\}$. E.g., abbccc $\in L, a a a b c c c c \in L, a b b b c c c c \in L, b c \in L$, $b b c c \in L, a a c c \in L$ while $b \notin L, a b \notin L, a b c \notin L$.

$$
A \rightarrow \varepsilon \mid b \underline{A} c
$$

$$
B \rightarrow A|a c| a B c \|
$$

$$
\begin{aligned}
& a c \\
& \| S \rightarrow A \mid a 5 c \\
& \| A \rightarrow b c|b A c| \varepsilon
\end{aligned}
$$

(b) Construct a regular expression $R E$ and the corresponding automaton (either DFA or NFA) that generates the language over the alphabet $\{x, y, z\}$ constituted by all strings in which each x is (not necessarily immediately) preceded by some z, and this z comes after any other x.
E.g., $\varepsilon \in \mathcal{L}(R E)$, zyyz $\in \mathcal{L}(R E)$, zxyyzzyxyz $\in \mathcal{L}(R E)$, zxyyxz $\notin \mathcal{L}(R E)$, xyyzxyy $\notin \mathcal{L}(R E)$.

$V=\{x, y z\}$

Problem 3 [4 points] Consider the following DFA A over $\{0,1\}$:

(a) Construct a DFA A_{m} with minimal number of states such that $\mathcal{L}\left(A_{m}\right)=\mathcal{L}(A)$. The algorithm you have followed to construct A_{m} should become evident in your construction.

Problem 4 [6 points] Consider the following NFA A_{n} over $\{0,1\}$:

(a) Construct a DFA A_{d} such that $\mathcal{L}\left(A_{d}\right)=\mathcal{L}\left(A_{n}\right)$. The algorithm you have followed to construct the DFA A_{d} should become evident in your construction.
(b) Show all possible sequences of states of the NFA A_{n} that are traversed for the string 0100 .

Problem 5 [6 points] Apply the sequence of steps that are necessary to simplify a context free grammar and convert it into a Clean-up Form to the context free grammar $G=(\{S, A, B, C, D\},\{a, b\}, P, S)$, where P consists of the following productions:

$$
\begin{array}{ll}
S \longrightarrow B|A B a| B a D b & C \longrightarrow C B|C A| b A \\
A \longrightarrow A b \mid A C & D \longrightarrow D A|B| a D D \mid A B C \\
B \longrightarrow B a D \mid \varepsilon &
\end{array}
$$

Note1: The sequece of steps must be in the right order!
Note2: The algorithm applied in each step of the semplification procedure must be Clearly Presented showing the various intermediate steps.
(cont.)

